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High-Throughput Single-Cell Mass Spectrometry Reveals Abnormal
Lipid Metabolism in Pancreatic Ductal Adenocarcinoma
Qinlei Liu+, Wenjie Ge+, Tongtong Wang, Jiayi Lan, Sandra Mart&nez-Jarqu&n,
Christian Wolfrum, Markus Stoffel, and Renato Zenobi*

Abstract: Even populations of clonal cells are heterogeneous,
which requires high-throughput analysis methods with single-
cell sensitivity. Here, we propose a rapid, label-free single-cell
analytical method based on active capillary dielectric barrier
discharge ionization mass spectrometry, which can analyze
multiple metabolites in single cells at a rate of 38 cells/minute.
Multiple cell types (HEK-293T, PANC-1, CFPAC-1, H6c7,
HeLa and iBAs) were discriminated successfully. We found
evidence for abnormal lipid metabolism in pancreatic cancer
cells. We also analyzed gene expression in a cancer genome
atlas dataset and found that the mRNA level of a critical
enzyme of lipid synthesis (ATP citrate lyase, ACLY) was
upregulated in human pancreatic ductal adenocarcinoma
(PDAC). Moreover, both an ACLY chemical inhibitor and
a siRNA approach targeting ACLY could suppress the viability
of PDAC cells. A significant reduction in lipid content in
treated cells indicates that ACLY could be a potential target for
treating pancreatic cancer.

Introduction

There are differences between individual cells, and even in
the same cell population, cell heterogeneity exists.[1] Among
the reasons are genetic differences and stochastic processes
that occur in the cellular metabolism.[2] Since population
measurements conceals information about the heterogeneity
between cells, it is important to have sensitive analytical
methods that afford the accurate chemical composition and

contents of single cells. In addition, rare cell types including
circulating tumor cells, cancer stem cells, invariant natural
killer T cells, antigen-specific T cells, etc., play significant
roles in pathogenic mechanisms, early diagnosis of tumor, and
angiogenesis in cancer and other diseases.[3] In order to
understand the results of these genetic differences and
stochastic processes in individual cells more deeply and
faithfully reflect the role that cells play in the regular
operation of biological systems in terms of structure and
function, it is necessary to analyze and study the composition
and chemical content of cells at the single-cell level.

The concept of single-cell analysis has received wide-
spread attention in recent years and has important applica-
tions.[4] Various single-cell omics technologies have emerged,
including single-cell genomics, transcriptomics, proteomics
and metabolomics. Also, Single-cell omics technologies have
been applied to reveal metabolic heterogeneity of cells.[5]

Compared to single-cell genomics, transcriptomics, and
proteomics, single-cell metabolomics provides more rapid
and dynamic information of cell function. For example,
a deregulated metabolism is a hallmark of cancer cells.[6]

Specifically, a dramatic increase of the de novo biosynthesis
of fatty acids is generally observed in tumor cells. The
increased capacity for generating lipids not only facilitates the
formation of lipid bilayers but also enables the tumor cells to
modulate their specific signaling transduction and cope with
oxidative stress.[7] For example, pancreatic ductal adenocarci-
noma (PDAC) is one of the most lethal cancers with only
around 9% 5-year survival rate.[8] Accumulation of fatty acids
was reported to correlate with PDAC initiation and meta-
stasis in a PDAC mouse model,[9] indicating that lipid
metabolism may be dysregulated in PDAC. Cancer cells are
highly heterogeneous and exhibit phenotypic diversity, and
the heterogeneity of cancer is closely related to the patho-
genesis of cancer.[10] Single-cell analysis can accurately
characterize the heterogeneity of cancer, thereby providing
cancer treatment strategies.[11]

