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Abstract
Background: Leydig cells are the primary source of testosterone in male vertebrates. The
biosynthesis of testosterone in Leydig cells is strictly dependent on luteinizing hormone (LH). On
the other hand, it can be directly inhibited by excessive glucocorticoid (Corticosterone, CORT, in
rats) which is beyond the protective capability of 11beta-Hydroxysteroid dehydrogenase type 1
(11beta-HSD1) and type 2 (11beta-HSD2; encoded by gene Hsd11b2 in rats) in Leydig cells. Our
previous study found that LH increases 11beta-HSD1 expression in rat Leydig cells, but the effect
of LH on the expression and activity of 11beta-HSD2 is not investigated yet.

Methods: The Leydig cells were isolated from male Sprague-Dawley rats (90 days of age). After
Leydig cells were incubated either for 24 h with various concentrations of LH (2.5, 5, 10 and 20 ng/
mL) or for different time periods (2, 8, 12 and 24 h) with 20 ng/mL LH, the mRNA expression of
11beta-HSD2 was measured by real-time PCR. 11beta-HSD2 protein levels in Leydig cells were
assayed by Western Blot and 11beta-HSD2 enzyme activity was determined by calculating the ratio
of conversion of [3H]CORT to [3H]11-dehydrocorticosterone by 24 h after stimulation with 20
ng/ml LH. Four reporter gene plasmids containing various lengths of Hsd11b2 promoter region
were constructed and transfected into mouse Leydig tumor cells to investigate the effect of LH on
Hsd11b2 transcription. A glucocorticoid-responsive reporter gene plasmid, GRE-Luc, was
constructed. To evaluate influence of LH on intracellular glucocorticoid level, rat Leydig cells were
transfected with GRE-Luc, and luciferase activities were measured after incubation with CORT
alone or CORT plus LH.

Results: We observed dose- and temporal-dependent induction of rat 11beta-HSD2 mRNA
expression in Leydig cells subject to LH stimulation. The protein and enzyme activity of 11beta-
HSD2 and the luciferase activity of reporter gene driven by promoter regions of Hsd11b2 were
increased by LH treatment. LH decreased the glucocorticoid-induced luciferase activity of GRE-Luc
reporter gene.

Conclusion: The results of the present study suggest that LH increases the expression and
enzyme activity of 11beta-HSD2, and therefore enhances capacity for oxidative inactivation of
glucocorticoid in rat Leydig cells in vitro.
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Background
In the male, the Leydig cell, in the interstitium of testis, is
the primary source of sexual steroid hormone testoster-
one, which stimulates differentiation of the male pheno-
type and spermatogenesis in the testes. Leydig cells are
mainly stimulated by luteinizing hormone (LH), the
gonadotropic hormone secreted by pituitary gland. On
the other hand, many studies had established that the
high level of glucocorticoid, which could be caused path-
ologically by Cushing's syndrome or psychologically by
stress, results in the decrease in testosterone secretion,
whereby reduced libido and fertility are brought on [1,2].
Furthermore, our previous study found that the endog-
enous glucocorticoid (Corticosterone, CORT, in rats) at
physiological level is also able to suppress the secretion of
testosterone in rat Leydig cells [3]. In our another study, it
was shown that administration of stress level of glucocor-
ticoid induces apoptosis of Leydig cells in vivo [4]. It sug-
gests that glucocorticoid could decrease testosterone
production by Leydig cells through reducing the number
of Leydig cells as well as inhibiting the expression of tes-
tosterone biosynthesis enzymes [5-8]. The adverse effect
of glucocorticoid on testosterone biosynthesis is a direct
glucocorticoid receptor (GR) mediated process [9]. The
intracellular concentration of glucocorticoid, which deter-
mines the extent of GR activation, is regulated by 11beta-
hydroxysteroid dehydrogenase (11β-HSD) in Leydig cells
[10]. To date, two isoforms of 11β-HSD are identified.
11β-HSD Type I (11β-HSD1) is a NADP+/NADPH
dependent oxidoreductase with low affinity (km = 2 μM)
for glucocorticoid, reversibly converting biologically
active glucocorticoid (corticosterone in rats) to inactive
11-keto steroid [11]. Its direction of enzyme activity is
determined by redox potential in different cell types and
differentiation stages [12]. In rat Leydig cells, 11β-HSD1 is
a predominant oxidase, playing a protective role in the
inhibitory effect of glucocorticoid on steroid biosynthesis
of Leydig cells [13].11β-HSD Type II (11β-HSD2; encoded
by rat gene Hsd11b2) is a NAD+ dependent oxidase with
high-affinity (Km = 15 nM), inactivating glucocorticoid to
its inert metabolite (11-dehydrocorticosterone in rats)
unidirectionally [14]. Both of two isoforms of 11β-HSD
are expressed in rat Leydig cells [15,16]. Although the
expression of 11β-HSD2 is 1000-fold lower relative to
11β-HSD1 in rat Leydig cells, the former is still thought of
as an important factor, at least equivalent to 11β-HSD1, of
modulating the intracellular level of glucocorticoid due to
its high affinity for substrate [15]. In a word, the excessive
glucocorticoid directly inhibits testosterone biosynthesis
when it exceeds the capacity of oxidative inactivation by
11β-HSD in Leydig cells. In light of the important role of
11β-HSD in modulating glucocorticoid-mediated sup-
pression of testosterone secretion, our previous study had
been performed to investigate whether the expression and

