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Abstract: Zinc oxide-ternary heterostructure Mn3O4/ZnO/Eu2O3 nanocomposites were success-
fully prepared via waste curd as fuel by a facile one-pot combustion procedure. The fabricated
heterostructures were characterized utilizing XRD, UV–Visible, FT-IR, FE-SEM, HRTEM and EDX
analysis. The photocatalytic degradation efficacy of the synthesized ternary nanocomposite was
evaluated utilizing model organic pollutants of methylene blue (MB) and methyl orange (MO) in
water as examples of cationic dyes and anionic dyes, respectively, under natural solar irradiation.
The effect of various experimental factors, viz. the effect of a light source, catalyst dosage, irradiation
time, pH of dye solution and dye concentration on the photodegradation activity, was systematically
studied. The ternary Mn3O4/ZnO/Eu2O3 photocatalyst exhibited excellent MB and MO degradation
activity of 98% and 96%, respectively, at 150 min under natural sunlight irradiation. Experiments
further conclude that the fabricated nanocomposite exhibits pH-dependent photocatalytic efficacy,
and for best results, concentrations of dye and catalysts have to be maintained in a specific range.
The prepared photocatalysts are exemplary and could be employed for wastewater handling and
several ecological applications.

Keywords: ternary heterostructure; Mn3O4/ZnO/Eu2O3; photocatalyst; methylene blue; methyl
orange; dye degradation

1. Introduction

Pollution is the result of various industrial advancement activities of man. Among
the various types of pollutions, water pollution is one of the major concerns as its effects
are widely felt. Among the various pollutants such as heavy metals, nanoparticles, etc.,
synthetic dyes, particularly organic compound-based dyes used in the textile industry,
have a staggering impact on aquatic life as well as human beings. These are persistent
and have the capacity to absorb dissolved O2 from water bodies, which has a considerable
impact on aquatic life. These organic pollutants survive for a longer interval and possibly
become xenobiotic and may also lead to biomagnification [1,2]. Therefore, an untreated
fabric effluent is extremely dangerous to both earthly and aquatic organisms by negatively
influencing the naturalistic ecological system, which causes long-term health issues [3].

Various biological, chemical and physical experiments have been conducted for pho-
todecomposition of synthetic and organic dyes [4–11]. Recently, advanced oxidation
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methods have been the talk of the scientific community searching for cost-effective and
efficient degradation of dyes present in effluents. The metal oxide-based semiconductor
photocatalysts for decomposition of noxious dye molecules have drawn the interest of
researches as a potential process to resolve a tremendously increasing issue of water con-
tamination due to deleterious organic dyes. Moreover, due to the photosensitive nature of
the materials with semiconductor properties, the oxidative degradation of the polluting
dye can be performed in sunlight or UV light.

A variety of semiconductor-based photocatalysts, such as V2O5, TiO2, Fe2O3, ZnO,
CdS, etc., were notably employed for such photocatalytic removal of dye molecules [12].
Among these, zinc oxide (ZnO) has displayed prominent environmental remediation
and hence draws a lot of attention in the field of photocatalytic degradation [13]. ZnO
possesses several merits such as inexpensive, superb electronic structure, non-toxic, high
chemical stability, exemplary photo-sensitivity, biocompatibility and thermal stability.
These properties make ZnO an exemplary material for a photocatalyst. There are pros
and cons to using ZnO [14–16]. There is a large band gap and the photo-generated charge
carriers reunite at a faster rate and thus limit the use of ZnO. To improve the charge
separation and expand the response of ZnO towards visible light, the ZnO is doped with
both metals and non-metals [17–23]. It leads to the formation of heterojunctions with
the second semiconductor component. The formation of heterojunctions will provide
opportunities to increase the separation efficacy of photo-induced charge carriers. In
recent years, various ZnO-binary and ternary heterojunctions were synthesized including,
binary ZnO/ZnS heterostructures, ternary ZnO–ZnS–Gd2S3 heterostructures and ternary
ZnO/Cu2O/Si nanowire arrays [24–29].

