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The constant emergence of COVID-19 variants reduces the ef-
fectiveness of existing vaccines and test kits. Therefore, it is
critical to identify conserved structures in severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) genomes as potential tar-
gets for variant-proof diagnostics and therapeutics. However, the
algorithms to predict these conserved structures, which simultane-
ously fold and align multiple RNA homologs, scale at best cubically
with sequence length and are thus infeasible for coronaviruses,
which possess the longest genomes (∼30,000 nt) among RNA
viruses. As a result, existing efforts on modeling SARS-CoV-2
structures resort to single-sequence folding as well as local folding
methods with short window sizes, which inevitably neglect long-
range interactions that are crucial in RNA functions. Here we
present LinearTurboFold, an efficient algorithm for folding RNA
homologs that scales linearly with sequence length, enabling
unprecedented global structural analysis on SARS-CoV-2. Surpris-
ingly, on a group of SARS-CoV-2 and SARS-related genomes,
LinearTurboFold’s purely in silico prediction not only is close to
experimentally guided models for local structures, but also goes
far beyond them by capturing the end-to-end pairs between
5′ and 3′ untranslated regions (UTRs) (∼29,800 nt apart) that
match perfectly with a purely experimental work. Furthermore,
LinearTurboFold identifies undiscovered conserved structures and
conserved accessible regions as potential targets for designing
efficient and mutation-insensitive small-molecule drugs, antisense
oligonucleotides, small interfering RNAs (siRNAs), CRISPR-Cas13
guide RNAs, and RT-PCR primers. LinearTurboFold is a general
technique that can also be applied to other RNA viruses and full-
length genome studies and will be a useful tool in fighting the
current and future pandemics.

RNA secondary structure | homologous folding | conserved structures |
structural alignment | SARS-CoV-2

RNA plays important roles in many cellular processes (1, 2).
To maintain their functions, secondary structures of RNA

homologs are conserved across evolution (3–5). These conserved
structures provide critical targets for diagnostics and treatments.
Thus, there is a need for developing fast and accurate computa-
tional methods to identify structurally conserved regions.

Commonly, conserved structures involve compensatory base
pair changes, where two positions in primary sequences mutate
across evolution and still conserve a base pair; for instance, an
AU or a CG pair replaces a GC pair in homologous sequences.
These compensatory changes provide strong evidence for evo-
lutionarily conserved structures (6–10). Meanwhile, they make it
harder to align sequences when structures are unknown. Initially,
the process of determining a conserved structure, termed com-
parative sequence analysis, was manual and required substan-
tial insight to identify the conserved structure. A notable early
achievement was the determination of the conserved transfer
RNA (tRNA) secondary structure (11). Comparative analysis
was also demonstrated to be 97% accurate compared to crystal

structures for ribosomal RNAs, where the models were refined
carefully over time (12).

To automate comparative analysis, three distinct algorithmic
approaches were developed (13, 14). The first, “joint fold-and-
align” method, seeks to simultaneously predict structures and a
structural alignment for two or more sequences. This was first
proposed by Sankoff (15) using a dynamic programming algo-
rithm. The major limitation of this approach is that the algorithm
runs in O(n3k ) against k sequences with the average sequence
length n. Several software packages provide implementations of
the Sankoff algorithm (16–21) that use simplifications to reduce
runtime. The second, “align-then-fold” approach, is to input a se-
quence alignment and predict the conserved structure that can be
identified across sequences in the alignment. This was described
by Waterman (22) and was subsequently refined and popularized
by RNAalifold (23). The third, “fold-then-align” approach, is
to predict plausible structures for the sequences and then align
the structures to determine the sequence alignment and the
optimal conserved structures. This was described by Waterman

Significance

Conserved RNA structures are critical for designing diagnostic
and therapeutic tools for many diseases including COVID-19.
However, existing algorithms are much too slow to model
the global structures of full-length RNA viral genomes. We
present LinearTurboFold, a linear-time algorithm that is orders
of magnitude faster, making it, to our knowledge, the first
method to simultaneously fold and align whole genomes of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) variants, the longest known RNA virus (∼30 kb). Our work
enables unprecedented global structural analysis and captures
long-range interactions that are out of reach for existing al-
gorithms but crucial for RNA functions. LinearTurboFold is a
general technique for full-length genome studies and can help
fight the current and future pandemics.

Author contributions: S.L., H.Z., D.H.M., and L.H. designed research; S.L. and H.Z. per-
formed research; S.L., H.Z., L.Z., K.L., B.L., D.H.M., and L.H. analyzed data; S.L., H.Z.,
D.H.M., and L.H. wrote the paper; K.L. made the webserver; and D.H.M. and L.H.
conceived the idea and directed the project.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution License 4.0
(CC BY).
1To whom correspondence may be addressed. Email: liang.huang.sh@gmail.com or
David_Mathews@urmc.rochester.edu.
2Lead contact.

This article contains supporting information online at https://www.pnas.org/lookup/
suppl/doi:10.1073/pnas.2116269118/-/DCSupplemental.

Published December 9, 2021.

PNAS 2021 Vol. 118 No. 52 e2116269118 https://doi.org/10.1073/pnas.2116269118 1 of 11

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2116269118&domain=pdf&date_stamp=2021-12-10
http://orcid.org/0000-0001-7807-5748
http://orcid.org/0000-0001-5877-2167
http://orcid.org/0000-0002-2595-4463
http://orcid.org/0000-0002-2907-6557
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:liang.huang.sh@gmail.com
mailto:David_Mathews@urmc.rochester.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116269118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116269118/-/DCSupplemental
https://doi.org/10.1073/pnas.2116269118


(24) and implemented in RNAforester (25) and MARNA (26)
(SI Appendix, Fig. S1).

As an alternative, TurboFold II (27), an extension of TurboFold
(28), provides a more computationally efficient method to align
and fold sequences. Taking multiple unaligned sequences as
input, TurboFold II iteratively refines alignments and structure
predictions so that they conform more closely to each other and
converge on conserved structures. TurboFold II is significantly
more accurate than other methods (16, 18, 23, 29, 30) when tested
on RNA families with known structures and alignments.

However, the cubic runtime and quadratic memory usage of
TurboFold II prevent it from scaling to longer sequences such
as full-length severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) genomes, which contain ∼30,000 nucleotides; in
fact, no joint-align-and-fold methods can scale to these genomes,
which are the longest among RNA viruses. As a (not very prin-
cipled) workaround, most existing efforts for modeling SARS-
CoV-2 structures (31–36) resort to local folding methods (37, 38)
with sliding windows plus a limited pairing distance, abandoning
all long-range interactions, and only consider one SARS-CoV-2
genome (Fig. 1 B and C), ignoring signals available in multiple
homologous sequences. To address this challenge, we designed
a linearized version of TurboFold II, LinearTurboFold (Fig. 1A),
which is a global homologous folding algorithm that scales lin-
early with sequence length. This linear runtime makes it, to our
knowledge, the first joint-fold-and-align algorithm scale to full-
length coronavirus genomes without any constraints on window
size or pairing distance, taking about 13 h to analyze a group of 25
SARS-CoV homologs. It also leads to significant improvement
on secondary structure prediction accuracy as well as an align-
ment accuracy comparable to or higher than all benchmarks.

