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Hypoxia is characterized as insufficient oxygen delivery to tissues and cells in the body

and is prevalent in many human physiology processes and diseases. Thus, it is an

attractive state to experimentally study to understand its inner mechanisms as well as

to develop and test therapies against pathological conditions related to hypoxia. Animal

models in vivo fail to recapitulate some of the key hallmarks of human physiology, which

leads to human cell cultures; however, they are prone to bias, namely when pericellular

oxygen concentration (partial pressure) does not respect oxygen dynamics in vivo. A

search of the current literature on the topic revealed this was the case for many original

studies pertaining to experimental models of hypoxia in vitro. Therefore, in this review, we

present evidence mandating for the close control of oxygen levels in cell culture models

of hypoxia. First, we discuss the basic physical laws required for understanding the

oxygen dynamics in vitro, most notably the limited diffusion through a liquid medium

that hampers the oxygenation of cells in conventional cultures. We then summarize

up-to-date knowledge of techniques that help standardize the culture environment in

a replicable fashion by increasing oxygen delivery to the cells and measuring pericellular

levels. We also discuss how these tools may be applied to model both constant and

intermittent hypoxia in a physiologically relevant manner, considering known values of

partial pressure of tissue normoxia and hypoxia in vivo, compared to conventional

cultures incubated at rigid oxygen pressure. Attention is given to the potential influence of

three-dimensional tissue cultures and hypercapniamanagement on thesemodels. Finally,

we discuss the implications of these concepts for cell cultures, which try to emulate tissue

normoxia, and conclude that the maintenance of precise oxygen levels is important in

any cell culture setting.

Keywords: hypoxia, cell culture, animal model, in vitro model, pericellular oxygen, oxygen concentration, partial

pressure, normoxia

INTRODUCTION

Oxygen first began to significantly accumulate in the Earth’s atmosphere with the advent of
photosynthesis, a process enabling the ancestors of cyanobacteria to obtain hydrogen from water
and combine it with atmospheric CO2 to produce hydrocarbon molecules (1, 2). Subsequently,
most of contemporary life was presumably exterminated, having no line of defense against reactive
oxygen species, in a process that has sometimes been labeled as the “oxygen holocaust.” However,
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conditions were ideal for the evolution of oxygen-consuming
organisms who could take advantage of more energy-efficient
aerobic metabolism. Oxygen thus became a necessary molecule
that enabled the life of eukaryotic organisms including humans,
because they acquire energy by oxidative phosphorylation where
oxygen serves as the ultimate acceptor of electrons (3).

The universal oxygen demand in complex organisms created
the requirement for an effective system that distributed oxygen
into the entire body and satisfied the metabolic requirements of
all tissues (3). Diffusion in the lungs and peripheral tissues is
the key process in the transport of oxygen to the mitochondria;
therefore, concentration gradients have developed across the
human body leading to variable tissue O2 levels in different
organs (4). Importantly, anaerobic metabolism has not been
entirely forgotten by eukaryotic cells. In fact, some cells, such
as erythrocytes, rely completely on anaerobic phosphorylation,
whereas others resort to such means during diminished oxygen
supply (i.e., hypoxia), for example, during intensive exercise
(5, 6). Similarly, a systemic response of the entire body to high
altitude is triggered by hypoxia (7, 8). Hypoxia is an integral
part of the pathophysiology of many diseases, including chronic
obstructive pulmonary disease (9), heart failure (10, 11), sleep
apnea syndrome (12), anemia (13), and cancer, and its basic
research can reveal mechanisms that may 1 day be exploited in
therapy development (14).

In vivo models of hypoxia face considerable shortcomings
(15); therefore, cell cultures represent a viable option for this line
of research. However, the importance of the precise modulation
and definition of hypoxia is often not reflected in the design of
in vitro experiments, due to historical reasons (16) and technical
limitations (17–19). However, with the advancements in various
scientific fields, including cell biology and material science, the
requirement for adequate control of pericellular oxygen levels in
the experimental setup increases in importance, particularly as
technological solutions become more readily available.