Reasonably prepared ZnO-ternary heterojunctions offer considerable potential by
assisting the movement of electrons attributed to the existence of multicomponent photo-
systems and, therefore, are helpful in photocatalytic decomposition of deleterious dye
molecules. The heterojunction-based ZnO photosystems efficiently expand the lifespan
of photo-induced charge carriers and enhance the absorption of light [30–32]. Controlled
synthesis of ternary heterojunctions is the need of the hour. These kinds of systems were
synthesized by several chemical and physical procedures such as CVD, sol-gel, microwave-
assisted heating, coprecipitation, solvothermal and hydrothermal procedures. It is note-
worthy that these methods require sophisticated technology tools, a longer duration of
reaction and high-temperature conditions. Contrary to the above-mentioned methods,
the solution combustion procedure is cost-effective, less time-consuming, consumes less
energy and requires less effort to carry out the process. It is also easy to scale up the
process. Eco-friendly materials can be utilized as starting materials and can be efficiently
used in this process. These parameters, which are highly useful, persuaded exploring the
fabrication of ZnO ternary heterojunction utilizing other photo-active metal oxides and
lanthanides [33–35].

Herein, an attempt was made to prepare an environmentally friendly and cheap
ternary Mn3O4/ZnO/Eu2O3 nanocomposite via a simple single-step combustion proce-
dure to achieve higher photodegradation activity over two chronic dyes such as MB and
MO (Scheme 1). The as-prepared Mn3O4/ZnO/Eu2O3 nanocomposites were employed
as a photocatalyst for decomposing dyes in an aqueous solution at natural sunlight radi-
ation. The ternary system demonstrated an enhanced photocatalytic performance. The
photocatalytic results displayed that the Mn3O4/ZnO/Eu2O3 photocatalyst showed higher
photocatalytic performance for the decomposing of MB and MO dyes under natural sun-
light irradiation than a UV irradiation and dark, and 98% and 96% of MB and MO dyes
were decomposed within 150 min, respectively, under the optimized conditions. This
work offers new insights in designing multicomponent ZnO-based photocatalysts towards
environmental remediation.
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Scheme 1. (A) Schematic diagram of fabrication of Mn3O4/ZnO/Eu2O3 nanocomposites. (B) Scheme presenting the
photodegradation of MB dye.

2. Results and Discussion
2.1. Photocatalyst Characterization

Figure 1 illustrates the UV–Vis absorption spectra of synthesized Mn3O4/ZnO/Eu2O3
nanocomposite. The synthesized photocatalyst exhibits the absorption range from 800 nm
to 200 nm with maximal absorption at ~242 nm along with an absorption edge between
350 nm to 370 nm; this indicates that the synthesized material is photolytically active in the
UV region and visible region; furthermore, it also illustrates the crystalline nature of the
synthesized oxides [36]. The bandgap of the sample is about 3.20 eV, which is calculated
from the Kubelka–Munk equation. A wide range of absorption of the light assists in
efficient photocatalytic decomposition and improves performance. A comparative UV–Vis
spectra of ZnO nanoparticles is given in Figure S1.

Figure 1. UV–Vis absorption and bandgap spectrum of the fabricated Mn3O4/ZnO/Eu2O3 photocatalyst.

The FT-IR spectra were usually employed to identify the functional groups existing
on the prepared photocatalyst surface. The FT-IR spectra of Mn3O4/ZnO/Eu2O3 were
illustrated in Figure 2. The absorption band located at approximately 3442 cm−1 could
be owing to (O–H) groups stretching vibrations of adsorbed H2O molecules, and the
absorption peak at 1395 cm−1 belongs to (C–OH) stretching vibrations. Additionally, an
absorption peak at nearly 1063 cm−1 is assigned to (C=O) stretching vibrations of acetate.
The fingerprint peaks situated at 567 cm−1 and 621 cm−1 corresponding to (Zn–O) and (Zn–
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O–Zn) stretching vibrations, respectively. Finally, a peak situated at 872 cm−1 is associated
with the stretching vibrations of (Zn–O).

Figure 2. FT-IR spectra of the synthesized Mn3O4/ZnO/Eu2O3 photocatalyst.

Figure 3 demonstrates the XRD patterns of Mn3O4, ZnO, Eu2O3 and Mn3O4/ZnO/
Eu2O3 NPs. All diffraction reflections of Figure 3a are crystalline in nature and a mixture
from hexagonal and tetragonal structures of ZnO, Mn3O4 and Eu2O3. Figure 3b displayed
that all the fingerprint peaks could be accredited to the ZnO-hexagonal phase with space
group of P63mc as well as lattice parameters a = 3.249 Å and c = 5.205 Å, which is very
much in accordance with the recorded data (JCPDS file number 5–664). Besides, Figure 3c,d
illustrates the XRD pattern of Mn3O4 and Eu2O3, which are in tetragonal and hexagonal
structures with (JCPDS file number 8–17) with lattice parameters a = 5.76 Å and c = 9.44 Å
having the space group I41amd (no. 141) and (JCPDS file number 65–369) with lattice
parameter a = 3.27300 Å and c = 5.08300 having the space group P63/mmc (no. 194),
respectively.