activity of 11β-HSD1 is regulated by LH, the primary
trophic and stimulating hormone for Leydig cells [17].

The results showed that although LH increases the expres-
sion of 11β-HSD1 mRNA and protein compared with
control cells, the net oxidative activity of 11β-HSD1 was
reduced. A study had shown that gonadotropic hormone
which can be used as a functional homologue of LH in tel-
eosts [18] could increase expression of 11β-HSD2 in Tila-
pia testis [19], but whether LH could regulates its
expression in mammalian Leydig cells and whereby
affects the intracellular concentration of glucocorticoids is
unknown. The present study is designed to investigate the
effect of LH on expression of 11β-HSD2 in rat Leydig cells.

Methods
Chemicals and animals
Corticosterone (C2505), Luteinizing hormone (L5259),
bovine lipoprotein (L3626), Percoll (P1644) and DMEM-
Ham's F12 (D2906) were purchased from Sigma-Aldrich
Chemical (St. Louis, Missouri, USA). The antibodies for
11β-HSD2 (sc-20176) and β-actin (sc-130657) were
obtained from Santa Cruz Biotechnology (Santa Cruz,
California, USA). The Dual-Luciferase Reporter Assay Sys-
tem (E1910) was purchased from Promega Co. (Madison,
Wisconsin, USA). [3H]CORT was kindly provided by Dr.
Ren-Shan Ge (Population Council, New York, USA). The
Male Sprague-Dawley rats (90 days of age) were pur-
chased from the Animal Centre of the Chinese Academy
of Sciences (Shanghai, China). The animals were killed by
CO2 asphyxiation for isolation of Leydig cells. Mouse Ley-
dig tumor cell line mLTC-1 (CRL-2065) and rat Leydig
tumor cell line R2C (CCL-97) were purchased from Amer-
ican Type Culture Collection (Manassas, Virginia, USA).

Cell isolation and culture
Adult Leydig cells were isolated from 90-day-old rats
according to the procedure of Sriraman et al. [20], which
is a modification of the procedure described by Klinefelter
et al. [21]. The decapsulated testis was subjected to colla-
genase digestion in a 50-mL plastic tube containing 10 mL
medium with collagenase (600 units) and DNase (750
units). The tubes were placed in a shaking water bath with
constant agitation (50 times/min) at 34°C for 15–20 min
until the seminiferous tubules were separated. The
enzyme action was terminated by adding excess medium.
The tubules were allowed to settle by gravity and the
medium, consisting of interstitial cells, was aspirated and
filtered through a 100-μm nylon mesh. The filtrate was
centrifuged at 250 × g for 10 min at 25°C, which yielded
a crude interstitial pellet. The pellet obtained was sus-
pended in 35 mL 55% isotonic Percoll with 750 units
DNase in Oakridge tubes. The tubes were centrifuged at
20 000 × g for 1 h at 4°C. Percoll fractions corresponding
to densities of 1.070–1.090 g/mL were collected and the
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cells present in this fraction were pelleted by centrifuga-
tion at 250 × g for 10 min at 25°C after diluting with 3–4
volumes of medium. The purities of isolated cell fractions
were evaluated by histochemical staining for 3β-hydroxys-
teroid dehydrogenase activity, with 0.4 nmol/L etio-
cholanolone as the steroid substrate [22]. The mean
purity of Leydig cells was 85%.