Single-cell analysis is challenging because intracellular
biochemical reaction rates are fast, intracellular composition
is very complex, the sample size is very small, some
compounds are present only at the trace level, may have
poor stability, and may be structurally similar. Studying the
biological properties of single cells requires analytical tech-
niques with high sensitivity, the ability to analyze ultra-small
samples, good selectivity, and fast response. Since mass
spectrometry has high sensitivity and selectivity, it holds great
promise as an effective technique for single-cell metabolo-
mics analysis. Numerous mass spectrometric techniques have
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been developed to elucidate the molecular profiles at the
cellular level, including secondary ion mass spectrometry
(SIMS),[12] matrix-assisted laser desorption/ionization mass
spectrometry (MALDI-MS)[13] and electrospray ionization
mass spectrometry (ESI-MS).[14] There are many ESI-based
single-cell analytical methods, such as laser ablation-ESI-
MS,[15] single probe ESI,[14c] and T-probe ESI,[16] capillary
electrophoresis-ESI-MS[17] and so on, however, most of them
are low-throughput. Mass Cytometry (CyTOF) is a powerful
plasma-based single-cell analysis tool that combines induc-
tively coupled plasma mass spectrometry and flow cytome-
try.[18] CyTOF can simultaneously detect multiple cell surface
protein markers at the single-cell level, but does not detect
low molecular weight metabolites. Recently, ESI-MS has
been used as a flow cytometry detector to achieve high-
throughput analysis of single-cell metabolites.[19] To widen the
metabolome coverage, alternative ionization methods are
useful.

Here we therefore explore the use of dielectric barrier
discharge ionization (DBDI) for single-cell metabolomics.
DBDI operates without auxiliary reagents and at atmospheric
pressure, is easy to miniaturize, easy to operate, cheap and
efficient, and has been used for the ionization of small
molecular weight metabolites in recent years.[20] The DBDI-
MS method introduced here has similar performance in terms
of throughput, sensitivity, and the ability to distinguish cell
types than the recently reported CyESI-MS methodology.[19]

However, compared to other ionization methods, DBDI has
some unique properties, for example, it is less affected by
matrix effects and ion suppression than ESI,[21] it can analyze
polar and nonpolar compounds simultaneously, and does not
need vacuum condition.[20a, 22] Very recently, we have applied
an ESI—DBDI combination source to single plant cell
analysis (data not shown here).[23] Compared to ESI, a 2-fold
increase in the number of visible metabolites was observed in
the combination source.

In this work, we propose a high-throughput and label-free
single-cell analytical method based on an active capillary
DBDI source,[24] where the ionization takes place inside
a capillary that is directly connected to the MS inlet. This
dramatically increases robustness and ion transmission into
the MS. The DBDI-MS platform (Figure 1) used in this work
can analyze multiple metabolites in a single cell at the same

time, including organic acids, carbonyl compounds, hetero-
cyclic organic compounds and lipids, and can detect around 38
cells per minute. The proposed DBDI-MS platform was able
to discriminate multiple cell types (293T, PANC-1, CFPAC-1,
HeLa and iBAs) based on their metabolic profile. Moreover,
the abnormal lipid metabolism in pancreatic cancer cells was
observed by using the DBDI-MS platform. As one of the
major components involved in fatty acyl chain biosynthesis,
the enzyme ATP citrate lyase (ACLY) is frequently upregu-
lated in tumor cells.[25] Recently, it has been shown that ACLY
is critical for the initiation of PDAC in pancreatic cancer
animal model, as ACLY ablation attenuated the acinar-to-
ductal metaplasia (ADM).[26] However, the expression levels
and potential role of ACLY were not fully elucidated in
established PDAC. Here, we propose that the expression
levels of ACLY are related to the abnormal lipid metabolism
in established PDAC. The DBDI-MS platform specifically
detected the redistribution of lipids in PDAC cells after
treating them with different dosages of specific ACLY
inhibitor but not in PDAC cells treated with a canonical
anticancer drug (gemcitabine) or DMSO. Furthermore, both
specific chemical inhibitor or siRNA approach targeting
ACLY could reduce the cell viability in PDAC cells, indicating
the tumor-promoting effect of ACLY in established PDAC
cells.