Figure 3. XRD analysis of the synthesized Mn3O4/ZnO/Eu2O3 photocatalyst (a) and a comparative
ZnO (b), Eu2O3 (c), Mn3O4 (d), Mn2O3 (e) diffraction patterns.
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Morphological properties of the synthesized Mn3O4/ZnO/Eu2O3 photocatalyst are
studied by FE-SEM analysis, and the results were illustrated in Figure 4a–c. Low magnifica-
tion FE-SEM micrograph as displayed in Figure 4a,b reveals that the Mn3O4/ZnO/Eu2O3
is composed of clusters of flakes, in which all the flakes are interconnected and form a
net-like structure with large pores (Figure 4c). According to the formerly reported studies,
it can be said that the flakes could belong to the Mn3O4 NPs of the material, whilst the
clusters could be the Eu2O3 and ZnO NPs in the synthesized nanocomposite [37].

Figure 4. FE-SEM micrographs of the synthesized Mn3O4/ZnO/Eu2O3 nanocomposite. (a) Magnification ×2800 (b)
Magnification ×6000 and (c) Magnification ×12,000.

The elemental analyses of the fabricated Mn3O4/ZnO/Eu2O3 nanocomposite were
scrutinized utilizing EDX analysis, as demonstrated in Figure 5, which displays that the
synthesized material contains the expected elements, and are well-dispersed throughout
the composition, which could be playing a synergetic role in enhancing the photocatalytic
activity. Additionally, the energy-dispersive spectra of Mn3O4/ZnO/Eu2O3 nanocomposite
indicate the existence of all the desired elements such as Mn, Eu, Zn and O as well as
the percentage of elemental compositions, which is in accordance with the stoichiometric
amounts used in the synthesis of the Mn3O4/ZnO/Eu2O3 nanocomposite.

Figure 5. EDX spectrum of the synthesized Mn3O4/ZnO/Eu2O3 nanocomposite.

The HRTEM analysis for the examination of the size and morphology of the prepared
Mn3O4/ZnO/Eu2O3 nanocomposite at various magnifications is displayed in Figure 6.
Figure 6a–c shows the TEM images with varying magnifications, which demonstrate that
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the spherical morphology particles are uniformly dispersed throughout the material as well
as some aggregations can be noticed. The particles sizes are in the range of 20–60 nm. The
SAED pattern (Figure 6d) shows the polycrystalline form of the sample, and the reflection
planes obtained are in high accordance with the results concluded from the XRD analysis.

Figure 6. HRTEM images of the prepared Mn3O4/ZnO/Eu2O3 nanocomposite. (a) 50 nm, (b) 20 nm
(c) 2 nm and (d) SAED Pattern.

2.2. Photocatalytic Efficiency Studies of MB and MO Photodegradation Using
Mn3O4/ZnO/Eu2O3 Heterostructures

The strength of semiconductor photocatalysis strongly depends on the surface area,
particle size, bandgap, morphology, crystalline nature and quantity of hydroxyl radical
ions on the photocatalyst surface [38]. The formation of electrons and holes on the semicon-
ductor surface by the light absorption and the released holes and electrons will participate
in the reaction, or they recombine. If the exterior surface is provided for the charge carriers,
they will relocate where the electrons are caught by semiconductors while the holes are
trapped by hydroxyl radical ions and form OH• and HO2

•. The ternary heterostructure pro-
vided extra surface for the relocation of charge carriers, and therefore, the produced OH•

radicals ions are used efficiently to photocatalytic decompose MB and MO dye molecules.
The hydroxyl radical ions (OH•) are non-stable and are a highly active chemical species

that have a significant impact on the photocatalytic decomposition of dyes. To recognize
whether the OH• radicals are being produced via Mn3O4/ZnO/Eu2O3 nanocomposite,
coumarin was selected as a compound model, which is a facile and sensitive process for
detection of OH•. In the existence of OH• radicals produced via the Mn3O4/ZnO/Eu2O3
photocatalyst, coumarin transforms to 7-hydroxycoumarin, a luminous substance that
shows a photoluminescent peak at a wavelength of 455 nm. In the present work, 0.1 g of
the Mn3O4/ZnO/Eu2O3 catalyst was added to the coumarin solution (50 mL–0.001 M)
irradiated by sunlight.