In this review, we aimed to summarize the current
approaches in experimental hypoxia research with special
emphasis on cell culture models. The topics covered include
the physical limitation of gas diffusion in liquids, methods
of inducing sustained and intermittent pericellular hypoxia,
and measurements of dissolved oxygen. We also discuss the
physiological relevance of mimicking the oxygen dynamics of
certain diseases in cell cultures as closely as possible and the
implications of the mentioned principles on in vitro models
mimicking tissue normoxia.

IN VIVO MODELS OF HYPOXIA

Humans as well as animals can be exposed to hypobaric (HH)
or normobaric hypoxia (NH) in order to study wide variety of
diseases, including pulmonary hypertension (20), reoxygenation
injury (21), pre-eclampsia (22), hypoxic insult of the brain
(23), and diabetic retinopathy (24). While HH, which physically
resembles a high-altitude environment, is induced by decreasing
atmospheric pressure under 101 325 Pa (1 atm, 760mm hg)
typically in a tightly sealed hypobaric chamber (25), NH exposure

is based on the reduction of the partial pressure of oxygen (pO2)
at normal atmospheric pressure, which typically occurs through
the administration of nitrogen to a face mask (26), hypoxic tent
(27), or environmental chamber (22, 23).

It remains debatable as to whether the two hypoxic states
are interchangeable under experimental settings (8). Several
differences have been observed by multiple studies, such as
in minute ventilation, tidal volume, peripheral O2 saturation,
arterial CO2 pressure, and exhaled NO levels, which appear to be
lower and acute mountain sickness symptoms more pronounced
in HH However, these symptoms as well as minute ventilation
only differ during the acute phase of hypoxia, possibly due to the
initial difference between alveolar and ambient N2 tension inHH,
whereas long-term effects of both states are comparable. Other
parameters such as arterial pressure of O2 and CO2 have been
found to be either similar or variable depending on the study
(7, 8, 28). Biochemical markers of hypoxia have been measured
and found to be equivalent during exercise in NH and HH,
with both conditions being different from exercise in a normoxic
environment (29).

CELL CULTURES

Ethical problems as formulated by the “3R’s” rule, cost-related
issues, and limited reproducibility in humans remain the most
apparent hurdles of animal model applications (15). Human
cell cultures represent a compelling alternative in important
areas of biomedical research, such as drug discovery (30) or
disease modeling (31), largely due to important advancements
in pluripotent stem cell applications over the past two decades
(32, 33).

Recent advancements in tissue engineering have enabled
researchers to perform in vitro experiments not only at
the cellular and molecular levels, but also to explore inter-
cell and inter-organ interactions using three-dimensional (3D)
cell models and complex organoids (34, 35). Nevertheless,
significant variability in laboratory-to-laboratory protocols and
procedures hamper reproducibility and impose challenges for
interpretation and generalizability of results. Despite numerous
factors, including cell confluency, composition of culture media,
and frequency of media exchange typically reported in method
descriptions, a fundamental factor for cell life—pericellular
oxygen level—remains largely overlooked. An accumulating
body of literature suggests that oxygen levels in standard
cell culture experiments not only significantly deviate from a
physiological range, but also shows that pericellular oxygen levels
vary dramatically under different experimental settings, cell types
investigated, cell confluency, and volume and timing of media
exchange (17, 18, 36). The key determinants of pericellular
oxygen levels and possible means of their control in cell cultures
are summarized in the following text.