Rat Leydig cells culture was conducted as previously
described [23]. Briefly, freshly isolated Leydig cells were
seeded in 6-well plates, at a density of 4 × 105 cells per
well, and cultured for 24 h in phenol red-free DMEM/
Ham's F12 medium supplemented with 1 mg/mL bovine
lipoprotein in an incubator gassed with 5% O2, 5% CO2,
at 34°C.

The mLTC-1 cells were cultured in DMEM medium (Invit-
rogen) supplemented with 10% fetal bovine serum (FBS);
R2C cells were cultured in Ham's F10 medium supple-
mented with 15% horse serum, 2.5% FBS. Both cell lines
were incubated at 37°C in a humidified atmosphere of
95% air and 5% CO2.

RNA isolation and real-time PCR quantitation
Total RNA was extracted from cultured cells using an RNe-
asy Mini Kit (Qiagen, Valencia, California, USA) coupled
with on-column DNase digestion with the RNase-Free
DNase Set (Qiagen) according to the manufacturer's
instructions. First strand cDNA synthesis was performed
using Superscript II reverse transcriptase (Invitrogen,
Shanghai, China) in a reaction using 2 μg of total RNA
primed with random hexamers in a total reaction volume
of 20 μL.

Real-time PCR was carried out according to Lee JJ and
Widmaier EP with some modification [24]. In brief, each
PCR reaction contains 1 × Absolute TM QPCR SYBR Green
Mix (Abgene, Epsom, UK), 0.3 μM primers and 2 μL
cDNA with a total volume of 25 μL. The primers for 11β-
HSD2 [GenBanK:NM_017081] (Forward: 5'-
TGGCCAACTTGCCTAGAGAG; Reverse: 5'-TTCAG-
GAATTGCCCATGC) and 18S [GenBank:X03205] (For-
ward: 5'-CGCCGCTAGAGGTGAAATTC; Reverse: 5'-
CCAGTCGGCATCGTTTATGG) are the same as described
previously [24]. Initially, the reaction mix was incubated
at 95°C for 15 min to activate Thermo-Start® DNA
Polymerase (Abgene), then templates were amplified for
40 cycles (95°C for 15 s, 60°C for 1 min) on the Rotor-
Gene 3000 system (Corbett Research, Sydney, NSW, Aus-
tralia). Meanwhile, genomic DNA contamination was
evaluated by real-time PCR of non-retrotranscribed RNA
for each sample. Melting curve analysis was conducted
immediately after completion of PCR as following: 95°C
for 10 s, then 60°C for 10 s and continuous heating to
99°C at 0.5°C/s. The resulting PCR products were ana-

lyzed on a 2% agarose gel and cloned into pGEM-T Easy
vector (Promega) followed by DNA sequencing to con-
firm the specificity of PCR. The relative quantitative anal-
ysis of 11β-HSD2 mRNA expression was performed using
the delta-delta Ct method with 18S RNA as an internal
control [25].

cDNA cloning of rat 11β-HSD2
Total RNA was prepared from rat kidney tissue using the
Trizol Reagent (Invitrogen) according to the manufac-
turer's instruction. First strand cDNA synthesis was per-
formed using Superscript II reverse transcriptase
(Invitrogen) in a reaction using 2 μg of total RNA primed
with random hexamers in a total reaction volume of 20 μl.
For amplification of rat 11β-HSD2 [Gen-
BanK:NM_017081], the forward and reverse primers were
5'-GAC GGT ACC CGA GTA TCC CTC CCA C-3' and 5'-
ACG CTC GAG TCT CCT GCT GAA ACA CCT A-3', respec-
tively. PCR was performed for 30 cycles with denaturing at
94°C for 30 s, annealing at 58°C for 30 s and extension at
72°C for 90 s. The 11β-HSD2 cDNA was purified by
QIAquick PCR Purification Kit.