Results and Discussion

Feasibility of Single-Cell DBDI-MS

The specific configuration and operation details of DBDI-
MS are shown in Figure S1 and described in full detail in
section 1 of the supporting information (SI). Since DBDI-MS
has not previously been used for single-cell analysis, we
conducted preliminary experiments to demonstrate its feasi-
bility. A PANC-1 cell suspension (at a flow rate of 1 mL min@1)
and MeOH (at a flow rate of 11 mL min@1) were introduced
into the DBDI source via a home-built cell introduction
system (Figure S1). As presented in Figure 2a, signal pulses
appeared in the total ion chromatogram (TIC) when the
DBDI source was on, but when it was off, even if the cell
suspension was introduced into the DBDI source, there was
no signal in the TIC. In order to demonstrate that the detected
signals came from cells rather than from other substances, the
peaks at m/z 760.5851 (assigned to glycerophosphocholine
(PC) 34:1) and m/z 732.5538 (assigned to PC 32:1), which are
components of cell membranes, were chosen as markers of
cells passing through the DBDI. It can be seen from Figure 2b
and c that the positions and frequency of m/z 760.5851 and m/
z 732.5538 peaks matched with the TIC. Figures 1d, e and f
display that with the DBDI switched on, there were obvious
lipid peaks in the m/z 700-m/z 900 region, but there were no
lipid peaks when the DBDI was turned off. The results
suggest that DBDI-MS is able to detect single cells.

The optimization of experimental conditions for single-
cell analysis is described in detail in section 2 of the SI
(Figure S2–S6). To further evaluate the performance of
DBDI-MS, analysis of different cell suspensions was carried

Figure 1. Schematic of the the DBDI-MS platform. Cells are lysed by
MeOH in the cell introduction system, and the metabolites in the cells
are ionized by DBDI source.
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out (in section 3 of the SI, Figure S7–S9), including PANC-
1 cells, CFPAC-1 and H6c7 cells. In order to further prove that
the results obtained were from single cells instead of cell
clusters, the cell suspension was sequentially diluted with
ammonium formate to 5 X 103, 1 X 104, 2 X 104, 3 X 104, 4 X 104,
5 X 104 cells mL@1 and then measured by DBDI-MS. To
facilitate the calculation of cell concentration, the flow rate
of the cell suspension during the entire experiment was set to
1 mLmin@1. The results are summarized in Video S1, Table 1,
Table S1 and Table S2. As shown in Video S1, when the
concentration was 4 X 104 cellsmL@1, around 20 cells were
observed to pass through the capillary in around half a minute.
As shown in Table 1, Table S1 and Table S2, the number of
peaks per minute matched well with the cell concentration,
and the number of detected cells were essentially the same as
the calculated number of cell, which indicates that most cells
were monodisperse and detected separately. However, when

the cell concentration was + 5 X 104 cells mL@1, we found that
there were overlaps between the pulsed signals, and even the
capillary used to introduce the cells was sometimes blocked.
Therefore, the cell concentration used during the entire
experiment was controlled to < 5 X 104 cellsmL@1. The above
results prove that our method is high-throughput and able to
detect metabolites with single-cell resolution.

Metabolite Profiling and Discrimination of Cell Type

In positive ion mode, approximately 179 peaks indicating
metabolites in the m/z range between 100–1000 were detect in
PANC-1 cells (Table S3). These metabolites can be classified
as organic acids, carbonyl compounds, heterocyclic organic
compounds and lipids.

The details of the detected metabolite classification are
shown in Table S4. Because there is only limited cell lysis
during the brief contact with the MeOH flow (see Figure S1),
the extracted metabolites originate mainly from the cell
membranes, i.e., most of them are lipids. Since there are lots
of reactive species in the plasma, different product ions were
generated. In addition to common product ions such as
[M++H]+, [M++Na]+, there were also [M++H@H2O]+,
[M++H@2H2O]+ and [M++NH4]

+ produced. The tandem MS
information can be found in Figure S10.

