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Abstract

Pregnancy-associated breast cancers (PABCs) are malignancies diagnosed during pregnancy or up 

to five years following parturition, and are usually aggressive, stroma-rich, and estrogen receptor/

progesterone receptor-negative; but little is known about the cellular origin of PABCs or the 

mechanisms by which PABCs initiate. Using the RCAS retrovirus to deliver the ErbB2 oncogene 

into the mammary epithelium of our previous reported MMTV-tva transgenic mice, we detected 

human PABC-like tumors during pregnancy and lactation but not in involuted mice or in age-

matched virgin mice. More importantly, by generating a WAP-tva transgenic line for expression 

of ErbB2 selectively in WAP+ mammary alveolar cells, we found that the resulting tumors 

exhibited the hallmarks of PABCs irrespective of the time since pregnancy and even in the 

absence of pregnancy. These data suggest that PABCs arise preferentially from an alveolar cell 

population that expands during pregnancy and lactation. This somatic mouse model may also be 

useful for preclinical testing of new prophylactic and therapeutic strategies against PABC.
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Background

Breast cancer arising either during pregnancy or up to 5 years postpartum is defined as 

pregnancy-associated breast cancer (PABC) (1). PABCs form a subtype of breast cancer 
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characterized by increased tumor grade, Ki67 positivity, invasiveness, stromal involvement, 

estrogen receptor (ER)/progesterone receptor (PR) negativity, HER2 overexpression, and 

poor prognosis (2, 3). Over the last few decades there has been a gradual but consistent 

increase in the incidence of PABCs globally and correspondingly, in the number of PABC-

associated deaths (4). It is, therefore, increasingly important to understand the mechanisms 

by which PABCs arise in order to identify novel risk factors and biomarkers, as well as more 

effective therapeutic and prophylactic strategies.

Xenograft studies in animal models have suggested that stromal accumulation during post-

lactational involution in the breast is chiefly responsible for the poor prognosis associated 

with PABCs in humans (5, 6). A tumor-promoting stromal milieu associated with involution 

has been reported to underlie the especially aggressive nature of PABCs diagnosed after 

parturition but within 2 years postpartum (7–9). Moreover, the use of non-steroidal anti-

inflammatory drugs (NSAIDs) to circumvent this stromal recruitment during involution is 

able to ameliorate the increased metastatic potential of PABCs in rats (10). Immature 

macrophages that accumulate in the breast during involution have also been reported to 

generate a pro-tumorigenic microenvironment promoting PABC growth (7).

The adult mammary gland has a well-structured cellular hierarchy that constitutes a ductal 

tree branching out from a main duct leading up to the nipple. Each duct in the ductal tree is 

comprised of two layers of cells: luminal epithelial cells that line the lumens of ducts, and 

basal (myoepithelial) cells that surround the luminal cells (11). Most ducts end in alveoli, 

whose luminal cells are also called alveolar epithelial cells and usually produce whey acidic 

protein (WAP) and casein (12). Alveoli expand rapidly in number during pregnancy as a 

result of stimulation by several growth factor and hormonal pathways that activate STAT5 

and STAT6 (13, 14), and become highly secretory by late pregnancy and lactation (15). 

Scattered in these basal and luminal layers are various compartmental progenitors. These 

different cell populations can be transformed to form tumors representing different 

histopathological subtypes of human breast cancer (16–20). Besides impacting 

histopathological feature, the cell of origin of breast cancer also significantly influences 

cellular composition, gene expression profile, and cancer progression (16, 17, 21). Here we 

report the surprising finding that the cardinal features of PABC may also be encoded in a 

distinct subset of mammary cells from which the tumor originates.

Results

ErbB2-induced PABCs in mice are aggressive and proliferate rapidly

To study the contribution of the cell of origin on PABC phenotype, we used the RCAS-TVA 

mouse model system that allows an oncogene cloned into the RCAS retroviral vector to be 

delivered into a selected population of mammary epithelial cells (<0.3% of the mammary 

gland), more closely replicating human breast cancer initiation from a single cell (22). This 

virus is derived from avian leukosis virus sub-group A, and these mammary cells are made 

susceptible to RCAS infection using a mammary-selective promoter such as MMTV to drive 

transgenic expression of tva, which encodes the RCAS receptor (23). While the MMTV 

promoter is responsive to ovarian hormones, baseline TVA protein levels in this transgenic 

line are easily detected and are not significantly altered during estrus (Fig. S1a). As soon as 
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the RCAS integrates into the host genome, any gene cloned in this retroviral vector is 

completely under the control of RCAS LTR, which is constitutive and not hormonally 

influenced (24). We used RCAS expressing a constitutively activated version of rat ErbB2 

(HER2/Neu), RCAS-caErbB2, to initiate tumorigenesis as human HER2 amplification/

overexpression has been associated with PABCs (25) and its protein activates an oncogenic 

pathway commonly activated in human breast cancer (26, 27).