Over a group of 25 SARS-CoV-2 and SARS-related homol-
ogous genomes, LinearTurboFold predictions are close to the
canonical structures (40) and structures modeled with the aid of
experimental data (32–34) for several well-studied regions. Due

to global rather than local folding, LinearTurboFold discovers a
long-range interaction involving 5′ and 3′ untranslated regions
(UTRs) (∼29,800 nt apart), which is consistent with recent purely
experimental work (39) and yet is out of reach for local folding
methods used by existing studies (Fig. 1 B and C). In short,
our in silico method of folding multiple homologs can achieve
results similar to, and sometimes more accurate than, those
of experimentally guided models for one genome. Moreover,
LinearTurboFold identifies conserved structures supported by
compensatory mutations, which are potential targets for small-
molecule drugs (41) and antisense oligonucleotides (ASOs) (36).
We further identify regions that are 1) sequence-level conserved;
2) at least 15 nt long; and 3) accessible (i.e., likely to be completely
unpaired) as potential targets for ASOs (42), small interfer-
ing RNA (siRNA) (43), CRISPR-Cas13 guide RNA (gRNA)
(44), and RT-PCR primers (45). LinearTurboFold is a general
technique that can also be applied to other RNA viruses (e.g.,
influenza, Ebola, HIV, Zika, etc.) and full-length genome studies.

Results
The framework of LinearTurboFold has two major aspects
(Fig. 1A): linearized structure-aware pairwise alignment es-
timation (module 1) and linearized homolog-aware structure
prediction (module 2). LinearTurboFold iteratively refines align-
ments and structure predictions, specifically, updating pairwise
alignment probabilities by incorporating predicted base-pairing
probabilities (from module 2) to form structural alignments
and modifying base-pairing probabilities for each sequence
by integrating the structural information from homologous
sequences via the estimated alignment probabilities (from
module 1) to detect conserved structures. After several itera-
tions, LinearTurboFold generates the final multiple-sequence
alignment (MSA) based on the latest pairwise alignment
probabilities (module 3) and predicts secondary structures using
the latest pairing probabilities (module 4).

B

C

A

Fig. 1. (A) The LinearTurboFold framework. Like TurboFold II, LinearTurboFold takes multiple unaligned homologous sequences as input and outputs a
secondary structure for each sequence and a multiple-sequence alignment (MSA). But unlike TurboFold II, LinearTurboFold employs two linearizations to
ensure linear runtime: a linearized alignment computation (module 1) to predict posterior coincidence probabilities (red squares) for all pairs of sequences
(first four sections in Methods) and a linearized partition function computation (module 2) to estimate base-pairing probabilities (yellow triangles) for all
the sequences (Methods, Extrinsic Information Calculation and Methods, LinearPartition for Base Pairing Probabilities Estimation with Extrinsic Information).
These two modules take advantage of information from each other and iteratively refine predictions (SI Appendix, Fig. S2). After several iterations, module
3 generates the final multiple-sequence alignments (Methods, MSA Generation and Secondary Structure Prediction), and module 4 predicts secondary
structures. Module 5 can stochastically sample structures. (B and C) Prior studies (31–36) [except for the purely experimental work by Ziv et al. (39)] used local
folding methods with limited window size and maximum pairing distance. B shows the local folding of the SARS-CoV-2 genome by Huston et al. (32), which
used a window of 3,000 nt that was advanced 300 nt. It also limited the distance between nucleotides that can form base pair at 500. Some studies also
used homologous sequences to identify conserved structures (32–36), but they predicted only structures for one genome and utilized sequence alignments
to identify mutations. By contrast, LinearTurboFold is a global folding method without any limitations on sequence length or paring distance, and it jointly
folds and aligns homologs to obtain conserved structures. Consequently, LinearTurboFold can capture long-range interactions even across the whole genome
(the long arc in B and Fig. 3).
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LinearTurboFold achieves linear time regarding sequence
length with two major linearized modules: our recent work,
LinearPartition (46) (Fig. 1A, module 2), which approximates
the RNA partition function (47) and base-pairing probabilities
in linear time, and a novel algorithm, LinearAlignment (module
1). LinearAlignment aligns two sequences by a hidden Markov
model (HMM) in linear time by applying the same beam search
heuristic (48) used by LinearPartition. Finally, LinearTurboFold
assembles the secondary structure from the final base-pairing
probabilities using an accurate and linear-time method named
ThreshKnot (49) (module 4).

LinearTurboFold also integrates a linear-time stochastic sam-
pling algorithm named LinearSampling (50) (module 5), which
independently samples structures according to the homolog-
aware partition functions and then calculates the probability
of being unpaired for regions, which is an important property
in, for example, siRNA sequence design (43). Therefore, the
overall end-to-end runtime of LinearTurboFold scales linearly
with sequence length (first seven sections of Methods). The
number of iterations and other hyperparameters were tuned on
the training set. As observed previously (27, 28), improvements
after three iterations are negligible, and therefore the best
number of iterations is set to be three. On the testing set, it
is observed that LinearTurboFold achieves the most substantial
improvements in both structure prediction and MSA accuracies
in the first iteration and continues to benefit from the next
two iterations (SI Appendix, Fig. S5), which is consistent with
the observation on the training set. After approximately three
iterations, both structure prediction and MSA accuracies

remain stable with small fluctuations. To better demonstrate
the improvement in each iteration, we visualized both base-
pairing probabilities and alignment coincidence probabilities
from LinearTurboFold for a group of five tRNAs across iterations
(SI Appendix, Figs. S6 and S7).

Scalability and Accuracy. To evaluate the efficiency of LinearTur-
boFold against the sequence length, we collected a dataset con-
sisting of seven families of RNAs with sequence length ranging
from 210 to 30,000 nt, including five families from the RNAS-
trAlign dataset (27) plus 23S ribosomal RNA, HIV genomes, and
SARS-CoV genomes, and the calculation for each family uses
five homologous sequences (Methods, Efficiency and Scalability
Datasets). Fig. 2A compares the running time of LinearTur-
boFold with TurboFold II and two Sankoff-style simultaneous
folding and alignment algorithms, LocARNA (local alignment
of RNA) and MXSCARNA. Clearly, LinearTurboFold scales
linearly with sequence length n and is substantially faster than
other algorithms, which scale superlinearly. The linearization in
LinearTurboFold brings orders of magnitude speedup over the
cubic-time TurboFold II, taking only 12 min on the HIV family
(average length 9,686 nt), while TurboFold II takes 3.1 d (372×
speedup). More importantly, LinearTurboFold takes only 40 min
on five SARS-CoV sequences while all other benchmarks fail to
scale. Regarding the memory usage (Fig. 2B), LinearTurboFold
costs linear memory space with sequence length, while other
benchmarks use quadratic or more memory. In Fig. 2 C and
D, we also demonstrate the runtime and memory usage against
the number of homologs using sets of 16S ribosomal RNAs
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Fig. 2. End-to-end scalability and accuracy comparisons. (A and B) End-to-end runtime and memory usage comparisons between benchmarks and
LinearTurboFold against the sequence length. LinearTurboFold uses beam size 100 in both partition function and HMM alignment calculation with three
iterations to run all groups of data. (C and D) End-to-end runtime and memory usage comparisons against the group size. To our knowledge, LinearTurboFold
is the first joint-fold-and-align algorithm that scales to full-length coronavirus genomes (∼30,000 nt) due to its linear runtime. (E) The runtime and
space complexity comparisons between TurboFold II and LinearTurboFold. The dominating terms are in boldface type. (F and G) The F1 accuracy scores
of the structure prediction and multiple-sequence alignment (SI Appendix, Table S1). LocARNA and MXSCARNA are Sankoff-style simultaneous folding
and alignment algorithms for homologous sequences. As negative controls, LinearPartition and Vienna RNAfold predicted structures for each sequence
separately; LinearAlignment and MAFFT generated sequence-level alignments; RNAalifold folded prealigned sequences (e.g., from MAFFT) and predicted
conserved structures. Statistical significances (two-tailed permutation test) between the benchmarks and LinearTurboFold are marked with one star (�) on
the top of the corresponding bars if P < 0.05 or two stars
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)
if P < 0.01. The benchmarks whose accuracies are significantly lower than LinearTurboFold are