Plasmid construction
Rat genomic DNA was isolated from tail tissue using
DNAeasy kit (Qiagen). Four DNA fragments correspond-
ing to different lengths of rat gene Hsd11b2 promoter
region [GenBank:NC_005118] were generated using their
respective upstream primers and the common down-
stream primer 5'-cccaagcttagtgcagaggaacaccagcctg-3' in
PCR using platinum Pfx high fidelity polymerase (Invitro-
gen) and 50 ng of genomic DNA template. The upstream
primers, 5'-cggggtaccggaatcaatgggtttagaaaag-3', 5'-cgggg-
taccagcaagagaccttgatgtctg-3', 5'-cggggtaccggcggggcg-
ggggggcacctgc-3' and 5'-cggggtaccggcgctttataagctgggtcc-3'
correspond to constructs -1740/+45,-756/+45,-138/+45
and -35/+45, respectively (+1 designates the transcription
start site). The resultant fragments were gel-purified,
cloned into pGEM-T Easy vector (Promega) and
sequenced for fidelity. The four inserts were then sub-
cloned into pGL3-Basic luciferase vector (Promega) after
digestion with Kpn I and Hind II.

11β-HSD2 cDNA sequences were digested with Kpn I and
Xho II, and ligated into the Kpn I/Xho I site of pcDNA3.0
plasmids (Invitrogen) to construct the 11β-HSD2 expres-
sion vector, named pcDNA-hsd11b2.

A luciferase reporter gene plasmid, GRE-Luc was con-
structed as described previously [26], which transcrip-
tional activity is subject to intracellular glucocorticoid
level. Briefly, An oligonucleotide (5'-
tatataacgcgttgtacaggatgttctctctgcctctgctgtacaggatgttctagatct
gccctatagtgagtcgtattac-3'), which contains two copies of
GRE (glucocorticoid response element) consensus
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sequence (shown underlined), was synthesized. This oli-
gonucleotide was primed with a short oligonucleotide
primer and made double-stranded with Klenow enzyme
and dNTPs (New England Biolads, Beverly, Massachu-
setts, USA). After digestion with Mlu I and Bgl II, the DNA
was cloned upstream of the simian virus 40 promoter in
the pGL3-promoter vector (Promega) to yield the GRE-
Luc construct. Similar constructs have been used in other
studies to measure responsiveness to glucocorticoids
[27,28].

Overexpression of 11β-HSD2 in R2C cells
R2C cells were seeded in 24 well culture plates (5 × 105/
well) in fresh medium for 24 h. Then, 1.0 μg of pcDNA-
hsd11b2 was transiently transfected into R2C cells using
Lipofectamine™ 2000 reagent (Invitrogen) according to
the supplier's protocol. After another 48 h of culture, the
expression of 11β-HSD2 protein was identified by West-
ern blotting. R2C cells transfected with pcDNA3.0 vector
served as control.

Western blot analysis
Primary rat Leydig cells and transfected R2C cells were
lysed in Ripa buffer (1% NP-40, 0.1% SDS, 0.5% DOC,
150 mM NaCl, 10 mM Tris-HCl, and PMSF mixture) at
4°C for 30 min. Protein concentrations were determined
BCA protein assay reagent (Pierce Chemical, Rockford,
Illinois, USA). Aliquots of cell extracts containing equal
amounts of protein were separated by SDS-polyacryla-
mide gel electrophoresis on 12% gels using the Laemmli
buffering system, then proteins were transferred to Immu-
noBlot polyvinylidene difluoride membranes (Bio-Rad,
Hercules, California, USA) and blocked by rocking for 1 h
at room temperature in blocking buffer (Tris-buffered
saline with 0.1% Tween 20 and 5% nonfat dry milk).
Afterwards, the membranes were incubated with a 1:1000
dilution of a rabbit polyclonal antibody for 11β-HSD2 for
1 h, then repeatedly washed and incubated with a
1:10000 dilution of goat anti-rabbit antibody that was
conjugated to horseradish peroxidase. Signals were
detected with an Enhanced Chemilluminescence kit
(Pierce Chemical). Beta-actin was used as internal control.