HYPOXIC CELL CULTURE MODELS

Oxygen Levels in Cell Cultures
In a standard cell culture experiment, cells are kept in incubators
that maintain the following stable conditions: temperature of
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37◦C, atmospheric air (21% volume fraction of O2) enriched
by 5% CO2, and humidity provided by spontaneous water
evaporation (37). The volume fraction of oxygen in the incubator
atmosphere reaches 18.6% (132.5 mmHg) because of the addition
of partial pressures of CO2 and water vapor, as described
by Dalton’s and Amagat’s laws (38). Thus, 18.6% O2 and its
corresponding partial pressure in the incubator is what many
would consider as a conventional, standard, or “normoxic”
setup (36). Two important limitations of such a paradigm must
be addressed. First, pericellular oxygen levels are dramatically
different from oxygen levels in the incubator atmosphere, as
discussed below. Second, a physiological range of oxygen levels
observed in tissues in vivo (tissue normoxia or physioxia) is
profoundly variable and significantly lower, as discussed in
section Hypoxia Mimetics. In fact, physiological alveolar partial
pressure falls below that of the incubator oxygen level, following
the alveolar gas equation (39).

The first concerns about the possibility of limited pericellular
pO2 were voiced over a century ago (40), with the first
confirmations of pericellular hypoxia reported during the early
years of conventional cell culture experiments (17, 41). Metzen
et al. (17) showed that under common normoxic conditions
as described above, adherent cells may suffer from pericellular
hypoxia or even anoxia. When measuring pericellular O2 levels
24 h after media exchange, it was found that the cell lines
with a high oxygen demand (e.g., human hepatoma Hep3B and
HepG2, and renal epithelial LLC-PK1 and LLC-MK2 cell lines)
eventually reached an anoxic state. These authors developed
mathematical model based on Fick’s law calculating expected
pericellular O2 levels, which were subsequently verified by real-
life measurements.

It has since been acknowledged that in conventional
cultureware, the only way for oxygen to reach the adherent
cells is by diffusion through the water-based medium overlay.
Moreover, if the oxygen consumption rate of cells that exhibit
higher metabolic activity exceeds the speed of oxygen delivery
(determined by the oxygen solubility coefficient, diffusion
constant, medium overlay height, surface area, and partial
pressure of oxygen above the medium), the pericellular oxygen
pressure eventually equilibrates at a hypoxic or anoxic value after
2 h following medium exchange (17). However, oscillations of
pericellular O2 tensions around the equilibrated state are also
known to occur. These periodical changes likely occur because
of a decrease in the respiratory rate following the depletion
of oxygen around the cells and, as its availability begins to
increase again, oxygen consumption increases as well, exhausting
its supply and completing the cycle. It has also been proposed
that these oscillations are what ultimately drive the molecular
response to hypoxia (36).

Cell surface area and pO2 are characterized by the dimensions
of the culture dish and the 5% CO2 incubator atmosphere.
Thus, the medium overlay height represents the main variable
that limits oxygen diffusion (17). The medium height and cell
oxygen consumption rate both determine pericellular oxygen
concentration, and thus significantly affect contemporary cell
culture research owing to the lack of standardization (reporting)
of media amount supplied to cells and the attention given to the

differences in oxygen demand of different cell lines under various
experimental conditions (17, 36).

An existing discrepancy in current terminology must be
discussed here. Namely, there is a lack of consensus in the usage
of terms and units when it comes to measurements of pericellular
O2 levels. Many researchers describe the pericellular oxygen
availability as concentration given in percent (18, 19, 42–48).
However, this is not accurate from the physical point of view
as these studies are actually referring to the volume fraction of
oxygen in the ambient air that corresponds to the actual molar
concentration of oxygen in an aqueous solution—the medium.
Based on Henry’s and Amagat’s laws, the molar concentration
is determined by the volume fraction of oxygen in the air and
the atmospheric pressure, which can be summarized as the pO2

(38, 49, 50). Therefore, should the atmospheric pressure decrease
with an increasing altitude, the actual amount of oxygen in the
cell culture medium would also change accordingly.