annotated with black stars, while benchmarks higher than LinearTurboFold are marked with dark red stars. Overall, on structure prediction, LinearTurboFold
achieves significantly higher accuracy than all evaluated benchmarks, and on multiple-sequence alignment it achieves accuracies comparable to TurboFold
II and significantly higher than other methods (SI Appendix, Table S1).
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(rRNAs) about 1,500 nt in length. The apparent complexity of
LinearTurboFold against the group size k is higher than that of
TurboFold II because the runtime of the latter is O(kn3 + k2n2)
and is dominated by the O(kn3) partition function calculation,
thus scaling O(k1.4) empirically. By contrast, LinearTurboFold
linearizes both partition function and alignment modules, so its
overall runtime becomes O(kn + k2n) and is instead dominated
by the O(k2n) alignment module, therefore scaling O(k2) in
practice. A similar analysis holds for memory usage (Fig. 2E).*

We next compare the accuracies of secondary structure pre-
diction and MSA between LinearTurboFold and several bench-
mark methods (Methods, Benchmarks). Besides Sankoff-style
LocARNA and MXSCARNA, we also consider three types of
negative controls: 1) single-sequence folding (partition function
based), Vienna RNAfold (38) (-p mode) and LinearPartition;
2) sequence-only alignment, MAFFT (29) and LinearAlignment
(a standalone version of the alignment method developed for
this work but without structural information); and 3) an align-
then-fold method that predicts consensus structures from MSAs
(SI Appendix, Fig. S1), MAFFT + RNAalifold (23).

For secondary structure prediction, LinearTurboFold, Tur-
boFold II, and LocARNA achieve higher F1 scores than single-
sequence folding methods (Vienna RNAfold and
LinearPartition) (Fig. 2F), which demonstrates folding with
homology information performs better than folding sequences
separately. Overall, LinearTurboFold performs significantly
better than all the other benchmarks on structure prediction. For
the accuracy of MSAs (Fig. 2G), the structural alignments from
LinearTurboFold obtain higher accuracies than sequence-only
alignments (LinearAlignment and MAFFT) on all four families,
especially for families with low sequence identity. On average,
LinearTurboFold performs comparably with TurboFold II and
significantly better than other benchmarks on alignments. We
also note that the structure prediction accuracy of the align-
then-fold approach (MAFFT + RNAalifold) depends heavily
on the alignment accuracy and is the worst when the sequence
identity is low (e.g., signal recognition particle [SRP] RNA) and
the best when the sequence identity is high (e.g., 16S rRNA)
(Fig. 2 F and G).

Highly Conserved Structures in SARS-CoV-2 and SARS-Related Beta-
Coronaviruses. RNA sequences with conserved secondary struc-
tures play vital biological roles and provide potential targets. The
current COVID-19 outbreak raises an emergent requirement
of identifying potential targets for diagnostics and therapeutics.
Given the strong scalability and high accuracy, we used Lin-
earTurboFold on a group of full-length SARS-CoV-2 and SARS-
related (SARSr) genomes to obtain global structures and identify
highly conserved structural regions.

We used a greedy algorithm to select the 16 most diverse
genomes from all the valid SARS-CoV-2 genomes submitted to
the Global Initiative on Sharing Avian Influenza Data (GISAID)
(52) up to December 2020 (Methods, SARS-CoV-2 Datasets).
We further extended the group by adding nine SARS-related
homologous genomes (five human SARS-CoV-1 and four bat
coronaviruses) (53). In total, we built a dataset of 25 full-length
genomes consisting of 16 SARS-CoV-2 and 9 SARS-related se-
quences (SI Appendix, Fig. S9). The average pairwise sequence
identities of the 16 SARS-CoV-2 and the total 25 genomes are
99.9% and 89.6%, respectively. LinearTurboFold takes about 13
h and 43 GB on the 25 genomes.

To evaluate the reliability of LinearTurboFold predictions, we
first compare them with Huston et al.’s (32) SHAPE-guided mod-
els for regions with well-characterized structures across betacoro-

*Theoretically, the alignment part takes O(k2n2) space. However, in practice, TurboFold
II discards positions whose alignment coincidence probabilities are less than thresholds
and keeps only a linear number of positions (51).

naviruses. For the extended 5′ and 3′ UTRs, LinearTurboFold’s
predictions are close to the SHAPE-guided structures (Fig. 3 A
and B), i.e., both identify the stem loops (SLs) 1 to 2 and 4 to 7 in
the extended 5′ UTR and the bulged stem loop (BSL), SL1, and
a long bulge stem for the hypervariable region (HVR) including
the stem-loop II-like motif (S2M) in the 3′ UTR. Interestingly,
in our model, the high unpaired probability of the stem in the
SL4b indicates the possibility of being single stranded as an alter-
native structure, which is supported by experimental studies (33,
36). In addition, the compensatory mutations LinearTurboFold
found in UTRs strongly support the evolutionary conservation
of structures (Fig. 3A).

The most important difference between LinearTurboFold’s
prediction and Huston et al.’s (32) experimentally guided model
is that LinearTurboFold discovers an end-to-end interaction
(29.8 kb apart) between the 5′ UTR (SL3, 60 to 82 nt) and
the 3′ UTR (final region, 29,845 to 29,868 nt), which fold
locally by themselves in Huston et al.’s (32) model. Interestingly,
this 5′–3′ interaction matches exactly with the one discovered
by the purely experimental work of Ziv et al. (39) using the
COMRADES technique to capture long-range base-pairing
interactions (Fig. 3C). These end-to-end interactions have been
well established by theoretical and experimental studies (54–56)
to be common in natural RNAs, but are far beyond the reaches of
local folding methods used in existing studies on modeling SARS-
CoV-2 secondary structures (32–35). By contrast, LinearTurbo-
Fold predicts secondary structures globally without any limit on
window size or base-pairing distance, enabling it to discover long-
distance interactions across the whole genome. The similarity
between our predictions and the experimental work shows
that our in silico method of folding multiple homologs can
achieve results similar to, if not more accurate than, those of
experimentally guided single-genome predictions.