Measurement of 11β-HSD2 enzyme activity
After rat Leydig cells were isolated and cultured for 24 h,
cells were treated with 20 ng/mL LH for 24 h. Then, Leydig
cell homogenates were prepared with the method
described by Arcuri F et al [29]. In short, cell cultures were
rinsed three times with 0.1 M phosphate buffer solution,
harvested with a rubber scraper and pelleted by centrifu-
gation at 1000 × g for 5 min at 4°C. Cell pellets were sus-
pended in ice-cold sodium phosphate buffer 0.1 M (pH
7.5), 0.2% (v/v) of Triton X-100, and sonicated for 15 s on
ice. Protein concentrations were determined by BCA pro-
tein assay reagent (Pierce Chemical). The 11β-HSD2

enzyme activity assay was performed according to the pro-
tocol of Ge RS et al. with some modification [16]. Briefly,
0.5 mL reaction mixture was prepared in phenol red-free
medium that contained 2 nM [3H]CORT and 23 nM unla-
beled CORT, obtaining a final concentration of 25 nM of
CORT. The reactions were initiated by the addition of 50
μg protein with NAD+ at a final concentration of 0.5 mM,
then performed in a shaking water bath (100 strokes/min)
at 34°C for 1 h, and finally stopped by adding 2 ml ice-
cold ethyl acetate. Tubes were vortexed and centrifuged at
10,000 rpm for 5 min to separate the upper organic layer,
which was dried under nitrogen. Samples were resus-
pended in 100 μl of methanol. The steroids were sepa-
rated chromatographically on thin-layer plates in
chloroform and methanol (90:10). Bands were visualized
using I2 vapor and scraped into scintillation fluid, and the
radioactivity was measured using a Beckman LS65000 liq-
uid scintillation counter (Beckman Coulter, Fullerton,
USA). The percentage conversion of corticosterone to 11-
dehydrocorticosterone was calculated by dividing the
radioactive counts identified as 11-dehydrocorticosterone
by the total counts associated with corticosterone plus 11-
dehydrocorticosterone.

Transient transfection and reporter gene assay
To determine the effect of LH on transcription of 11β-
HSD2 gene, four luciferase reporter genes driven by differ-
ent lengths of 11β-HSD2 promoter fragment were tran-
siently transfected into mLTC-1. Briefly, the cells were
seeded into 24-well plates at a density of 5 × 105 cells/well
and incubated at 37°C overnight. Cells were then placed
in DMEM with 10% fetal bovine serum containing 1 μg of
luciferase plasmid, 0.01 μg of pRL-TK (Promega) reporter
plasmid, and 2 μg of Lipofectamine™ 2000 reagent (Invit-
rogen) according to the supplier's protocol. Twelve hours
following transfection, the cells were treated with 20 ng/
ml LH for 24 h. Following the treatment, Dual Luciferase
Assay was performed by lysing the cells in Passive Lysis
Buffer (Promega) and reading the relative light units of
one-fifth the lysate with both the firefly substrate and the
renilla substrate using a luminometer (Berthold Lumat
LB9507, Bad Wildbad, Germany). Each transfection was
performed in triplicate and in three independent experi-
ments.

Given that both isoforms of 11β-HSD are expressed in rat
Leydig cell and the inhibitory effect of LH on the net oxi-
dative activity of 11β-HSD1 [17], a glucocorticoid-respon-
sive reporter gene, GRE-Luc, was employed to investigate
the level of active intracellular glucocorticoid. The ration-
ale is that the transcriptional activity of GRE-Luc which
contains two copies of a consensus GRE upstream of the
luciferase gene is subject to the extent of GR activation, i.e.
intracellular glucocorticoid concentration set by the total
oxidative activity of 11β-HSD1 and 11β-HSD2, thus the
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effect of LH on the transcriptional activity of GRE-Luc is
indicative of the oxidative capacity of Leydig cells for glu-
cocorticoid. Rat Leydig cells were isolated and cultured in
24 well culture plates (1 × 106/well) in fresh medium for
48 h. Then, 1.0 μg of GRE-Luc and 0.01 μg of pRL-TK
(Promega) reporter plasmid were transiently transfected
into the Leydig cells using Lipofectamine™ 2000 reagent
(Invitrogen). After another 48 h of culture, the cells were
incubated in the presence or absence of LH (20 ng/mL)
for 24 h. Subsequently, the cells pretreated with LH were
treated with CORT (50 nM) plus LH (20 ng/mL) and the
other cells not pretreated with LH were treated with CORT
(50 nM) or LH (20 ng/mL) for 24 h. At the end of all treat-
ments, Dual Luciferase Assays were performed as
described above. The transfected cells treated with vehi-
cles (PBS for LH; DMSO for CORT) served as controls.