We have reported that intraductal injection of RCAS-caErbB2 into MMTV-tva mice leads 

to tumors with a median latency of approximately six months (22, 24). To demonstrate that 

we could generate PABCs, we injected 6-week-old MMTV-tva mice intraductally, mated 

half of the injected mice one week later, and palpated them as well as the virgin control mice 

for tumor appearance. A subpopulation of the parous cohort acquired tumors during 

lactation and the first four days of involution (Fig. 1a). These tumors were collectively 

termed mouse PABCs (mPABCs) since they conformed to the most rigorous definition of 

postpartum human PABCs (hPABCs) as arising during lactation and early involution. More 

than half the mice in the parous cohort (12/22) acquired mPABCs, while only one of 17 

(5.9%) virgin control mouse acquired a tumor during the same time frame (p=0.003; Fig. 

1a). Parous mice that acquired tumors >50 days after parturition (after one month of 

involution) constituted the late onset parous group and, along with tumors arising in virgin 

mice, formed two control groups for tumor phenotype comparison with the PABC group 

(Fig. 1a). Of note, the decreased tumor latency in the mPABC group was not incidental to a 

pregnancy-associated increase in oncogene expression, a common concern with 

conventional transgenic models. The caErbB2 protein level as measured by the HA tag was 

confirmed to be similar in all three subsets of tumors (Fig. S1b+d), as predicted from the 

ubiquitous nature of the RCAS LTR.

Similar to the aggressive phenotype of hPABCs, mPABCs had a 4-fold increase in growth 

rate compared to late onset tumors in parous mice (Fig. 1b). In further concordance with 

hPABCs, mPABCs had a 3-fold higher Ki67 index than late onset parous tumors (Fig. 1c). 

The higher proliferation of mPABCs was also reflected in a 2.5-fold increase in the number 

of mitotic cells relative to late onset tumors in parous mice (Fig. 1d). Apoptosis, as detected 

both by TUNEL and cleaved caspase3 (CC3) levels, was not affected by pregnancy and 

remained comparable between mPABCs and late onset tumors in parous mice (Fig. 1e+f). 

Tumor histology in all three cohorts (nulliparous, PLO and mPABC) was complex, 

comprising two or more distinctive histological subtypes. Areas resembling squamous cell 

carcinoma, poorly differentiated adenocarcinomas, and EMT tumors appeared in all three 

tumor groups; however, the relative area of the total tumor occupied by these aggressive 

histological subtypes was least in the nulliparous tumors and greatest in the mPABCs (Fig 

2a). Squamous cell carcinoma was particularly prominent in the mPABC group. The 

peripheries of these squamous-differentiated tumors were aggressively invasive with high 

cellular pleomorphism. Like hPABCs, mPABCs had increased collagen deposition 

indicating a significant increase in stromal involvement relative to the late onset tumors in 

both parous and virgin mice (Fig. 2b). Finally, similar to hPABCs, mPABCs were 

predominantly ER-negative, as were the late onset tumors in both parous and virgin animals 

(Fig. 4a). Of note, the intra-tumor heterogeneity in these tumors is unlikely to be due to 
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polyclonality — the tumor latency was several months for most of the tumors especially for 

non-PABC tumors (Fig. 1), indicating the need for a rarely occurring spontaneous secondary 

somatic mutation and therefore lowering the chance of two or more neighboring infected 

cells gaining a key secondary mutation at a similar time point and then co-evolving into an 

overt tumor. Accordingly, using FISH to detect the RCAS provirus, we found that seven of 

the nine tumors analyzed were homogeneous for either one or two integration sites, 

suggesting that they likely evolved from a single infected cell although we could not exclude 

the possibility that some of them might have arisen from two neighboring cells that were 

both infected by the same number of viral particles. Two tumors comprised cells with 

variable integration events, suggesting that they were oligoclonal (Fig. S1c). Since the 

PABC group did not appear to have more FISH foci or a stronger indication of non-clonal 

origin (Fig. S1c), neither clonality nor oncogene levels would likely account for the 

observed histopathological differences between the PABC tumors and other tumors.

ErbB2-induced PABCs have intratumor cellular heterogeneity and upregulated levels of 
alveolar markers

We next used cell lineage markers to confirm both the intra- and inter-tumor cellular 

heterogeneity indicated by the above histopathological studies. Both the well- and poorly-

differentiated adenocarcinoma areas in all three groups comprised predominantly keratin 8 

(K8, a luminal cell marker)-positive cells and only a few K5 (a basal cell marker)-positive 

cells (Fig. 3). The tumor areas resembling squamous cell carcinoma in every group were 

uniformly positive for K5 and weakly positive for K8, while the EMT-type tumor cells in 

every group stained for both vimentin and K8 and had occasional K5 positive cells (not 

shown). Important, the mPABCs had significantly higher K5 positivity than the late onset 

tumors (Fig. 3a+d), while the late onset tumors in both parous and virgin mice were 

predominantly K8+ (Fig. 3b+e). K5+ cells in the mPABCs were largely HA+ (Fig. 3c+f), 

indicating that they were progeny of cells infected by RCAS-caErbB2 and were not normal 

basal cells entrapped within the tumor. In contrast, the few cells that were K5+ in the late 

onset tumors of both parous and virgin mice were predominantly HA−, indicating that these 

cells were part of the normal mammary epithelium entrapped in tumors (Fig. 3c+f). These 

differences in cellular heterogeneity suggest that PABCs may have a different cell of origin

—possibly a bipotential progenitor—from the late onset tumors in these parous mice.