LinearTurboFold can model these end-to-end interactions due
to three ingredients: 1) linearization, 2) LinearPartition’s better
modeling power on long sequences and long-range pairs, and
3) homologous folding and soft alignment. Linearization not
only enables LinearTurboFold to scale to longer sequences, but
also improves the accuracy of modeling long-range interactions
benefiting from LinearPartition (46). In addition, homologous
folding is also crucial. We observed that LinearPartition can
model the same end-to-end interactions detected by Ziv et
al. (39) for 8 of 25 sequences (4 of 16 SARS-CoV-2 and 4 of
9 SARS-related sequences; SI Appendix, Figs. S12A and S13,
Left column). For the other sequences, however, LinearPartition
either cannot predict end-to-end interactions or predicts them
in the wrong locations. On the other hand, LinearTurboFold
propagates the correct structural information from those eight
sequences to other homologs, resulting in all SARS-CoV-
2 sequences having the same end-to-end pairs (SI Appendix,
Figs. S12B and S13, Right column). By contrast, the align-
then-fold approach (MAFFT + RNAalifold), which relies on the
input hard alignment and predicts one single consensus structure
for all homologs, fails to predict such long-range interactions
(SI Appendix, Fig. S10B).

The frameshifting stimulation element (FSE) is another
well-characterized region. For an extended FSE region, the
LinearTurboFold prediction consists of two substructures
(Fig. 4A): The 5′ part includes an attenuator hairpin and a
stem, which are connected by a long internal loop (16 nt)
including the slippery site, and the 3′ part includes three stem
loops. We observe that our predicted structure of the 5′ part
is consistent with that in experimentally guided models (32, 33,
35) (Fig. 4 B–D). In the attenuator hairpin, the small internal
loop motif (UU) was previously selected as a small-molecule
binder that stabilizes the folded state of the attenuator hairpin
and impairs frameshifting (41). For the long internal loop
including the slippery site, we show in the next section that it
is both highly accessible and conserved (Fig. 5), which makes
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Fig. 3. Secondary structure predictions of SARS-CoV-2 extended 5′ and 3′ UTRs. (A) LinearTurboFold prediction. The nucleotides and base pairs are colored by
unpaired probabilities and base-pairing probabilities, respectively. The compensatory mutations extracted by LinearTurboFold are annotated with alternative
pairs in red boxes (see SI Appendix, Table S2 for more fully conserved pairs with covariational changes). (B) SHAPE-guided model by Huston et al. (32) (window
size 3,000 nt sliding by 300 nt with maximum pairing distance 500 nt). The nucleotides are colored by SHAPE reactivities. Dashed boxes enclose the different
structures between A and B. Our model is close to Huston et al.’s (32), but the major difference is that LinearTurboFold predicts the end-to-end pairs involving
5′ and 3′ UTRs (solid box in A), which is exactly the same interaction detected by Ziv et al. (39) using the COMRADES experimental technique (C). Such long-
range interactions cannot be captured by the local folding methods used by prior experimentally guided models (Fig. 1B). The similarity between models
A and B and the exact agreement between A and C show that our in silico method of folding multiple homologs can achieve results similar to, if not
more accurate than, experimentally guided single-genome prediction. As negative controls (SI Appendix, Fig. S10), the align-then-fold (RNAalifold) method
cannot predict such long-range interactions. Although the single-sequence folding algorithm (LinearPartition) predicts a long-range 5′–3′ interaction, the
positions are not the same as the LinearTurboFold model and Ziv et al.’s (39) experimental result.

it a perfect candidate for drug design. For the 3′ region of the
FSE, LinearTurboFold successfully predicts stems 1 to 2 (but
misses stem 3) of the canonical three-stem pseudoknot (40)
(Fig. 4E). Our prediction is closer to the canonical structure
compared to that in the experimentally guided models (32,
33, 35) (Fig. 4 B–D); one such model (Fig. 4B) identified the
pseudoknot (stem 3) but with an open stem 2. Note that all
these experimentally guided models for the FSE region were
estimated for specific local regions. As a result, the models
are sensitive to the context and region boundaries (32, 35, 57)
(see SI Appendix, Fig. S11D–F for alternative structures of Fig. 4
B–D with different regions). LinearTurboFold, by contrast, does
not suffer from this problem by virtue of global folding without
local windows. Besides SARS-CoV-2, we note that the estimated
structure of the SARS-CoV-1 reference sequence (Fig. 4F)
from LinearTurboFold is similar to SARS-CoV-2 (Fig. 4A),
which is consistent with the observation that the structure of
the FSE region is highly conserved among betacoronaviruses
(40). Finally, as negative controls, both the single-sequence
folding algorithm (LinearPartition in Fig. 4G) and the align-then-
fold method (RNAalifold in SI Appendix, Fig. S11G) predict

quite different structures compared with the LinearTurboFold
prediction (Fig. 4A) (39/61% of pairs from the LinearTurboFold
model are not found by LinearPartition/RNAalifold).

In addition to the well-studied UTRs and FSE regions, Lin-
earTurboFold discovers 50 conserved structures with identical
structures among 25 genomes, and 26 regions are different com-
pared to previous studies (31, 32) (Fig. 4H and SI Appendix,
Table S3). These different structures are potential targets for
small-molecule drugs (41) and ASOs (36, 58). LinearTurbo-
Fold also recovers fully conserved base pairs with compensatory
mutations (SI Appendix, Table S2), which implies highly con-
served structural regions whose functions might not have been
explored. We provide the complete multiple-sequence alignment
and predicted structures for 25 genomes from LinearTurboFold
(Dataset S1; see SI Appendix, Fig. S14 for the format).

Highly Accessible and Conserved Regions in SARS-CoV-2 and SARS-
Related Betacoronaviruses. Studies show that the siRNA silencing
efficiency, ASO inhibitory efficacy, CRISPR-Cas13 knockdown
efficiency, and RT-PCR primer binding efficiency all correlate
with the target region’s accessibility (43–45, 59), which is the
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Fig. 4. (A–D) Secondary structure predictions of SARS-CoV-2 extended frameshifting stimulation element (FSE) region (13,425 to 13,545 nt). (A)
LinearTurboFold prediction. (B–D) Experimentally guided predictions from the literature (32, 33, 35), which are sensitive to the context and region boundaries
due to the use of local folding methods (SI Appendix, Fig. S11). (E) The canonical pseudoknot structure by the comparative analysis between SARS-CoV-
1 and SARS-CoV-2 genomes (40). For the 5′ region of the FSE shown in dotted boxes (attenuator hairpin, internal loop with slippery site, and a stem),
the LinearTurboFold prediction (A) is consistent with B–D; for the 3′ region of the FSE shown in dashed boxes, our prediction (predicting stems 1 to 2
but missing stem 3) is closer to the canonical structure in E compared to B–D. (F) LinearTurboFold prediction on SARS-CoV-1. (G) Single-sequence folding
algorithm (LinearPartition) prediction on SARS-CoV-2, which is quite different from LinearTurboFold’s. As another negative control, the align-then-fold
method (RNAalifold) predicts a rather dissimilar structure (SI Appendix, Fig. S11G). (H) Five examples from 59 fully conserved structures among 25 genomes
(SI Appendix, Table S3), 26 of which are different compared with prior work (31, 32).

probability of a target site being fully unpaired. However, most
existing work for designing siRNAs, ASOs, CRISPR-Cas13
gRNAs, and RT-PCR primers does not take this feature into
consideration (60, 61) (SI Appendix, Table S4). Here, LinearTur-
boFold is able to provide more principled design candidates by
identifying accessible regions of the target genome. In addition
to accessibility, the emerging variants around the world reduce
effectiveness of existing vaccines and test kits (SI Appendix,
Table S4), which indicates sequence conservation is another
critical aspect for therapeutic and diagnostic design. LinearTur-
boFold, being a tool for both structural alignment and homolo-
gous folding, can identify regions that are both (sequence-wise)
conserved and (structurally) accessible, and it takes advantage of
not only SARS-CoV-2 variants but also homologous sequences,
e.g., SARS-CoV-1 and bat coronavirus genomes, to identify
conserved regions from historical and evolutionary perspectives.