At a period of 10 min, 2 mL of the sample was injected in a photoluminescence
instrument, which displayed the presence of a photoluminescent peak at 455 nm (Figure 7),
indicating the generation of OH• radicals, a pivotal chemical species for the decomposition
of deleterious dyes [15]. Therefore, it can be concluded that photodegradation of MB and
MO dye occurs by a free radical mechanism over Mn3O4/ZnO/Eu2O3 photocatalyst. A
possible mechanism of photocatalytic degradation is described in Scheme 2.
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Figure 7. Photoluminescent spectra indicating generation of •OH radicals by Mn3O4/ZnO/Eu2O3

photocatalyst.

Scheme 2. A plausible mechanism of photocatalytic dye degradation.

The attained results from the UV–Vis spectra revealed that the synthesized nanocom-
posite is active in the UV–Vis range and the visible range. In addition, the calculated
bandgap was found to be Eg = 3.79 eV. To investigate the photocatalytic efficacy of the
synthesized Mn3O4/ZnO/Eu2O3 photocatalyst, several reaction variables including dye
concentration, light source, catalyst amount and pH value were thoroughly studied, and
MB and MO dyes were taken as the standard pollutants for photocatalytic removal in the
present work.

In the present work, 100 mL of a solution of various concentrations of dye in the
range of (5–20 ppm) are taken for photodegradation reactions. The quantity of fabricated
Mn3O4/ZnO/Eu2O3 photocatalyst is also altered from 5 to 20 mg. The aqueous solution is
mixed with the photocatalyst and varied for 40 min in a dark environment. The kinetics of
the photocatalytic removal of dyes has been investigated by periodically taking 3 mL from
the solution at times of 30 min; subsequently, the sample was subjected to centrifugation.
From the results obtained from UV–Vis spectroscopy, the (Ci) initial and (Cf) final dye
concentrations are confirmed, and the calculation for the percentage of dye degradation
was determined using Equation (1):

% Degradation =
(Ci − Cf)

Ci
× 100 (1)
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2.2.1. Impact of Light Source on Dye Photodegradation

The synthesized nanocomposite is photocatalytic active in the UV range as well as in
the visible range as assured from the UV–Vis spectrum. The initial studies were conducted
to emphasize that the light source can exhibit the highest degradation efficacy of the fabri-
cated photocatalyst by keeping identical concentrations of dye 5 ppm, catalyst 15 mg and
pH 7 for both MB and MO dyes. Therefore, the photocatalytic removal studies of MB and
MO dyes over Mn3O4/ZnO/Eu2O3 NPs have been performed in three various conditions,
i.e., under natural solar irradiation, UV light and dark. The obtained data illustrated
that the synthesized photocatalyst is active in visible light as well as UV irradiation, as
confirmed by the obtained UV–Vis spectrum. As expected, when the photocatalytic test
was performed in the dark, the photodegradation of MB and MO dyes could be neglected.
Additionally, in the case of the photocatalytic experiments conducted in the UV and sun-
light irradiation, the attained results reveal that the photodegradation of MB in the sunlight
is considerably higher than the decomposition observed in the UV light. In the case of solar
irradiation, the synthesized Mn3O4/ZnO/Eu2O3 photocatalyst effectively degrades 96% of
the MB, which is much more than the degradation obtained under UV irradiation, which
yielded a 72% degradation under the identical irradiation time (150 min) as illustrated
in Figure 8a, whereas MO dye shows a much lower photodegradation efficiency of 71%
within 150 min under natural sunlight irradiation compared to MB dye (Figure 8b). From
the aforementioned results, it can be said that the decomposition efficacy of MB and MO
under solar light is better than under UV irradiation, which could be due to the presence
of both UV and visible lights in a solar irradiation under solar light is better than under
UV irradiation, which could be due to the presence of both UV and visible lights in a
solar irradiation [39]. As a result, it could be concluded that the Mn3O4/ZnO/Eu2O3
photocatalyst is efficient under sunlight irradiation, and further optimization studies are
conducted at natural solar irradiation.