We also found a >3-fold enrichment for two traditional alveolar markers, phosphorylated 

signal transducer and activator of transcription 5 (pSTAT5) and whey acidic protein (WAP) 

(12, 28, 29) in mPABCs relative to late onset tumors in both parous and virgin mice (Fig. 

4b–d). The enrichment of alveolar markers in mPABCs suggests that these tumors 

potentially originate from an alveolar cell. Together, these observations suggest that 

mPABCs constitute a tumor subtype that is distinct from late onset tumors in parous mice as 

well as in virgin mice, is comparable to the hPABC tumor subtype, and may originate from 

alveolar cells possessing the potential to differentiate into both luminal and basal lineages 

upon oncogene activation.
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WAP-tva transgenic mice enable selective expression of oncogene in alveolar cells

To test whether PABC phenotypes could indeed be recapitulated by alveolar cells 

undergoing transformation, we targeted caErbB2 selectively into the alveolar cell 

population. WAP is an integral component of breast milk and is generally restricted to cells 

of the alveolar lineage (12). WAP expression, in accordance with its function, remains at 

baseline levels in the virgin mammary gland where it is regulated by the estrus cycle, and is 

maximal during pregnancy and lactation (12). Therefore, we generated a transgenic mouse 

line transcribing the gene encoding the TVA receptor from the promoter of WAP (Fig. 5a). 

In virgin WAP-tva mice, the TVA protein level of individual mammary cells varied within 

the estrous cycle (Fig. S2a), as expected of this hormone-responsive promoter. Based on 

flow cytometry analysis of single cell suspensions of mammary cells that were stained for 

TVA, 13.6±3.7% of cells were TVA+ in MMTV-tva mice (n=18), but the TVA+ cell number 

dropped to 9.9±4.6% in WAP-tva mice (n=21) (p=0.007), consistent with a restricted 

population of cells expressing WAP in the mammary gland compared to the broader cell 

population that is responsive to MMTV LTR. Important, based on qPCR, TVA+ cells were 

enriched for WAP mRNA >8-fold (p=0.015) relative to TVA−/Lin− cells, demonstrating the 

specificity of TVA expression in WAP-expressing cells (Fig. 5c). During pregnancy and 

lactation, the TVA protein increased in intensity and could be detected on the membrane of 

many more cells (Fig. 5b), again in accord with the endogenous pattern of WAP expression. 

Together, these data indicate that similar to endogenous WAP, TVA in the WAP-tva mice is 

restricted to cells from an alveolar lineage in the mouse mammary gland.

To further characterize the TVA+ cell population in this new WAP-tva mouse line, we used 

flow cytometry to analyze their mammary cell lineage markers, CD24 and CD49f. Mouse 

mammary luminal progenitor cells are enriched in the CD24hi/CD49flo mammary colony-

forming cell (Ma-CFC) population (30). The Ma-CFC fraction was almost 3-fold larger in 

the TVA+ cell population in the WAP-tva line than in the MMTV-tva line (Fig. 5d+e). This 

result suggests that TVA+ cells in WAP-tva mice, while being alveolar, are enriched for 

cells with progenitor potential relative to TVA+ cells in MMTV-tva mice. In accord with 

this inference, in an in vitro colony forming assay, the TVA+ cell population from the WAP-

tva line formed significantly more colonies than TVA+ cells from MMTV-tva mice (Fig. 5f

+g).

An alveolar cell of origin leads to rapidly growing, aggressive, PABC-like tumors 
regardless of time since pregnancy or even in the absence of a pregnancy

Having established a mouse line where oncogenic signaling could be targeted to a luminal 

cell population largely restricted to the alveolar lineage, we next tested whether tumors 

generated from these cells preferentially formed a PABC-like tumor subtype. We first 

determined the infection rate to be approximately 0.3% of the mammary epithelial cells 

based on intraductal injection of 1 × 107 IUs of the RCAS-GFP reporter virus per gland of 

12-week-old WAP-tva virgin mice (Fig. S2b). This rate is similar to what is observed in 

MMTV-tva mice, despite the higher frequency of TVA+ cells in MMTV-tva mice (Fig. 