Statistics
Results are presented as means ± SE of three independent
experiments. Statistical analyses of 11β-HSD2 mRNA data
and Luciferase assay data were performed using one-way
ANOVA followed by Student-Newman-Kuels test. 11β-
HSD2 protein data was analyzed by a standard Student's
t-test. Significance was set at P < 0.05. Calculations were
performed using SPSS software version 10.0 (Chicago,
USA).

Results
Effect of LH on expression of 11β-HSD2 mRNA and 
protein in rat Leydig cells
As shown in Fig. 1A, a concentration-dependent increase
in 11β-HSD2 mRNA was found with a maximal effect at
20 ng/ml. Treatment of Leydig cells for 24 h with 20 ng/
ml LH led to a significant increase in levels of mRNA. (Fig.
1B). Fig. 2 showed treatment of Leydig cells for 24 h with
20 ng/ml LH increased the level of 11β-HSD2 protein
compared with Control.

Effect of LH on transcription of 11β-HSD2
To further investigate the effect of LH on the expression of
11β-HSD2, the transcriptional activities of different
lengths of rat gene Hsd11b2 promoter region were ana-
lyzed. LH treatment induced a two-fold increase in the
activity of -1740/+45 construct. It was also shown that the
-138/+45 region is crucial for the constitutive and LH-
induced transactivation of 11β-HSD2 (Fig. 3).

Effect of LH on 11β-HSD2 enzyme activity
LH significantly increased 11β-HSD2 activity (34.84 ±
2.98%) compared with control cells (15.17 ± 5.22%), p
<0.05.

Effect of LH on intracellular glucocorticoid concentration
As shown in Fig. 4, 50 nM CORT (within the physiological
concentration of CORT in rats) significantly increased the

luciferase activity in Leydig cells and LH reduced glucocor-
ticoid-activated transcriptional response of GRE-Luc.

Discussion
Leydig cells secrete the male sexual hormone testosterone,
which is responsible for differentiation of the male phe-
notype and spermatogenesis in the testes. A direct gluco-
corticoid receptor (GR)-mediated inhibition of
testosterone biosynthesis by excess glucocorticoid has
been demonstrated [9]. Some of the solid evidences came
from the studies on stress and Cushing's syndrome, in
which elevated circulating concentration of glucocorti-
coid are normally associated with diminished testoster-
one secretion [1,2]. The recent studies had found that the
intracellular level of glucocorticoid is under control by
11β-HSD oxidase activity in Leydig cells [13,15]. Thus far,
two distinct forms of 11β-HSD have been identified: 11β-
HSD1, which usually is expressed in glucocorticoid target
tissue, shows both oxidative and reductive activities and
has a relatively low affinity for glucocorticoid substrates
[13]; whereas, 11β-HSD2, which usually is expressed in
mineralocorticoid target tissue, is an exclusively oxidative
isoform with a high affinity for glucocorticoids [14].

Firstly, the presence of 11β-HSD1 in Leydig cell was iden-
tified in 1989 [30]. The results of most previous studies
demonstrated that 11β-HSD1 is primarily an oxidase and
plays a gatekeeper role of oxidatively inactivating gluco-
corticoids. Lately, the expression of 11β-HSD2 was also
detected in rat adult Leydig cells using sensitive real-time
PCR and new antibody [15,16]. It is supposed that 11β-
HSD2 functions as a protective factor in Leydig cells as
well as 11β-HSD1, catalyzing a net oxidative reaction,
although its expression is 1000-fold lower than that of
11β-HSD1. One reason is that 11β-HSD2 has a lower Km
(15 nM), which is within the range of physiological con-
centration of glucocorticoid, compared with 11β-HSD1
(Km = 6 μM). Another is that suppression of 11β-HSD2
expression with transfection of antisense oligonucleotides
decreased the oxidase activity of Leydig cell by almost
50%.