To get unstructured regions, Rangan et al. (31) imposed a
threshold on unpaired probability of each position, which is

a crude approximation because the probabilities are not inde-
pendent of each other. By contrast, the widely used stochastic
sampling algorithm (50, 62) builds a representative ensemble of
structures by sampling independent secondary structures accord-
ing to their probabilities in the Boltzmann distribution. Thus, the
accessibility for a region can be approximated as the fraction of
sampled structures in which the region is single stranded. Lin-
earTurboFold utilized LinearSampling (50) to generate 10,000
independent structures for each genome according to the mod-
ified partition functions after the iterative refinement (Fig. 1A,
module 5) and calculated accessibilities for regions at least 15
nt long. We then define accessible regions that are with at least
0.5 accessibility among all 16 SARS-CoV-2 genomes (Fig. 5 A
and B). We also measure the free energy to open a target re-
gion [i , j ] (63), notated ΔGu[i , j ] =−RT (logZu[i , j ]− logZ ) =
−RT logPu[i , j ], where Z is the partition function that sums up
the equilibrium constants of all possible secondary structures,
Zu[i , j ] is the partition function over all structures in which the
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Fig. 5. An illustration of accessible and conserved regions that LinearTurboFold identifies. (A and B) Identified structurally conserved accessible regions by
LinearTurboFold with the help of considering alignment and folding simultaneously. The regions at least 15 nt long with accessibility of at least 0.5 among
all the 16 SARS-CoV-2 genomes are shaded on blue background. Structures are encoded in dot-bracket notation. “(” and “)” indicate nucleotides pairing in
the 3′ and 5′ directions, respectively. “.” indicates an unpaired nucleotide. The positions with mutations compared to the SARS-CoV-2 reference sequence
among three different subfamilies (SARS-CoV-2, SARS-CoV-1, and BCoV) are underlined. (C) Accessible and conserved regions are not only accessible among
SARS-CoV-2 genomes (pink circle) but also conserved (at sequence level) among both SARS-CoV-2 and SARS-related genomes (green circle). (D) Two examples
of 33 accessible and conserved regions found by LinearTurboFold. Regions 16 and 29 correspond to the accessible regions in A and B, respectively. Region 16
is also the long internal loop including the slippery site in the FSE region (H). The conservation of these regions on nine SARS-related genomes is the number
of mutated sites. The conservation on the ∼2 million SARS-CoV-2 dataset is shown in both average sequence identity with the reference sequence and the
percentage of exact matches, respectively. (E and F) Single-sequence folding algorithms predict greatly different structures even if the sequence identities
are high (gray rectangles with diagonal strips). These two regions, fully conserved among SARS-CoV-2 genomes, still fold into different structures due to
mutations outside the regions. By contrast, LinearTurboFold folds all sequences to the same structures due to the homologous signals in the corresponding
regions in A and B. (G) The positions of these 33 regions (red bars) across the whole genome (SI Appendix, Table S5). All the accessible and conserved regions
are potential targets for siRNAs, ASOs, CRISPR-Cas13 gRNAs, and RT-PCR primers.

region [i , j ] is fully unpaired, R is the universal gas constant, and T
is the thermodynamic temperature. Therefore Pu[i , j ] is the un-
paired probability of the target region and can be approximated
via sampling by s0/s , where s is the sample size and s0 is the
number of samples in which the target region is single stranded.
The regions whose free-energy changes are close to zero need
less free energy to open and are thus more accessible to bind with
siRNAs, ASOs, CRISPR-Cas13 gRNAs, and RT-PCR primers.

Next, to identify conserved regions that are highly conserved
among both SARS-CoV-2 and SARS-related genomes, we
require that these regions contain at most three mutated sites
on the nine SARS-related genomes compared to the SARS-
CoV-2 reference sequence because historically conserved sites
are also unlikely to change in the future (64), and the average
sequence identity with reference sequence over a large SARS-
CoV-2 dataset is at least 0.999 (here we use a dataset of ∼2
million SARS-CoV-2 genomes submitted to GISAID up to
30 June 2021†; Methods, SARS-CoV-2 Datasets). Finally, we
identified 33 accessible and conserved regions (Fig. 5G and

†The average sequence identity is 0.9987 on that ∼2 million dataset (downloaded on 25
July 2021).

SI Appendix, Table S5), which are not only structurally accessible
among SARS-CoV-2 genomes but also highly conserved among
SARS-CoV-2 and SARS-related genomes (Fig. 5C). Because the
specificity is also a key factor influencing siRNA efficiency (65),
we used BLAST against the human transcript dataset to search
for these regions (SI Appendix, Table S5). Finally, we also listed
the GC content of each region. Among these regions, region 16
corresponds to the internal loop containing the slippery site in
the extended FSE region, and it is conserved at both structural
and sequence levels (Fig. 5 D and H). Besides SARS-CoV-2
genomes, the SARS-related genomes such as the SARS-CoV-
1 reference sequence (NC_004718.3) and a bat coronavirus
(BCoV) (MG772934.1) also form similar structures around the
slippery site (Fig. 5A). By removing the constraint of conservation
on SARS-related genomes, we identified 38 additional candidate
regions (SI Appendix, Table S6) that are accessible but only highly
conserved on SARS-CoV-2 variants.

We also designed a negative control by analyzing the SARS-
CoV-2 reference sequence alone using LinearSampling, which
can also predict accessible regions. However, these regions are
not structurally conserved among the other 15 SARS-CoV-2
genomes, resulting in vastly different accessibilities, except for
one region in the M gene (SI Appendix, Table S7). The reason for
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this difference is that, even with a high sequence identity (over
99.9%), single-sequence folding algorithms still predict greatly
dissimilar structures for the SARS-CoV-2 genomes (Fig. 5 E and
F). Both regions (in nsp11 and N genes) are fully conserved
among the 16 SARS-CoV-2 genomes, yet they still fold into vastly
different structures due to mutations outside the regions; as a
result, the accessibilities are either low (nsp11) or in a wide
range (N) (Fig. 5D). Conversely, addressing this by folding each
sequence with proclivity of base pairing inferred from all ho-
mologous sequences, LinearTurboFold structure predictions are
more consistent with each other and thus can detect conserved
structures (Fig. 5 A and B).