Figure 8. Influence of light source on photodecomposition of (a) MB and (b) MO.

2.2.2. Influence of Dye Concentration on Dye Photodegradation

The effect of initial concentrations of MB and MO dyes on the photodegradation
efficiency of the studied dyes was also investigated by varying the concentration of dye
from 5 to 20 ppm under visible light while keeping the photocatalyst dose of 15 mg
unchanged at pH 7. The photocatalytic data were graphically illustrated in Figure 9. For
MB dye, the photocatalytic data reveal that the removal efficacy of the Mn3O4/ZnO/Eu2O3
photocatalyst is inversely proportional to the MB concentration under identical conditions,
i.e., the highest degradation was detected at the lowest dye concentration (5 ppm). By
raising the MB concentration from 5 to 20 ppm, the photodegradation efficiency of MB
declined from 97% to 61%, as displayed in Figure 9a. The same trend occurs in the case of
MO dye, in which the photodegradation efficiency of MO reduced from 96% to 36% when
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the concentration of MO dye raised from 5 to 20 ppm (Figure 9b). This could be owing
to the fact that the photocatalytically active sites may be covered with dyes and decrease
light absorption on the photocatalyst surface at higher dye concentrations, which leads to
reducing the formation of hydroxyl radicals, therefore decreasing degradation efficiency.
In contrast, photons readily reach the photocatalyst surface at lower dye concentrations,
and the generation of hydroxyl radical ions will be easier [40]. Hence, it is necessary to
increase the photocatalyst amount as the concentration of dyes increases.

Figure 9. Influence of initial concentration on decomposition of (a) MB and (b) MO.

2.2.3. Impact of Photocatalyst Dose on Dye Degradation

Furthermore, the optimum photocatalyst dose for the photodegradation of MB and
MO has also been assessed by altering the catalyst amount from 5 mg to 20 mg at solar
light with a constant dye concentration of 5 ppm at pH 7, and the obtained results were
graphically presented in Figure 10. Figure 10a displays that the photodegradation of MB
dye is strongly affected by the catalyst quantity. We found a 68% decomposition of MB
when 5 mg of catalyst was used. However, when the catalyst dosage was raised to 10 mg
and 15 mg, 75% and 97% degradation of MB were obtained, respectively. Nevertheless, a
further increase in the photocatalyst quantity to 20 mg shows a lower removal efficacy of
the catalyst, and a 90% degradation of MB was obtained. For MO, the photodecomposition
efficiency of MO was also strongly influenced by the photocatalyst dose. It is distinct
that by raising the photocatalyst amount from 5 mg to 20 mg, degradation of MO dye
was enhanced from 27% to 71% under identical circumstances (Figure 10b). This was
presumably ascribed to the availability of photocatalytic active sites that can produce
more radicals by adding more amounts of Mn3O4/ZnO/Eu2O3 catalyst; however, further
increases of the catalyst dose increases the opacity of the suspension, which in turn leads
to the blocking of light penetration [40]. As displayed in Figure 10a,b, MB dye exhibits the
maximal photodegradation efficacy at a catalyst quantity of 15 mg, whereas the maximal
degradation of MO dye is at 20 mg. However, the difference in catalyst dose is insignificant
for MB and MO dyes. Accordingly, a photocatalyst dose of 15 mg has been chosen in the
next optimization experiments.
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Figure 10. Influence of catalyst quantity on photodecomposition of (a) MB and (b) MO.