S2b). Then, we injected WAP-tva mice with the RCAS-caErbB2 virus, and one week later 

allowed half the mice to undergo a full-term pregnancy and three weeks of lactation while 

maintaining the other half as virgin controls. As in the MMTV-tva mice, we detected 
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mPABCs that arose during lactation and the first week of involution, but also detected an 

early onset subgroup of tumors that arose with comparable latency in the virgin mice 

(p=0.99; Fig. 6a). We confirmed that the ErbB2 protein level was unperturbed by 

pregnancy/lactation hormones in mPABCs from WAP-tva mice (Fig. S2c). We also 

validated that the caErbB2 protein level in tumors was comparable between MMTV-tva and 

WAP-tva mice regardless of parity or time at detection (Fig. S3).

mPABCs and late onset tumors in parous mice in the WAP-tva mice grew at a similar rate, 

which was comparable to the aggressive growth rate of mPABCs in the MMTV-tva mice 

(Fig. 6b). Ki67 positivity was similarly high in mPABCs and late onset tumors from parous 

WAP-tva mice as well as from virgin WAP-tva mice (Fig. 6c). Also, comparable numbers of 

tumor cells were in mitosis (Fig. 6d) and there was no observable difference in apoptosis 

(Fig. 6e+f). Therefore, both PABCs and late onset tumors in parous WAP-tva mice grow 

equally fast with similarly high levels of proliferation. These data suggest that the recency of 

a pregnancy did not affect growth or proliferation of tumors arising from an alveolar cell 

population, unlike in the MMTV-tva line.

All three groups of WAP-tva tumors (mPABC, late onset in parous mice, and in virgin mice) 

also contained complex histopathological subtypes including squamous cell carcinomas, 

poorly differentiated adenocarcinomas, and EMT-like tumors, but they resembled mPABCs 

in MMTVtva mice more than the other tumor subsets in MMTV-tva mice (Fig. 7a). Stromal 

involvement was extensive in all three tumor groups of WAP-tva mice, as in mPABCs in the 

MMTV-tva mice (Fig. 7b). Moreover, all three groups had significant K5 positivity, 

comparable to the level in mPABCs from MMTV-tva mice and much higher than the level 

in late onset tumors from the MMTV-tva mice (Fig. 8a+d). Again, the K5+ cells also 

produced the HA tag of the RCAS-caErbB2 provirus (Fig. 8b+e), indicating that these cells 

originated from the initial virus-infected cell population and were not normal myoepithelial 

cells recruited to the tumor. Corresponding to the higher K5 positivity, tumors from all three 

groups of WAP-tva mice had lower K8 positivity than late onset tumors from the parous 

MMTV-tva mice (Fig. 8c+f).

As with the MMTV-tva mice, all three groups of tumors in WAP-tva mice were largely ER-

negative (Fig. 9a). Tumors from WAP-tva virgin mice were more likely to be ER-negative 

than those from virgin MMTV-tva mice (p=0.001; Fig. 9b), indicating that ER status is also 

influenced by the tumor cell of origin. Taken together, these results suggest that an alveolar 

cell of origin can endow a tumor with the hallmarks of a PABC, irrespective of the time 

since pregnancy and even in the absence of pregnancy.

Discussion

Our study is the first to report an impact of cell of origin on PABC phenotype and our 

results indicate that the cellular origin of the tumor is a critical contributing factor to the 

hallmarks of PABCs. While late onset tumors in parous MMTV-tva mice lacked PABC 

characteristics including high basal cell involvement and collagen deposition, tumors from 

parous WAP-tva mice, irrespective of the time since pregnancy, had PABC features (Fig. 

7+8). Since the late onset tumors in these parous mice are not exposed to involution stroma, 
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our data indicate that an alveolar cell of origin can endow a tumor with PABC 

characteristics long after the pregnancy/involution stimuli have disappeared. In support of 

this interpretation, tumors arising in virgin mice of the WAP-tva line exhibited the cardinal 

features of hPABCs and were similar to both mPABC and late onset tumors in WAP-tva 

parous mice.

The dramatic phenotypic differences between PABCs and late onset tumors in parous mice 

of the MMTV-tva line are likely due to a difference in the cell of origin. In this transgenic 

line, tva expression, and therefore oncogene delivery, is not restricted to a specific subset of 

mammary cells but rather distributed to various subtypes of mammary cells; therefore 

tumors could arise from different subsets of RCAS-caErbB2-infected cells depending upon 

selective pressure and evolutionary advantage (such as a pregnancy). However, the 

microenvironment of pregnancy, lactation, and involution may also modulate tumor 

phenotypes in this transgenic line, and may convert the phenotype of tumors arising from 

non-alveolar cells into phenotypes that bear the cardinal features of PABC. Therefore, our 

results and data interpretation do not disprove previous reports regarding the impact of 

involuting stroma on phenotypes of PABC.