Discussion
The constant emergence of new SARS-CoV-2 variants is reduc-
ing the effectiveness of exiting vaccines and test kits. To cope
with this issue, there is an urgent need to identify conserved
structures as promising targets for therapeutics and diagnostics
that would work despite current and future mutations. Here we
presented LinearTurboFold, an end-to-end linear-time algorithm
for structural alignment and conserved structure prediction of
RNA homologs, which is, to our knowledge, the first joint-
fold-and-align algorithm that scales to full-length SARS-CoV-
2 genomes without imposing any constraints on base-pairing
distance. We also demonstrate that LinearTurboFold leads to sig-
nificant improvement on secondary structure prediction accuracy
as well as an alignment accuracy comparable to or higher than all
benchmarks.

Unlike existing work on SARS-CoV-2 using local folding
and single-sequence folding workarounds, LinearTurboFold
enables unprecedented global structural analysis on SARS-
CoV-2 genomes; in particular, it can capture long-range
interactions, especially the one between 5′ and 3′ UTRs across
the whole genome, which matches perfectly with a recent
purely experimental work. Over a group of SARS-CoV-2 and
SARS-related homologs, LinearTurboFold identifies not only
conserved structures supported by compensatory mutations and
experimental studies, but also accessible and conserved regions
as vital targets for designing efficient small-molecule drugs,
siRNAs, ASOs, CRISPR-Cas13 gRNAs, and RT-PCR primers.
LinearTurboFold is widely applicable to the analysis of other
RNA viruses (influenza, Ebola, HIV, Zika, etc.) and full-length
genome analysis.

Methods
Pairwise Hidden Markov Model. We use a pairwise hidden Markov model
(pair-HMM) to align two sequences (51, 66). The model includes three
actions (h): aligning two nucleotides from two sequences (ALN), inserting a
nucleotide in the first sequence without a corresponding nucleotide in the
other sequence (INS1), and a nucleotide insertion in the second sequence
without a corresponding nucleotide in the first sequence (INS2). We then
define A(x, y) as a set of all the possible alignments for the two sequences
and one alignment a ∈ A(x, y) as a sequence of steps (h, i, j) with m + 2
steps, where (h, i, j) means an alignment step at the position pair (i, j) by
the action h. Thus, for the lth step al = (hl, il , jl) ∈ a, the values of il and jl
depend on the action hl and the positions il−1 and jl−1 of al−1:

al =

⎧⎨
⎩
(ALN, il−1 + 1, jl−1 + 1), hl = ALN

(INS1, il−1 + 1, jl−1), hl = INS1

(INS2, il−1, jl−1 + 1), hl = INS2

with (ALN, 0, 0) as the first step and (ALN, |x| + 1, |y| + 1) as the last
one. For two sequences {ACAAGU, AACUG}, one possible alignment
{–ACAAGU, AAC–UG} can be specified as {(ALN, 0, 0) → (INS2, 0, 1) → (ALN,
1, 2) → (ALN, 2, 3) → (INS1, 3, 3) → (INS1, 4, 3) → (ALN, 5, 4) → (ALN, 6, 5) →
(ALN, 7, 6)}, where a gap symbol (–) represents a nucleotide insertion in the
other sequence at the corresponding position (SI Appendix, Fig. S3). The
action hl in each step (hl, il, jl) corresponds to a line segment starting from
the previous node (il−1, jl−1) and stopping at the node (il, jl). Thus, the
line segment is horizontal, vertical, or diagonal toward the top-right corner
when hl is INS1, INS2, or ALN, respectively (SI Appendix, Fig. S3).

We initialize the first step with the state ALN of probability 1; thus
pπ(ALN) = 1. pt(h2 | h1) is the transition probability from the state h1 to h2,
and pe((c1, c2) | h1) is the probability of the state h1 emitting a character
pair (c1, c2) with values from {A, G, C, U, –}. Both the emission and transi-
tion probabilities were taken from TurboFold II. The function e() yields a
character pair based on al and the nucleotides of two sequences:

e(x, y, al) =

⎧⎪⎨
⎪⎩
(xil

, yjl
), hl = ALN

(xil
, −), hl = INS1

(−, yjl
), hl = INS2

,

where xi and yj are the ith and jth nucleotides of sequences x and y,
respectively. Note that the first step a0 = (ALN, 0, 0) and the last am+1 =

(ALN, |x| + 1, |y| + 1) do not have emissions.
We denote forward probability αh

i,j encompassing the probability of the
partial alignments of x and y up to positions i and j and all the alignments
that go through the step (h, i, j):

α
h
i,j =

∑
a∈A(x,y)

∃k,ak=(h,i,j)

p(x, y, a[: k])

= pπ(h0) ·
k∏

l=1

pt(hl | hl−1)pe(e(x, y, al) | hl),

where a[: k] indicates the partial alignments from the starting node up to the
kth step and ak = (h, i, j). For instance, αALN

3,3 ,αINS1
3,3 , andαINS2

3,3 correspond to the
region circled by the blue dashed lines (SI Appendix, Fig. S3 B–D). Similarly,
the backward probability βh

i,j assembles the probability of partial alignments
a[k + 1 :] from the (k + 1) th step up to the end one:

β
h
i,j =

∑
a∈A(x,y)

∃k,ak=(h,i,j)

p(x, y, a[k + 1 :])

=

⎧⎨
⎩

m∏
l=k+1

pt(hl | hl−1)pe(e(x, y, al) | hl)

⎫⎬
⎭ · pt(hm+1 | hm).

For example, βALN
3,3 , β INS1

3,3 , and β INS2
3,3 are the regions circled by the yellow

dashed line (SI Appendix, Fig. 3 B–D). Thus, the probability of observing two
sequences p(x, y) is αALN

|x|+1,|y|+1 or βALN
0,0 .

Posterior Coincidence Probability Computation. Nucleotide positions i and j
in two sequences x and y are said to be coincident (notated as i ∼ j) in an
alignment a if the alignment path goes through the node (i, j) (51). Since the
node (i, j) is reachable by three actions H = {ALN, INS1, INS2}, the coincidence
probability for a position pair (i, j) given two sequences is

p(i ∼ j | x, y) =
1

p(x, y)

∑
a∈A(x,y)
∃h,(h,i,j)∈a

p(x, y, a), [1]

where p(x, y, a) is the probability of two sequences with the alignment a,
and p(x, y) is the probability of observing two sequences, which is the sum
of probability of all the possible alignments:

p(x, y) =
∑

a∈A(x,y)

p(x, y, a).

The coincidence probability for positions i and j (Eq. 1) can be computed by

p(i ∼ j | x, y) =

∑
h αh

i,j · βh
i,j

αALN
|x|+1,|y|+1

.