2.2.4. Impact of Solution pH on Dye Degradation

As implied by the previously reported studies, the photocatalytic performance of the
photocatalyst is usually related to its ability for the generation of OH• radical ions, which
enhances the photocatalytic degradation by many folds in alkaline solutions. Figure 11a,b
illustrates the impact of pH value on the decomposition of MB and MO dyes over Mn3O4/
ZnO/Eu2O3 photocatalyst. The impact of pH value on the removal of MB and MO dyes
was also examined at different pH values from 4 to 10 with keeping other factors unchanged
(i.e., 15 mg photocatalyst dose, 5 ppm dye concentration and natural sunlight). As expected,
the lowest degradation efficiency was obtained at the lowest pH value (i.e., pH 4), with
47% and 31% of the MB and MO being degraded, respectively, at an irradiation time of
150 min. However, when the pH value is increased, the Mn3O4/ZnO/Eu2O3 photocatalyst
exhibited greater degradation efficacy, and almost 98% decomposition of MB was achieved
at pH 7 and pH 10 (Figure 11a). As expected, the highest MO dye degradation efficacy
of 80% has been obtained at a higher pH value (pH 10) under identical conditions, as
illustrated in Figure 11b. This is probably due to the higher rate of OH• radicals generation
and owing to the cumulating of OH• radical ions on the photocatalyst surface at high pH
values [41]. Distinctly, the maximum photodegradation of MB (cationic dye) has been
achieved in basic media, whereas in the case of MO (anionic dye), it is slightly lower. At
pH 10, MB degradation efficiency is 98% upon 150 min irradiation and only 80% for MO
under identical circumstances. Accordingly, the pH impact on MB removal is larger than
that on MO dye.

Figure 11. Impact of pH value on the photocatalytic degradation of (a) MB and (b) MO.

Kinetic models of pseudo first-order and pseudo second-order have been studied for
photocatalyst Mn3O4/ZnO/Eu2O3 nanoparticles. Studies revealed that the photocatalytic
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decomposition of the two studied dyes takes place via the pseudo first-order reaction,
which is mentioned by Equation (2)

ln(Ci/Cf) = kt (2)

where Cf and Ci are the final concentration at time t and initial concentration, correspond-
ingly, and k is the first order rate constant. MB degradation rate constants of 0.0042,
0.0215 and 0.0238 min−1 were achieved for the pH 4, pH 7 and pH 10, respectively
(Figure 12a), whereas the MO degradation rate constants of 0.0023 min−1, 0.0081 min−1

and 0.01075 min−1 were obtained for pH = 4, 7 and 10, respectively (Figure 12b).

Figure 12. Psuedo first-order kinetics for photocatalytic removal of (a) MB and (b) MO over
Mn3O4/ZnO/Eu2O3 photocatalyst.

A comparison of superior photocatalytic removal efficacy of Mn3O4/ZnO/Eu2O3
photocatalyst for photodegradation of MB and MO dyes with already-reported photocat-
alytic systems containing ZnO nanoparticles, as tabulated in Table 1. Notably, the current
Mn3O4/ZnO/Eu2O3 photocatalyst exhibited outstanding photodecomposition efficiency.

Table 1. Comparative studies of Mn3O4/ZnO/Eu2O3 for degradation of MB and MO dyes with several formerly reported
analogous photocatalysts.

Degradation of MB Dye

Catalyst Dye
Concentration Irradiation Source Photocatalyst

Dose Time (min) Degradation
(%) Ref.

Mn3O4/ZnO/Eu2O3 5 ppm Sunlight 15 mg 150 98 Herein
S-ZnO NPs 20 µM Sunlight 30 mg 45 61.5 [42]
N/La-ZnO 15 ppm Sunlight 50 mg 60 97 [43]
ZnO-SiO2 9 ppm Sunlight 10 mg 90 97.8 [44]
ZnO NWs 10 ppm Sunlight 100 mg/L 4320 100 [45]

Ce-Ag-ZnO/Fe3O4 10 ppm UV lamp 15 W 30 mg 100 99 [46]
WO3/ZnO-rGO 5 ppm Vis. 200 W 10 mg 90 94.1 [47]

Ag-ZnO/GO 15 ppm Xe lamp 20 W 20 mg 180 85 [48]
TiO2/ZnO/rGO 0.3 ppm Xe lamp 300 W 0.1 g/L 120 92 [49]

Mn-ZnO 10 ppm UV Lamp 24 mg 90 60 [50]
1.5%Nd-Gd-ZnO 20 mg/L Vis. 300 W 100 mg/L 120 93 [51]

rGO-ZnO 5 × 10−4 mol/L Vis. light 100 mg/L 120 90 [52]
ZnO-CdO 3 × 10−5 mol/L Xe lamp 250 W - 360 97.8 [53]
ZnO NPs 15 ppm Hg lamp 10 W 100 mg 120 90 [54]
Ag/ZnO 2 × 10−5 M Xe lamp 100 W 100 mg 120 76 [55]
ZnO/AC 2 × 10−5 M Hg lamp 30 W 25 mg 45 92.2 [56]
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Table 1. Cont.