It is of interest to note that tumor proliferation and growth appeared dependent more on the 

cell of origin than on pregnancy association. Compared to parous late onset tumors in 

MMTV-tva virgin mice, the Ki67 index and the number of cells entering mitosis were high 

in the WAP-tva line irrespective of time since pregnancy or even in the absence of 

pregnancy (Fig. 6c+d). Similarly, time to tumor doubling was comparable among all three 

groups of WAP-tva tumors (Fig. 6b). These results also suggest the possibility that the cell 

of tumor origin can affect pregnancy protection against breast cancer. Epidemiological 

studies indicate that pregnancy in young women protects against breast cancer (31). 

Moreover, based on reduced mammary cell proliferation following a pregnancy in women 

and rodents, it has been postulated that pregnancy-induced protection against breast cancer 

occurs through the inhibition of proliferation (32). Our observation that the growth of 

tumors originating from WAP+ cells is not affected by a pregnancy suggests that tumors as 

well as premalignant lesions arising from alveolar cells might be outside the protective 

effects of pregnancy. However, it remains to be tested whether alveolar cell tumorigenesis 

initiated by a different oncogene may still be modulated by a pregnancy.

The risk of PABCs appears to increase with a woman’s age at pregnancy (1), but the reasons 

are unclear. This age-dependence might be due to the normal changes of breast epithelia 

and/or stroma during ageing; however, it is also possible that preexistent oncogenic insults 

(such as HER2 amplification) in the breast epithelium might appear with greater likelihood 

in older women (33–35). These preexistent insults may be preferentially responsive to the 

potent hormonal milieu induced by pregnancy and lactation, and therefore may be able to 

form tumors more rapidly under these stimuli. It is also possible that with pregnancy, 

mammary cells with oncogenic mutations in an ageing breast might be more readily forced 

into an alveolar lineage which might evolve into tumors more rapidly. There are few animal 

models that can recapitulate PABC initiation, and previous models largely utilize xenograft 

tissue (6). The RCAS-TVA mouse model system appears to comprehensively recapitulate 
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the PABC phenotype, and the use of this somatic model system may help uncover the 

molecular and cellular mechanisms by which PABCs arise and progress.

The cell of origin has been reported to affect breast tumor ER status (19, 36), and the results 

of our study further support this connection. The preponderance of ER-negative PABC 

tumors is a contributory factor to poor prognosis and survival of PABC patients. In fact, 

several epidemiological studies suggest that the tumor subtype associated with PABCs, 

rather than the pregnancy itself, is responsible for the poor prognosis of PABCs (37). Our 

data support this epidemiological observation since the alveolar cell of origin in itself 

predicates an ER-negative breast cancer even in the absence of a pregnancy (Fig. 9b).

PABCs, being largely ER− and advanced at diagnosis, are difficult to treat. It is therefore 

crucial to identify new molecular targets for therapeutic and prophylactic strategies. The 

identification of a potential distinct alveolar cell of origin for PABCs suggests that proteins 

regulating alveolar differentiation, such as pSTAT5, might be important as targets for 

intervention strategies. Moreover, the identification of an alveolar gene expression signature 

or protein biomarker that can be estimated non-invasively might be invaluable for predicting 

women at higher risk of being diagnosed with postpartum PABC. In addition, our mouse 

model may also be valuable for preclinical testing of therapeutics that may be especially 

potent for PABC.

Taken together, the results of our study identify for the first time the critical effects of cell of 

tumor origin on PABC characteristics. Using a mouse model well suited for studying tumor 

formation in vivo, we recapitulated the hallmarks of PABCs as distinct from those of late 

onset tumors in parous mice. Furthermore, we showed that tumor origination in alveolar 

cells significantly increased PABC characteristics irrespective of time since pregnancy and 

even parity per se. Translationally, it may be illuminating to investigate whether human 

PABCs are associated with alveolar markers or pSTAT5 levels. Identification of an alveolar 

signature in human PABCs might provide therapeutic targets, as well as prophylactic 

strategies. Most importantly, identification of key dysregulated molecular pathways 

contributing to PABC initiation in humans may be valuable for the identification of risk 

factors and biomarkers, facilitating early detection of PABCs.

Materials and Methods

Experimental Animals

MMTV-tva (MA) mice in a FVB genetic background used in these studies have been 

previously reported (22). All animals were euthanized according to the NIH guidelines. The 

animal protocol was approved by the IACUC of Baylor College of Medicine, Houston, TX. 

The WAP-tva transgenic vector was constructed in pBS-WAP, which contains the 7.3 kb 

WAP gene (38). TVA was removed from pSP72(0.8) (39) using Asp718 and EcoRI 

(Klenow) and inserted into Asp718 and SalI (Klenow) sites in pBS-WAP (a gift of Dr. 