LinearAlignment. Unlike a previous method (51) that fills out all the nodes
in the alignment matrix by columns (SI Appendix, Fig. S3), LinearAlignment
scans the matrix based on the step count s, which is the sum value of i and
j (s = i + j) for the partial alignments of x[1,i] and y[1,j]. As shown in the
pseudocode (SI Appendix, Fig. S4), the forward phase starts from the node
(0, 0) in the state ALN of probability 1 and then iterates the step count s from
0 to |x| + |y| − 1. For each step count s with a specific state h from H, we
first collect all the nodes (i, j) with the step count s with αh

i,j existing, which
means the position pair (i, j) has been visited via the state h before. Then
each node makes transitions to next nodes by their states and updates the
corresponding forward probabilities αINS1

i+1,j , α
INS2
i,j+1, and αALN

i+1,j+1, respectively.
The current alignment algorithm is still an exhaustive-search algorithm

and costs quadratic time and space for all the |x| × |y| nodes. To reduce
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the runtime, LinearAlignment uses the beam search heuristic algorithm (48)
and keeps a limited number of promising nodes at each step. For each step
count s with a state h, LinearAlignment applies the beam search method first
over B(s, h), which is the collection of all the nodes (i, j) with step count s
and the presence of αh

i,j (SI Appendix, Fig. S4, line 6). This algorithm saves
only the top balign nodes with the highest forward scores in B(s, h), and
these are subsequently allowed to make transitions to the next states. Here
balign is a user-specified beam size and the default value is 100. In total,
O(balignn) nodes survive because the length of s is |x| + |y| and each step
count keeps balign nodes. For simplicity, we show the topological order and
the beam search method with alignment examples (SI Appendix, Fig. S3A),
while the forward–backward algorithm adopts the same idea by summing
the probabilities of all the possible alignments.

After the forward phase, the backward phase (SI Appendix, Fig. S4) per-
forms in linear time to calculate the coincidence probabilities automatically
because only a linear number of nodes in B(s, h) are stored. Thus by pruning
low-scoring candidates at each step in the forward algorithm, we reduce the
runtime from O(n2) to O(balignn) for aligning two sequences. For k input
homologous sequences, LinearTurboFold computes posterior coincidence
probabilities for each pair of sequences by LinearAlignment, which costs
O(k2balignn) runtime in total.

Match Scores Computation and Modified LinearAlignment. To encourage
the pairwise alignment conforming with estimated secondary structures,
LinearTurboFold predicts structural alignments by incorporating the
secondary structural conformation. PMcomp (67) first proposed the match
score to measure the structural similarity for position pairs between a pair
of sequences, and TurboFold II adapts it as a prior. Based on the base pair
probabilities Px(i, j) estimated from the partition function for a sequence
x, a position i could be paired with bases upstream or downstream or
unpaired, with corresponding probability Px,>(i) =

∑
j<i Px(i, j), Px,<(i) =∑

j>i Px(i, j), and Px,o(i) = 1 − Px,>(i) − Px,<(i), respectively. The match
score mx,y(i, j) for two positions i and j from two sequences x and y is based
on the probabilities of these three structural propensities from the last
iteration (t − 1):

m(t)
x,y (i, j) = α1

[√
P(t−1)

x,> (i) · P(t−1)
y,> (j)

√
P(t−1)

x,< (i) · P(t−1)
y,< (j)

]

+ α2

√
P(t−1)

x,o (i) · P(t−1)
y,o (j) + α3,

where α1, α2, and α3 are weight parameters trained in TurboFold II.
The forward–backward phrases integrate the match score as a prior when
aligning two nucleotides (SI Appendix, Fig. S4, lines 10 and 12).

TurboFold II separately precomputes match scores for all the O(n2) po-
sition pairs for pairs of sequences before the HMM alignment calculation.
However, only a linear number of pairs O(balignn) survive after applying
the beam pruning in LinearAlignment. To reduce redundant time and
space usage, LinearTurboFold calculates the corresponding match scores for
coincident pairs when they are first visited in LinearAlignment. Overall,
for k homologous sequences, LinearTurboFold reduces the runtime of the
whole module of pairwise posterior coincidence probability computation
from O(k2n2) to O(k2balignn) by applying the beam search heuristic to the
pairwise HMM alignment and calculating only the match scores for position
pairs that are needed.

Extrinsic Information Calculation. To update partition functions for each
sequence with the structural information from homologs, TurboFold (28)
introduces extrinsic information to model the proclivity for base pairing in-
duced from the other sequences in the input set S. The extrinsic information
ex(i, j) for a base pair (i, j) in the sequence x maps the estimated base-pairing
probabilities of other sequences to the target sequence via the coincident
nucleotides between each pair of sequences:

∑
y∈{S\x}

(1 − sx,y)
∑
k,l

p(t−1)
y (k, l) · p(t)

x,y (i ∼ k) · p(t)
x,y (j ∼ l),

where p(t−1)
y (k, l) is the base pair probability for a base pair (k, l) in the

sequence y from the (t − 1) th iteration. p(t)
x,y (i ∼ k) and p(t)

x,y (j ∼ l) are
the posterior coincidence probabilities for position pairs (i, k) and (j, l),
respectively, from the (t) th iteration. The extrinsic information e(t)

x (i, j)
first sums all the base pair probabilities of alignable pairs from another one
sequence with the coincidence probabilities and then iterates over all the
other sequences. sx,y is the sequence identity for sequences x and y. The
sequences with a low identity contribute more to the extrinsic information
than sequences of higher identity. The sequence identity is defined as the
fraction of nucleotides that are aligned and identical in the alignment.

LinearPartition for Base-Pairing Probabilities Estimation with Extrinsic
Information. The classical partition function algorithm scales cubically with
sequence length. The slowness limits its extension to longer sequences.
To address this bottleneck, our recent LinearPartition (46) algorithm
approximates the partition function and base-paring probability matrix
computation in linear time. LinearPartition is significantly faster and
correlates better with the ground-truth structures than the traditional cubic
partition function calculation. Thus, LinearTurboFold uses LinearPartition to
predict base pair probabilities instead of the traditional O(n3)-time partition
function.

TurboFold introduces the extrinsic information e(t)
x (i, j) in the partition

function as a pseudofree energy term for each base pair (i, j). Similarly, in
LinearPartition, for each span [i, j], which is the subsequence xi . . . xj , and
its associated partition function Q(i, j), the partition function is modified
as Q̃(i, j) = Q(i, j)e(t)

x (i, j)λ if (xi , xj) is an allowed pair, where λ denotes
the contribution of the extrinsic information relative to the intrinsic infor-
mation. Specifically, at each step j, among all possible spans [i, j] where xi

and xj are paired, we replace the original partition function Q(i, j) with
Q(i, j)e(t)

x (i, j)λ by multiplying the extrinsic information. Then LinearTurbo-
Fold applies the beam pruning heuristic over the modified partition function
Q̃(i, j) instead of the original.

Similarly, TurboFold II obtains the extrinsic information for all the O(n2)

base pairs before the partition function calculation of each sequence,
while only a linear number of base pairs survives in LinearPartition. Thus,
LinearTurboFold requires only the extrinsic information for those promising
base pairs that are visited in LinearPartition. Overall, for k homologous se-
quences, LinearTurboFold reduces the runtime of base pair probabilities es-
timation for each sequence from O(kn3 + k2n2) to O(kb2

foldingn + k2balignn)
by applying the beam size bfolding to the partition function calculation and
calculating only extrinsic information for the saved base pairs.

MSA Generation and Secondary Structure Prediction. After several iterations,
TurboFold II builds the multiple-sequence alignment using a probabilistic
consistency transformation, generating a guide tree and performing pro-
gressive alignment over the pairwise posterior coincidence probabilities
(30). The whole procedure is accelerated in virtue of the sparse matrix by
discarding alignment pairs of probability smaller than a threshold (0.01 by
default). Since LinearAlignment uses the beam search method and saves only
a linear number of coincident pairs, the MSA generation in LinearTurboFold
costs linear runtime against the sequence length straightforwardly.