Degradation of MO Dye

Catalyst Dye
Concentration Irradiation Source Photocatalyst

Dose Time (min) Degradation
(%) Ref.

Mn3O4/ZnO/Eu2O3 5 ppm Sunlight 15 mg 150 96 Herein
ZnO/biochar 25 ppm UV Lamp 125 W 1 g/L 120 90.8 [57]

Gd-doped ZnO 16 ppm UV Lamp 160 W 100 mg 90 85.3 [58]
ZnO-CuO - UV Lamp 30 mg 120 92.18 [59]
Ag-ZnO 10 ppm Sunlight 120 mg 50 92.9 [60]

ZnO/NiAl-LDH 100 ppm Hg lamp 100 W 100 mg 540 100 [61]
ZnONR-RGO 10 ppm Hg lamp 250 W 45 mg 90 83 [62]
Ag-ZnONR 0.05 mM UV Lamp 10 W 10 mg 120 88 [63]
ZnONR-Cu 0.03 mM UV Lamp 10 W 5 mg 180 57.5 [64]

Mg-doped ZnO 20 ppm Hg lamp 20 W 100 mg 120 73 [65]
Cu-doped ZnO 2 × 10−6 M UV Lamp 10 mg 160 60 [66]
Fe3O4/ZnO-GO 1 × 10−5 M Xe lamp 300 W 20 mg 150 92.8 [67]
ZSM-5/ZnO/Ag 5 ppm UV Lamp 15 W 70 mg 180 90 [68]

Porous ZnO spheres 20 ppm UV Lamp 0.2 g 120 96.3 [69]
Fe3O4/ZnO/Si3N4 50 ppm Xe lamp 20 mg 90 96 [70]

Cu-ZnO NPs 20 ppm UV Lamp 15 W 0.1 g 240 88 [71]

3. Experimental
3.1. Materials

With no further purification, raw materials of analytical grades such as (Zn(NO3)2·6H2O
(Sigma-Aldrich, St. Louis, MO, USA), (Mn(CH3CO2)2·4H2O (Sigma-Aldrich, St. Louis, MO,
USA) and (Eu(NO3)3·5H2O (Sigma-Aldrich, St. Louis, MO, USA) are employed. To make a
model wastewater sample containing MB and MO (SD fine chemicals, India), dye solution is
prepared with DW. Glasswares of BOROSIL make are utilized throughout this study.

3.2. Preparation of Mn3O4/ZnO/Eu2O3 Photocatalyst

Stoichiometrically calculated amounts of Mn(CH3CO2)2·4H2O, Zn(NO3)2·6H2O and
Eu(NO3)3·5H2O were dissolved in 10 mL of DW and 6 mL perished curd with vigorous
stirring for 20 min. Thereafter, the resultant mixture is kept in a muffle furnace at 400 ◦C.
After 10 min, a dark green powder is obtained and annealed at an identical temperature
for 3 h.

3.3. Photocatalyst Characterization

The fabricated materials have been characterized by employing various common
analyses, and all specifics about instruments were included in supporting data.

4. Conclusions

In summary, we have reported a facile fabrication of ternary heterojunction Mn3O4/
ZnO/Eu2O3 nanocomposite via a facile one-pot combustion method. The characterization
of the fabricated photocatalysts disclosed a crystalline nature and nano-size Mn3O4/ZnO/
Eu2O3 nanocomposite. The fabricated sample has been examined as a photocatalyst
for the photodegradation of MB and MO dyes and noxious industrial effluents. The
Mn3O4/ZnO/Eu2O3 nanocomposite was tested for photodegradation of MB and MO dyes
under natural solar irradiation; we have found that the photocatalyst is highly effective,
and the photodegradation efficiency is affected by the changes in light source, catalyst
amount, irradiation time, dye concentration and pH of the solution and the kinetics of
the photocatalyst revealed 98% and 96% degradation of MB and MO dyes, respectively,
in 150 min under the optimized reaction conditions. Therefore, further studies into the
kinetics and fine-tuning of the economic and eco-friendly catalyst are in progress and shall
be reported in the future. Lastly, the results disclosed that the Mn3O4/ZnO/Eu2O3 has
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been employed as an efficacious photocatalyst for the photodegradation of MB and MO
under natural sunlight irradiation without any harmful impact on the environment.

Supplementary Materials: The following are available online. Figure S1. UV–Vis absorption of the
fabricated ZnO nanoparticles.
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