Cell metabolites are potential biomarkers to distinguish
cells. To test if our DBDI-MS could be applied to profile cell
types, we measured five different kinds of cells, 293T, PANC-
1, CFPAC-1, HeLa and iBAs by DBDI-MS. After obtaining
metabolic information, principal component analysis (PCA)
(Figure 3a) and t-distributed stochastic neighbor embedding
(t-SNE) (Figure S11) were used to separate cell types, which
showed that single-cell metabolite information could success-
fully distinguish cell types. The specific details of the analysis
for the metabolic profiles are described in section 1 of the SI.
The heat map (Figure 3b) shows the relative intensities of
metabolite ions from each cell. This information indicates that
the types of single-cell metabolite profiles between different
cells are significantly different, and single-cell metabolic
information is adequate for cell discrimination.

All the above results showed that the DBDI-MS platform
is sensitive, accurate and specific to detect a variety of
metabolites.

Single-Cell DBDI-MS Metabolic Profile Identify Deregulated
Lipid Metabolism in PDAC Cells

Lipid metabolism is critical for cancer development, but
the study on the level of lipid metabolism in PDAC cells is still
very limited. Thus, we compared the metabolites of PDAC
cells and ductal epithelial cells H6c7. By comparing the mass
spectral profiles of PANC-1, CFPAC-1 and H6c7 (Figure 4a,
b and c), we found that most of the detected compounds are
phospholipids. Phospholipids are the main components of cell
membranes, and their content in cells is high. In the lower
mass range (m/z< 400), PANC-1 and CFPAC-1 contained
hexanoylcarnitine, which was not detectable in H6c7. In the

Figure 2. PANC-1 cell analyzed by DBDI-MS. a) Total ion chromato-
gram (TIC), b) extracted ion chromatogram (EIC) of m/z 760.5851 and
c) EIC of m/z 732.5538 acquired in DBDI on and off modes. d) mass
spectrum in DBDI off mode, and e) mass spectrum in DBDI on mode.
The asterisk (*) indicates electronic noise in the spectra.

Table 1: Comparison between the calculated and the detected number of
PANC-1 cells at different densities of the cell suspension.

Cell densi-
ty, cellmL@1

Calculated cell
number [min]

Detected cell num-
ber [min]

Average detected
cell number [min]

5 W 103 5 3 6 6 4 4 4.6
1 W 104 10 8 8 9 9 11 9
2 W 104 20 19 23 19 18 17 19.2
3 W 104 30 29 30 26 27 24 27.2
4 W 104 40 39 37 38 36 38 37.6
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higher mass range (m/z> 400), the most abundant lipids in
PANC-1, CFPAC-1 and H6c7 were PC(32:1), PC(34:1),
PC(36:2) and PC(38:5), but their distribution was slightly
different. As shown in Figure 4a, b, c and S12, in PANC-1 and
CFPAC-1, PC (34:1) is the most abundant lipid, its intensity at
m/z 760.58 being higher than that of PC (36:2) (m/z 786.60).
However, in H6c7, PC (36:2) is the most abundant lipid, with
an intensity of PC (34:1) (m/z 760.58) lower than that of PC
(36:2) (m/z 786.60). As shown in Figure 4d, e, f and g, the
content of PC(32:1), PC(34:1), PC(36:2) and PC(38:5) is
higher in pancreatic cancer cell types (PANC-1 and CFPAC-
1) than that in pancreatic ductal epithelial cells (H6c7). In
addition to these lipids that occur in all three types, each of
the cell also contained some unique lipids. For example, PC
(O-36:1) and PS (40:3) were only detected in CFPAC-1, and
TG (48:2) was only detected in H6c7.