Estimated base pair probabilities are fed into downstream methods
to predict secondary structures. To maintain the end-to-end linear-time
property, LinearTurboFold uses ThreshKnot (49), which is a thresholded
version of ProbKnot (68) and considers only base pairs of probability ex-
ceeding a threshold θ (θ = 0.3 by default). We evaluate the performance
of ThreshKnot and the maximum expected accuracy (MEA) structures with
different hyperparameters (θ and γ). On a sampled RNAStrAlign training
set, ThreshKnot is closer to the upper right hand than MEA, which indicates
that ThreshKnot always has a higher sensitivity than MEA at a given positive
predictive value (PPV) (SI Appendix, Fig. S8).

Efficiency and Scalability Datasets. Four datasets are built and used for mea-
suring efficiency and scalability. To evaluate the efficiency and scalability of
LinearTurboFold with sequence length, we collected groups of homologous
RNA sequences with sequence length ranging from 200 to 29,903 nt with
a fixed group size 5. Sequences are sampled from the RNAStrAlign dataset
(27), the Comparative RNA Web (CRW) site (69), the Los Alamos HIV database
(https://www.hiv.lanl.gov/), and the SARS-related betacoronaviruses (SARS-
related) (53). RNAStrAlign, aggregated and released with TurboFold II, is an
RNA alignment and structure database. Sequences in RNAStrAlign are cat-
egorized into families, i.e., sets of homologs, and some families are further
split into subfamilies. Each subfamily or family includes a multiple-sequence
alignment and ground-truth structures for all the sequences. Twenty groups
of five homologs were randomly chosen from the small-subunit riboso-
mal RNA (Alphaproteobacteria subfamily), SRP RNA (Protozoan subfamily),
RNase P RNA (bacterial type A subfamily), and telomerase RNA families. For
longer sequences, we sampled five groups of 23S rRNA (of sequence length
ranging from 2,700 to 2,926 nt) from the CRW site, HIV-1 genetic sequences
(of sequence length ranging from 9,597 to 9,738 nt) from the Los Alamos HIV
database, and SARS-related sequences (of sequence length ranging from
29,484 to 29,903 nt). All the sequences in one group belong to the same
subfamily or subtype. We sampled five groups for each family and obtained
35 groups in total. Due to the runtime and memory limitations, we did not
run TurboFold II on SARS-CoV-2 groups (Fig. 2 A and B).

To assess the runtime and memory usage of LinearTurboFold with group
size, we fixed the sequence length around 1,500 nt and sampled five groups
of sequences from the small-subunit ribosomal RNA (Alphaproteobacteria
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subfamily) with group sizes 5, 10, 15, and 20, respectively (Fig. 2 C and D). We
used a Linux machine (CentOS 7.7.1908) with a 2.30-GHz Intel Xeon E5-2695
v3 CPU and 755 GB memory and gcc 4.8.5 for benchmarks.

We built a test set from the RNAStrAlign dataset to measure and compare
the performance between LinearTurboFold and other methods. Sixty groups
of input sequences consisting of five homologous sequences were randomly
selected from the small-subunit rRNA (Alphaproteobacteria subfamily), SRP
RNA (Protozoan subfamily), RNase P RNA (bacterial type A subfamily),
and telomerase RNA families from the RNAStrAlign dataset. We removed
sequences shorter than 1,200 nt for the small-subunit rRNA to filter out
subdomains and removed sequences that are shorter than 200 nt for SRP
RNA following the TurboFold II paper to filter out less reliable sequences.
We resampled the test set five times and show the average PPV, sensitivity,
and F1 scores over the five samples (Fig. 2 F and G).

An RNAStrAlign training set was built to compare accuracies between
MEA and ThreshKnot. Forty groups of three, five, and seven homologs were
randomly sampled from 5S ribosomal RNA (Eubacteria subfamily), group I
intron (IC1 subfamily), transfer-messenger RNA, and tRNA families from the
RNAStrAlign dataset. We chose θ = 0.1, 0.2, 0.3, 0.4, and 0.5 for ThreshKnot
and γ = 1, 1.5, 2, 2.5, 3, 3.5, 4, 8, and 16 for MEA. We reported the average
secondary structure prediction accuracies (PPV and sensitivity) across all
training families (SI Appendix, Fig. S8).

Benchmarks. The Sankoff algorithm (15) uses dynamic programming to
simultaneously fold and align two or more sequences, and it requires O(n3k)

time and O(n2k) space for k input sequences with the average length n. Both
LocARNA (16) and MXSCARNA (18) are Sankoff-style algorithms.

LocARNA costs O(n2(n2 + k2)) time and O(n2 + k2) space by restricting
the alignable regions. MXSCARNA progressively aligns multiple sequences
as an extension of the pairwise alignment algorithm SCARNA (70) with
improved score functions. SCARNA first aligns stem fragment candidates and
then removes the inconsistent matching in the postprocessing to generate
the sequence alignment. MXSCARNA reduces runtime to O(k3n2) and space
to O(k2n2) with a limited searching space of folding and alignment. Both
MXSCARNA and LocARNA uses precomputed base pair probabilities for
each sequence as structural input. All the benchmarks use the default
options and hyperparameters running on the RNAStrAlign test set. Turbo-
Fold II iterates three times and then predicts secondary structures by MEA
(γ = 1). LinearTurboFold also runs three iterations with default beam sizes

(balign = bfolding = 100) in LinearAlignment and LinearPartition and then
predicts structures with ThreshKnot (θ = 0.3).

Significance Test. We use a paired, two-tailed permutation test (71) to
measure the significant difference. Following the common practice, the
repetition number is 10,000, and the significance threshold α is 0.05.

SARS-CoV-2 Datasets. We used two large SARS-CoV-2 datasets. The first
dataset is used to draw a representative sample of most diverse SARS-CoV-
2 genomes. We downloaded all the genomes submitted to GISAID (52)
by 29 December 2020 (downloaded on 29 December 2020) and filtered
out low-quality genomes (with more than 5% unknown characters and
degenerate bases, shorter than 29,500 nt, or with framing error in the coding
region), and we also discarded genomes with more than 600 mutations com-
pared with the SARS-CoV-2 reference sequence (NC_0405512.2) (72). After
preprocessing, this dataset includes about 258,000 genomes. To identify a
representative group of samples with more variable mutations, we designed
a greedy algorithm to select 16 most diverse genomes found at least twice
in the 258,000 genomes. The general idea of the greedy algorithm is to
choose genomes one by one with the most new mutations compared with
the selected samples, which consists of only the reference sequence at the
beginning.

The second, larger, dataset is to evaluate the conservation of regions
with respect to more up-to-date variants. We did the same preprocessing
as the first dataset on all the genomes submitted to GISAID by 30 June
30 2021 (downloaded on 25 July 2021). This resulted in a dataset of ∼2
million genomes, which was used to evaluate conservation in Fig. 5 and
SI Appendix, Tables S4–S6.

Data Availability. Our code, data, and complete results for 25 SARS-CoV-2
and SARS-related genomes are released at GitHub, https://github.com/
LinearFold/LinearTurboFold, and our web server is at http://linearfold.org/
linearturbofold. Previously published data were used for this work (27, 53).
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