We had investigated the effect of LH on the expression of
11β-HSD1 at the time when 11β-HSD2 was not identified
in Leydig cells [17]. It had been reported that gonado-
tropic hormone could increase11β-HSD2 expression in
Tilapia testis [19], but the relevant mammalian study is
not present yet. The results of this present study showed
that LH treatment induced expression of 11β-HSD2
mRNA and protein in rat Leydig cells. These results were
further confirmed by determining the effect of LH on the
transcriptional activity of rat gene Hsd11b2 promoter. The
luciferase reporter gene assays revealed that 11β-HSD2
promoter-driven transcription increased by more than
100% with LH treatment, consistent with the expression
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Effect of LH on expression of mRNA for 11β-HSD2Figure 1
Effect of LH on expression of mRNA for 11β-HSD2. Leydig cells were treated with increasing concentrations of LH for 
24 h (A). The other cells were treated with LH for 2–24 h (B). At end of treatment, total cellular RNA was isolated, and the 
steady-state level of 11β-HSD2 mRNA was assessed by relative quantitative RT-PCR, as described in Methods. The expres-
sions of mRNA for 11β-HSD2 in Leydig cells treated with 2.5, 5, 10, or 20 ng/ml LH for 24 h, or 20 ng/mL LH for 8, 12 or 24 
h are significantly higher compared to that in intact Leydig cells. Each data point is expressed as percentage of control. Asterisks 
denote significant differences, compared with Control at P < 0.05.
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of mRNA and protein. We also found that the -138/+45
fragment, which contains a GC-rich region, is crucial for
basic transcriptional activity similar to the results of other
studies on human HSD11B2 gene [31]. Along with serial
deletions of the region between -1740 and -138, the tran-
scriptional activity gradually decreased. This result sug-
gests that several transcription factors may be involved in
the LH-regulated expression of 11β-HSD2. This hypothe-
sis needs further investigation in the future.

Actually, some in vivo studies had also suggested there is a
correlation between the expression of 11β-HSD2 and
serum concentration of LH. The study from Ge RS et al.
indicated that 11β-HSD2 mRNA and enzyme activity
increase continuously and significantly during postnatal
development of rat Leydig cells which is accompanied by
a gradual increase in serum LH concentration from
puberty to maturity [16,32]. Wagner A and Claus R found
that changes in expression of 11β-HSD2 appear to parallel
with changes in serum concentration of LH in pig Leydig
cells after birth [33]. Furthermore, It was shown that
GnRH-immunization significantly depresses the plasma
concentration of LH as well as 11β-HSD oxidative activity

Effect of LH on expression of 11β-HSD2 proteinFigure 2
Effect of LH on expression of 11β-HSD2 protein. R2C 
cells were transfected with pcDNA3.0 (lane 1) or pcDNA-
hsd11b2 (lane 2); Leydig cells were treated with vehicle (PBS 
for LH, lane 3) or 20 ng/ml LH for 24 h (lane 4). At end of 
treatment, levels of 11β-HSD2 protein were determined by 
western blot analysis as described in Methods.

Effect of LH on 11β-HSD2 promoter activityFigure 3
Effect of LH on 11β-HSD2 promoter activity. A series of luciferase reporter gene driven by rat 11β-HSD2 promoter 
region were transfected into mLTC-1 cells. After overnight incubation, the mLTC-1 cells were treated with 20 ng/lm LH for 24 
h. The cells were lysed and assayed for luciferase activity. The luciferase activity was compared with the normalized activity of 
the transfected but not treated cells. These data are representative of at least three independent experiments and are normal-
ized to an internal Renilla control. Asterisks indicate differences between groups control versus LH treatment are statistically 
significant at P < 0.05.
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in the boar testis [34]. The data mentioned above and the
results of the present study suggest that LH may play an
important role in developmental expression of 11β-HSD2
and thereby affecting the intracellular glucocorticoid con-
centration.