The heat map in Figure S13 shows the normalized
intensities of assigned metabolites from each cell, and
significant differences are seen for some metabolites. In the
volcano plots, differentially expressed features in the two
pancreatic cancer cell lines (PANC-1, CFPAC-1) and the
corresponding normal cell line (H6c7) are visualized. Ac-
cording to Figure 4h, several amino acids and lipids, for
example, N-lactoyl-methionine (m/z 239.1061, [M++NH4]

+),
hexanoylcarnitine (m/z 260.1856, [M++H]+), MG(18:0) (m/z
381.2981, [M++Na]+) and PS(30:2) (m/z 686.4395,
[M++H@H2O]+) exhibited clear statistical differences be-
tween PANC-1 and H6c7 cells. As shown in Figure 4 i, the
metabolites with statistical differences between CFPAC-1 and
H6c7 cells were also amino acids and lipids, for example, PC
(34:1) (m/z 782.5660, [M++Na]+), N-lactoyl-methionine (m/z
239.1061, [M++NH4]

+) and hexanoylcarnitine (m/z 260.1856,
[M++H]+).

To further estimate the potential of DBDI-MS in clinical
applications, we carried out an analysis of a mixed cell
suspension composed of PANC-1, CFPAC-1 and H6c7 cells,
to simulate potentially cancerous tissues of PDAC patients.
Based on their characteristic single-cell metabolite profiles
acquired by DBDI-MS, DBDI-MS can specifically and high-
throughput identify different cell types in a cell mixture
(Figure 4 j). PANC-1 cells, CFPAC-1 cells, H6c7 cells and the
cell mixture can be separated by t-SNE (Figure 4k), and cells
from the mixture each fall into a specific group, which makes
it possible to blindly identify cells from a mixture.

It can be seen that the types, content and distribution of
lipids in pancreatic cancer cells and normal ductal cells are
different, and that the abnormal lipid metabolism in pancre-
atic cancer cells can be clearly observed by DBDI-MS.

Deregulated ACLY Levels in PDAC

In order to investigate why lipid metabolism was abnor-
mal in PDAC cells, we monitored the expression levels of
ACLY which is the critical rate-limiting enzyme for lipid
synthesis, in one human TCGA dataset consists of 167 normal
and 179 PDAC patients.[27] The mRNA level of ACLY
increased around 1.4 fold in PDAC (Figure 5a). We further
confirmed the upregulated ACLY mRNA levels in PDAC
cells by qPCR (Figure 5b). Since ACLY is one of the critical
enzymes for acetyl-CoA and lipid acids synthesis, we also
analyzed the acetyl-CoA and lipid metabolism biological
pathways in the same TCGA dataset by Gene set Enrichment
Analysis (GSEA). Interestingly, we found that the genes
involved in the acetyl-CoA metabolic process and lipid
homeostasis were enriched in human PDAC samples (Figur-
es S14a and b). Combined with our in vitro data (Figure 4), we

Figure 3. Discrimination of cells by the DBDI-MS platform. a) Principal component analysis (PCA) of five cell types. b) Heatmap of the single-cell
metabolite in five cell types.

Angewandte
ChemieResearch Articles

24537Angew. Chem. Int. Ed. 2021, 60, 24534 – 24542 T 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH www.angewandte.org

http://www.angewandte.org


conclude that the ACLY levels and lipid metabolism is
deregulated in human PDAC. Recent studies revealed that
PI3K-AKT and mTORC1 signaling pathways control the

level of ACLY.[26, 28] We thus hypothesized that the upregu-
lated ACLY in PDAC cells may due to the deregulated PI3K-
AKT and mTORC1 pathways. To this end, we monitored the