Lothar Hennighaussen), thus resulting in removal of the WAP gene between exon 1 and 

exon 3 respectively. The resulting transgenic construct contains the WAP promoter, the quail 

tva cDNA (850 bp) encoding a glycosylphosphatidylinositol-linked form of TVA, and the 

WAP poly-A signal. This 6.4-kb transgene fragment was removed from the transgenic vector 

Haricharan et al. Page 8

Oncogene. Author manuscript; available in PMC 2015 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by digestion with EcoRI and injected into pronuclei from FVB/N mice. Candidate founders 

were screened by PCR using primers specific to tva. MMTV-tva mice have been previously 

described (22).

Virus Preparation and Delivery

RCAS virus was prepared as described earlier (22). The lentiviral vector (FC-CGW) 

carrying either GFP alone or both GFP and caErbB2 was prepared as described earlier (40).

Tumor studies

One week after intraductal injection of RCAS, the experimental group consisting of 

approximately half the mice was mated. Pups were weaned at lactation day 21. All mice 

were palpated thrice-weekly for tumor incidence. Tumor-free mice were euthanized 12 

months post-injection. Tumor growth rate was calculated based on two diametric 

measurements taken at initial detection (diameter≤0.5 cm) and at time of euthanasia 

(diameter=1.8 cm) and the intervening time interval.

FISH analysis

FISH was performed to identify the copy number or integration sites for the RCAS 

retrovirus on paraffin sections from MMTV-tva mPABC and nulliparous tumors (5569, 

6213, and 7166). The plasmid clone containing RCAS sequences was labeled by nick 

translation with Spectrum Red (Abbott Laboratories, Des Plaines, IL). Hybridization and 

detection were performed according to the manufacturer's protocols. The slides were 

counterstained with 4, 6-diamidino-2-phenylindole (DAPI) and the images were captured 

using Nikon E800 microscope equipped with a cooled-charge coupled devices (CCD) 

camera. The cells were analyzed using Quips Pathvysion (Applied Imaging, Santa Clara, 

CA). A total of 50 interphase nuclei were analyzed to determine the amplification status.

Single cell suspension preparation from mammary glands and qRT-PCR

Mammary glands were collected with removal of lymph nodes. Single cell suspensions were 

prepared as previously described (30). For qRT-PCR of WAP and TVA genes, single-cell 

suspensions were prepared from mammary glands, and cells were stained using antibodies 

against CD45, CD31, and Ter119 (Lin) and TVA. Using FACS, TVA+ and TVA−/Lin− cells 

were sorted out, RNA was isolated, and reverse transcription was performed to generate 

cDNA.

Flow cytometry analysis and FACS

Flow cytometry analysis was performed on a BD LSRII (BD Bioscience). FACS was 

performed on an AriaI w/ UV (BD Bioscience) with a 130 µm nozzle. Antibodies used for 

flow cytometry include a PE-conjugated rat antibody against-CD24 (553262, BD 

Bioscience), PE-conjugated rat IgG2b κ isotype (553989, BD Bioscience), FITC-conjugated 

rat anti-CD49f (555735, BD Bioscience), and FITC-conjugated rat IG2b κ isotype (553988, 

BD Bioscience). A rabbit polyclonal antibody against TVA (gift from Andy Leavitt) and an 

APC-conjugated goat anti-rabbit IgG (A10931, Invitrogen) were used. Dead cells were 

gated out based on propidium iodide positivity.
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Colony forming assay

Mammary glands from virgin MMTV-tva and WAP-tva mice were digested as described 

above and FACS was performed to sort out TVA+ cells. 1000 TVA+ cells from each mouse 

was plated in triplicate on reduced growth factor Matrigel (354230, BD Bioscience) on 

plastic with DME/F12 medium supplemented with 20µl/ml B27 (17504-044; Invitrogen), 20 

ng/ml bFGF (13256-029; Invitrogen), 20 ng/ml EGF (13247-051; Invitrogen), and 

Antibiotic/Antimycotic (15240-062; Invitrogen), and 5% FBS. One week after plating, 

colonies (≥ 50 µm) were quantified.

Tissue Harvest

Tumors and mammary tissue were fixed in 4% paraformaldehyde overnight at 4°C, paraffin-

embedded, and sliced into 3 µm sections. Sections were deparaffinized in xylene, rehydrated 

in graded alcohol, and used for histology and immunostaining.

Immunostaining and Microscopy

Immunohistochemistry (IHC) and immunofluorescence (IF) were performed as described 

earlier (22). Antigen retrieval was carried out by heating sections in 10 mM sodium citrate, 

pH6.0. MOM and VectaStain Elite ABC Rabbit kits (Vector Labs; cat.no. PK-2200 & 

PK-6101) were used according to manufacturer’s protocols. Primary antibodies used 

included mouse monoclonal antibody against HA (Covance; 1:500); rabbit IgG specific for 

cleaved caspase 3 (Cell Signaling; 1:200), K5 (1:200), ER (Santa Cruz; 1:200), pHistone3 

(Millipore; 1:200) and Ki67 (Novocastra; 1:200); and rat IgG specific for K8 (1:200). 