Our previous study revealed that although LH increased
the expression of 11β-HSD1 in cultured Leydig cells, the
reducase activity of 11β-HSD1 increased slightly and the
oxidase activity declined unexpectedly. It has been estab-
lished that Hexose-6-phosphate dehydrogenase, which
generates NADPH through catalyzing glucose-6-phos-
phate oxidation, is the determinant of the reaction direc-
tion of 11β-HSD1 [12]. Moreover, glucose availability
may also be involved in determining the reaction direc-
tion of 11β-HSD1. Hardy et al. observed that the oxidative
and reductive components of 11β-HSD1 activity are
unstable in vitro. Preparations of freshly isolated Leydig
cells display high levels of oxidase activity and lower
reductase, but the former declines and the latter rises dur-
ing incubation in vitro. Eliminating the energy sources glu-
cose and pyruvate from the culture medium prevented the
changes in oxidoreductase activities, and the 11β-HSD1
oxidase remained predominant in Leydig cells [35]. Simi-
lar phenomenon was observed in rat H4IIE hepatoma
cells transfected with mouse 11β-HSD1 [36]. Transmem-
brane glucose uptake mediated by a family of glucose
transporters (GLUTs) controls the rate of intracellular glu-

cose availability and metabolism [37]. GLUT8 is highly
expressed in rat Leydig cells and positively regulated by
hCG which shares the same receptor with LH in Leydig
cells [38]. Thus, we supposed that LH-induced increase in
glucose availability may be involved in the mechanism for
LH-induced change in the enzyme activity of 11β-HSD1.
Given that LH reduces the oxidase activity of 11β-HSD1
[17] and increases the expression and enzyme activity of
11β-HSD2 simultaneously, it is unknown what happens
to capacity for oxidative inactivation in Leydig cells. To
probe the effect of LH on the level of intracellular gluco-
corticoid receptor activation, the luciferase reporter gene
bioassay system was utilized, which had been employed
in many studies for the same sake [27,28]. The inducible
transcriptional activity of GRE-Luc lies on the extent of the
binding of active GR and GRE in the artificial promoter of
luciferase gene. As shown in Fig. 4, physiological level of
CORT (50 nM) could activate GR signaling pathway,
which is consistent with our earlier data that endogenous
CORT is capable of inhibiting the steroidogenic capacity
of purified rat Leydig cells in vitro [3,39], and LH abated
the glucocorticoid-induced luciferase activity, i.e. the
intracellular concentration of glucocorticoid despite the
predominant 11β-HSD1 activity may shift from oxidase
to reducase activity hypothetically due to the elevated glu-
cose uptake and NADPH/NADP ratio resulting from treat-
ment with LH [12,38]. Although glucocorticoid exerts
adverse effect on testosterone secretion in Leydig cells,
some studies suggest that it may be an important factor for
Leydig cell development. For example, GR is expressed in
Leydig cells at all three stages of pubertal development
(mesenchymal-like progenitors, PLC, on day 21, imma-
ture Leydig cells, ILC, on day 35, and adult Leydig cells,
ALC, on day 90.) and the numbers of dexamethasone-
binding sites are higher in ILC and ALC compared with
PLC [13]. In controlling the inhibitive effect of glucocorti-
coid on testosterone secretion during Leydig cell develop-
ment, LH-induced expression of 11β-HSD2 could play a
key role. Interestingly, it was found that glucocorticoid
increases the ability of Leydig cell precursors to respond to
LH [40]. Therefore, Leydig cells may control intracellular
glucocorticoid concentration through a LH-mediated neg-
ative feedback mechanism during development.

Conclusion
In summary, LH increases the expression and enzyme
activity of 11beta-HSD2, and therefore enhances capacity
for oxidative inactivation of glucocorticoid in rat Leydig
cells in vitro. Thus, this study together with other pub-
lished data has revealed an integrated relationship
between LH and glucocorticoid in Leydig cells, which may
help us deepen our understanding of the intricate mecha-
nism for regulation of testosterone secretion in Leydig
cells.

Effect of LH on intracellular glucocorticoid concentrationFigure 4
Effect of LH on intracellular glucocorticoid concen-
tration. Leydig cells were transfected transiently with a 
GRE-Luc reporter plasmid, and intracellular glucocorticoid 
concentration was estimated by GR-mediated transcription 
of GRE-Luc. Leydig cells were treated with CORT (50 nM), 
LH (20 ng/mL) or CORT plus LH as described in Methods. 
Dissimilar superscripts indicate significant differences 
between groups (P < 0.05).
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