Figure 4. Assignment of cellular metabolites and discrimination of PDAC and H6c7 cells. a) Typical PANC-1 single-cell mass spectrum. b) Typical
CFPAC-1 single-cell mass spectrum. c) Typical H6c7 single-cell mass spectrum. d–g) Normalized intensity of PC(32:1), PC(34:1), PC(36:2) and
PC(38:5) in PANC-1, CFPAC-1 and H6c7 cells. h) Volcano plot of the correlations between the P-values and fold changes (FD) for the metabolite
signals in PANC-1 and H6c7 cells. i) Volcano plot of the correlations between the P-values and fold changes (FD) for the metabolite signals in
CFPAC-1 and H6c7 cells. j) Total ion chromatogram (TIC), extracted ion chromatogram (EIC) of m/z 760.5851 and EIC of m/z 732.5538 of mixed
cell suspension (1 W 104 cellsmL@1) composed of PANC-1, CFPAC-1 and H6c7. k) Distributed stochastic neighbor embedding (t-SNE) analysis of
PANC-1, CFPAC-1, H6c7 and mixed cell suspension composed of PANC-1, CFPAC-1 and H6c7.
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protein levels of the key members of both signalling pathways
including: activated form of AKT (phosphorlation of AKT at
ser473 site), total AKT, activated p70 S6K (phosphorlation of
p70 S6K at T389 site) and total p70 S6K in PDAC and H6C7
cells by immunoblotting. Indeed, we found both signalling
pathways are activated in PDAC cells evidenced by the
upregulation of phos-AKT(Ser473)/total AKT and phos-p70
S6K(T389)/total p70 S6K levels compared to H6C7 cells
(Figures 5 c–e), indicating that the deregulated PI3K/AKT
and mTORC1 pathways may contribute to the high levels of
ACLY in PDAC cells.

ACLY Inhibition-Induced Lipid Redistribution Was Specifically
Detected by the DBDI-MS Platform

Since the biological evidence demonstrates that ACLY is
abundant in human PDAC samples, we investigated the effect
of an ACLY chemical inhibitor on pancreatic cancer cells
using the DBDI-MS platform. As shown in Figure 6a–g and
S15a–g, PC(32:1), PC(34:1) and PC(36:2) are the three
predominant lipids in PANC-1 and CFPAC-1. When PANC-
1 and CFPAC-1 were treated with gemcitabine or DMSO, the
intensity of PC(36:2) is higher than the intensity of PC(32:1),

and the intensity ratio of PC(32:1)/PC(36:2) (m/z 732.55/
786.60) is similar. However, when PANC-1 and CFPAC-
1 were treated with SB-204990, the intensity of PC(36:2)
became lower than intensity of PC(32:1), and the intensity
ratio of PC(32:1)/PC(36:2) (m/z 732.55/786.60) was increased.
Figure 6 f and S15f show that compared with PANC-1 and
CFPAC-1 cells treated with DMSO, the contents of PC(32:1),
PC(34:1) and PC(36:2) in the cells treated with different
concentrations of gemcitabine did not change significantly,
but the contents of PC(32:1), PC(34:1) and PC(36:2) in
PANC-1 and CFPAC-1 treated with different concentration
of SB-204990 were significantly reduced, when the concen-
tration of SB-204990 increased, the contents of PC(32:1),
PC(34:1) and PC(36:2) decreased. The t-SNE clustering
results in Figure 6h and S15h show heterogeneity of PANC-
1 and CFPAC-1 after different treatments can be observed.
PANC-1 and CFPAC-1 treated with SB-204990 were sepa-
rated more significantly than PANC-1 and CFPAC-1 treated
with gemcitabine or DMSO.

Thus, the above results show that the lipid metabolism in
PDAC cells could be reversed by ACLY inhibition, which
further supports the notion that deregulated ACLY contrib-
utes to the abundance of lipids in PDAC cells. Moreover, the
modifications induced by ACLY inhibition could be specifi-