Incubation with the primary antibody for IF staining was overnight at 4°C, while incubation 

with primary antibody for IHC was 1 hour at RT. Nuclei were counterstained with 4’-6-

diamidino-2-phenylindole (DAPI)-containing mounting medium and hematoxylin, 

respectively, for IF and IHC. Bright field images were captured using a Leica DMLB 

microscope, and images were processed with Magnavision and Adobe Photoshop software. 

Fluorescent images were captured with a Zeiss Axiskop2 plus microscope. Images were 

processed with Axiovision and Adobe Photoshop software.

Terminal Deoxynucleotidyl Transferase dUTP Nick-end Labeling Assay (TUNEL)

Paraffin-embedded gland and tumor sections were treated in proteinase K and subjected to 

the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay using the 

ApopTag Red in situ TUNEL detection kit (Chemicon, S7165). Nuclei were counterstained 

with DAPI-containing mounting medium.

Trichrome staining

Trichrome staining was performed on paraffin-embedded sections using Accustain 

Trichrome Stain Kit (Sigma, catalog#HT15), Bouin’s solution (Sigma catalog#HT10132) 

and Weigert’s Iron Hematoxylin Set (Sigma catalog#HT10-79). Sections were 

deparaffinized as for other immunohistochemical procedures and then treated as per 

manufacturer’s instructions. Sections were allowed to clear in Xylene overnight before 

being mounted.
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Quantification of Stained Sections

5 random fields were viewed and a total of at least 5000 cells were counted per sample. 

Image J software was used for counting, and either DAPI or hematoxylin nuclear staining 

was used to identify the total number of cells. For tumor histopathological quantification, 

tumor sections were viewed microscopically and scored by the investigators and 

independently by a pathologist.

Statistical Analysis

All numbers in the text were represented as mean ± standard error of the mean. Statistical 

analysis of quantification of stained sections was done using ANOVA or Student’s T-test for 

independent samples with Holm’s correction for multiple comparisons when distribution of 

data was judged to be normal. Where distribution was not normal (assessed using Q-Q plots 

with the Wilk-Shapiro test of normality), either Kruskal-Wallis or Wilcoxon’s Rank Sum 

test was used. Holm’s correction was also used where required when using non-parametric 

tests. For categorical data with <15 data points in each group, the Fisher’s Exact test was 

used. For categorical data with ≥15 data points in each group, the Pearson’s chi-square test 

was used. All graphs and statistical analyses were generated either in MS Excel or R.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pregnancy-associated breast cancer (PABC) arises in MMTV-tva mice intraductally 
injected with RCAS-caErbB2
(a) Dot plot showing that PABCs (red) arose during lactation and the first 4 days of 

involution (≤25 days after parturition), while late onset tumors in parous mice arose more 

than 1 month after weaning (white) and tumors in virgin mice predominantly arose ≥80 days 

after intraductal injection with the oncogene (comparable to ≥50 days postpartum) (black). 

Boxes denote the tumors included in each parous group.

(b) Box plot showing tumor growth rate for all tumors calculated as number of weeks 

required for tumors detected at 0.5 cm diameter to reach 1.8 cm at euthanasia. Tumor 
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diameter was measured using calipers twice-weekly. n=10 PABCs, n=7 parous late onset 

and n=8 virgin.

(c–f) Percentage of proliferating cells (c+d) and apoptotic cells (e+f) were determined based 

on the number of Ki67+ (c; n=3) and pHistone3+ (d; n=6) cells, and the number of TUNEL+ 

(e; n=3) and cleaved caspase 3+ (f; n=3) cells respectively as detected by 

immunofluorescence.

Student’s t-test of PABC vs Parous Late Onset detected all p-values. For all bar graphs, 

columns represent the mean and error bars represent the SEM.
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Figure 2. PABCs arising in mice are aggressive and have increased stromal involvement
Representative photomicrographs depict Hematoxylin and Eosin staining (a; n=10 virgin, 6 

parous late onset and 8 PABCs) of tumor morphology allowing characterization of tumors as 

solid or disorganized, and trichrome detection of collagen deposition with accompanying 

quantification of stromal involvement (b; n=4). Scale bars = 50 µm. For bar graph, columns 

represent the mean and error bars represent the SEM. ANOVA determined p-value. E, 

epithelia; S, stroma.
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Figure 3. PABCs encompass oncogene expressing cells of both luminal and basal lineage
Representative photomicrographs depict immunofluorescent detection of K5 (a), K8 (b) and 

colocalization of K5 and the HA tag of the RCAS-caErbB2 construct (c) along with 

accompanying quantification of the number of basal cells (d; n=6), the number of luminal 

cells (e; n=3) and the number of basal cells expressing the oncogene (f; n=4). Scale bars = 

20 µm. ANOVA determined all p-values. Columns represent the mean and error bars 

represent the SEM. White dotted lines demarcate regions of differential 

immunofluorescence and arrows indicate cells expressing both K5 and ErbB2.
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Figure 4. PABCs are ER− and enriched for alveolar markers
(a) Dot plot showing quantification of ER positivity and categorization of tumors as ER+ 

and ER− (10% cut-off indicated by dotted line) based on immunohistochemical detection of 

ER. Horizontal bar represents the median.

(b–d) Immunofluorescence for pSTAT5+ (c; n=4) and WAP+ cells (d; n=4) in the three 

groups of tumors (c+d) with accompanying quantification (b). ANOVA determined p-value. 

Co-immunofluorescence for the HA tag of RCAS-caErbB2 indicates cells originating from 

the tumor (green; c). Inset in (d) depicts WAP+ cells in a lactating mouse mammary gland, 
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serving as a positive control. Columns represent the mean and error bars represent the SEM. 

Scale bars = 20µm.
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Figure 5. WAP-tva mice produce TVA in alveolar WAP+ cells
(a) Pictorial representation of construct used for the generation of the WAP-tva mouse line.

(b) Photomicrographs indicating TVA localization in 12 week-old virgin and lactation day 

7.5 (L7.5) WAP-tva mice, when endogenous WAP expression is highest. Non-transgenic 

mice were included as a negative control.

(c) Bar graph depicting relative levels of WAP and TVA genes from a qRT-PCR assay in 

TVA+/Lin− and TVA−/Lin− cells isolated using FACS. n=7 mice. Asterisks indicate p<0.05.
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(d+e) Flow cytometry for CD24 and CD49 cell population markers within TVA+ cells from 

virgin WAP-tva mice (n=9) relative to TVA+ cells in virgin MMTV-tva mice (n=10).

(f+g) Representative photomicrographs of colonies formed by infected WAP-tva and 

MMTV-tva cells (f) with accompanying quantification (g).

Student’s t-test determined all p-values. For dot plots, horizontal line depicts the mean. For 

bar graphs, columns represent the mean and error bars the SEM.
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Figure 6. Targeting oncogenic signaling to alveolar cells results in rapidly growing PABC-like 
tumors irrespective of time since pregnancy
(a) Dot plot indicating the latency of PABCs (red), comparable early onset tumors in virgin 

WAP-tva mice (black), as well as late onset tumors. Tumors encompassed by the respective 

boxes designate PABC and parous late onset groups used for subsequent analyses.

(b) Graphical representation of tumor growth rate. n=10 Virgin, 8 PABC and 7 Parous Late 

Onset tumors.
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(c–f) Percentage of proliferating (c+d) and apoptotic cells (e+f) was determined based on the 

number of Ki67+ (c; n=3) and pHistone3+ (d; n=4) cells, and the number of TUNEL+ (e; 

n=3) and cleaved caspase 3+ (f; n=3) cells, respectively, as detected by 

immunofluorescence.

Columns represent mean and error bars represent SEM for all bar graphs. Student’s t-test 

between PABC and Parous Late Onset determined all p-values. Black columns represent 

tumors from WAP-tva mice and white columns from MMTV-tva mice.
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Figure 7. Oncogenic signaling targeted to alveolar cells results in PABC-like tumor 
histopathology irrespective of parity status or time since pregnancy
Representative photomicrographs depict Hematoxylin and Eosin staining (a; n=9 virgin, 5 

parous late onset and 7 PABCs) of tumor morphology allowing characterization of tumors as 

solid or disorganized and trichrome detection of collagen deposition (b; n=4) with 

accompanying quantification of stromal area. ANOVA measured p-value. Dotted black lines 

demarcate epithelial and stromal regions in (b). E, epithelium and S, stroma. Columns 

represent mean and error bars represent SEM for all bar graphs. Black columns represent 

tumors from WAP-tva mice and white columns from MMTV-tva mice.
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Figure 8. Tumors originating from alveolar cells have increased cellular heterogeneity 
irrespective of parity status
Representative photomicrographs indicating K5 positivity (a; n=5), co-localization of K5 

(red) with oncogenic construct (green) (b; n=4) and lack of colocalization between basal 

(K5; green) and luminal (K8; red) cell markers (c; n=3) in all three tumor groups with 

accompanying quantifications (d–f). Arrows indicate colocalization (b). White dotted lines 

demarcate HA+ and K5+ regions (b) and K8+ and K5+ regions (c). Scale bars = 20µm. Bars 

represent mean and error bars the SEM. ANOVA determined all p-values.
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Figure 9. Tumors originating from alveolar cells are predominantly ER−

ER positivity was determined based on immunohistochemical detection of ER in tumor 

sections (cut-off set at 10% ER+ cells indicated by dotted line). Pearson’s chi-squared test 

determined p-value.
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