Figure 5. Deregulated ACLY levels in PDAC. a) Relative ACLY mRNA levels in human normal and PDAC pancreatic samples. Mean : SD (n = 167
in normal and n =179 in PDAC). **, p<0.01. b) Relative ACLY mRNA levels in PANC-1, CFPAC-1 and H6c7 cells. Mean : SD (n = 3). *, p<0.05.
c) Immunoblot (IB) analysis of the total cell lysate derived from PANC-1, CFPAC-1 and H6c7 cells. GAPDH was used as protein loading control.
d,e) Bar plots represent of the quantification of IB described in (c). qPCR and Immunoblot analysis were performed at the cell population level.
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cally detected by our sensitive single-cell DBDI-MS platform.
Because DBDI-MS shows high sensitivity and high specificity
at the level of cell lines, it has the potential to classify the cells
in clinical cancer tissues, identify the characteristic metabo-
lites of different cancer types, and distinguish cancer subtypes.

ACLY May Serve as a Novel Target for Established PDAC

The above findings revealed by our new DBDI platform
inspired us to explore whether targeting ACLY could be
beneficial for PDAC therapy. As a primitive ACLY inhibitor,

SB-204990 displays tumor-suppressive effects in multiple
tumors both in vitro and in vivo.[29]

To this end, we first treated PANC-1 and CFPAC-1 cells
with the ACLY inhibitor SB-204990 and found a dosage
dependent suppression of cell viability by SB-204990 in
PDAC cells (Figures 7a and d). Accordingly, after trans-
fecting PDAC cells with siRNA targeting ACLY (Figures 7b
and e), we also found a significant reduction of cell viability
(Figures 7 c and f). Thus both chemical inhibitors or genetic
approaches targeting ACLY could reduce PDAC cell viability,
suggesting that ACLY could be a promising target in
established PDAC.

Figure 6. PANC-1 with different treatments. a) Representative mass spectrum of PANC-1 treated with DMSO. b) Representative mass spectrum of
PANC-1 treated with 25 mM Gemcitabine. c) Representative mass spectrum of PANC-1 treated with 50 mM Gemcitabine. d) Representative mass
spectrum of PANC-1 treated with 100 mM SB-204990. e) Representative mass spectrum of PANC-1 treated with 200 mM SB-204990. f) Bar plots
for the changes of lipid contents after different treatments. g) Violin plots for comparing the intensity ratio of PC(32:1)/PC(36:2) (m/z 732.55/
786.60) in PANC-1 with different treatments. h) t-SNE analysis of PANC-1 with different treatments.
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Conclusion

In conclusion, a high-throughput, label-free and sensitive
DBDI-MS platform was developed for the analysis of single-
cell metabolites, which achieved a throughput of approx-
imately 38 cells per minute. The DBDI-MS platform is able to
discriminate different cell types successfully based on their
cellular metabolites. Compared with bulk cell analysis, our
single-cell DBDI-MS platform can separate different cells
from mixed cell suspensions according to its characteristic
single-cell metabolite profile, and classify each type of cell
into a specific group, which may help detect lipid metabolism
in clinical cancer tissues.

Since the DBDI-MS platform found that abnormal lipid
metabolism occurs in pancreatic cancer cells, a series of
biological methods were used to analyze the expression levels
of ACLY and the activation of related biological pathways in
the TCGA dataset and PDAC cells. We indeed found the
deregulated ACLY, acetyl-CoA synthesis and lipid homeo-
stasis pathways in PDAC. We further identified deregulated
PI3K/AKT and mTORC1 pathways may promote the ACLY
expression in PDAC.

By treating PDAC cells with different dosages of specific
ACLY inhibitor, the redistribution of lipids in PDAC cells was
observed by the DBDI-MS platform. Further biological
experiments also demonstrated that both ACLY inhibitor or
genetic approach that targeting ACLY could repress cell

viability of PDAC cells. These results prove the high
sensitivity of our DBDI-MS platform and also confirmed
that ACLY indeed contributes to the lipid metabolism in
PDAC cells, indicating ACLY may serve as a novel ther-
apeutic target in PDAC.

Thus, our DBDI-MS platform may have the potential to
serve as a new generation of mass cytometry and contribute to
biological and clinical research.
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