Such disparities affect not only standard cell culture where
no attention is given to the pericellular pO2, but they also make
it difficult to unify the results of published material on in vitro
hypoxia measurements. We could hypothesize that authors using
the term oxygen concentration refer to atmospheric pressure at
sea level; however, as they usually do not elaborate sufficiently
enough on how they derived their concentration values from
pericellular pO2 measurements, we cannot be certain of this.
Therefore, we are unable to precisely calculate pO2 and/or molar
concentrations of these experiments and directly compare them
to the units used in other studies.

Therefore, we propose that this terminology should not be
used in future to avoid further confusion. Instead, the values of
molar concentration of oxygen (51) or oxygen partial pressure,
which can easily be converted to one another under constant
temperature following the ideal gas equation (36) or Henry’s law
(49, 50), should be used henceforth to promote reproducibility
and intelligibility of the results. In fact, O2 partial pressure is also
a non-sensical term to use when describing the concentration
of a gas in a liquid, which only corresponds to partial pressure
of a gaseous phase (49, 50). However, it has become the most
widespread way of characterizing oxygenation in both medical
physiology and clinical practice because the majority of oxygen
in the blood is not dissolved, but is transported while bound to
hemoglobin (50).

Pericellular Oxygen Measurements
Before moving on to removing the issue represented by limited
oxygen supply to cells in vitro, one must first be able to
characterize the oxygenation of the cells properly. One way
of doing this is using a polarographic O2-sensitive electrode,
named the Clark electrode after its discoverer (52). Based
on the principle of electrolytical reduction of oxygen, this
electrode allows for the measurement of oxygen levels at a
precise location in a pericellular area. However, manipulating
the electrode can also disrupt the cells/samples. Due to its
construction, it does not enable for simultaneous detection of
O2 levels in all dimensions, which prevents it from measuring
the concentration gradients in 3D cultures or inhomogeneities
in the microenvironment of the cells (18). Furthermore, the
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FIGURE 1 | Schematic drawing of pericellular pO2 measurement. (A) Clark electrode immersed in media, enabling measurement of pO2 at any depth including

pericellular area of adherent culture. Adapted with permission according to (18). (B) Optical pO2 sensor based on quenching of fluorescence by oxygen may be

positioned as a thin film on the bottom of cultureware surface. To perform measurement, a fluorescent excitation source is placed below the cultureware. Strong

emission signal is registered from areas with low pO2, while oxygen-mediated quenching results in limited emission from oxygen-rich regions. Adapted with

permission according to (53).

electrode itself has non-negligible O2 consumption, which must
be considered during prolonged experiments, as it requires re-
calibration or stirring of the medium (Figure 1A) (4, 17, 52). To
overcome these limitations, alternative and complementary
methods have been developed to monitor pericellular
O2 levels.

Certain tissue dyes such as Hypoxyprobe (pimonidazole
hydrochloride) coupled with monoclonal antibodies are
provided only with semi-quantitative assessments of hypoxia
(4). Moreover, Hypoxyprobe is generally designed for use in
patients and animal models to observe hypoxia of an explanted
tissue (54, 55), although sporadic use in vitro has also been
reported (56). Nevertheless, there is another staining method
that yields exact values of pO2, which is based on oxygen-
mediated quenching of the fluorescent signal that is inversely
proportionate to pO2 (57), the intensity of which is quantifiable
by a microscope (58) or commercially available devices (59).
This principle can also be implemented using dishes with
pre-calibrated oxygen sensors positioned at the bottom of
each well (Figure 1B) (46, 53). Custom-made amperometric
electrodes, which utilize ion current quantification to assess
analyte concentration, may also be integrated to the cell culture
system in a similar fashion (47).

Sustained Hypoxia—Diffusion Challenge
Motivated by the ability to monitor pericellular pO2, as
demonstrated above, investigators developed multiple
approaches that enabled O2 control at the cell level throughout
experiments. The most straightforward option was the empirical
adjustment of air composition in the incubator based on the
measurement of oxygen tension around the cells, which has
been used repeatedly owing to its technical ease (44, 48, 60, 61).
However, it has been demonstrated that in metabolically active
cells (17), pericellular O2 reaches extremely low levels owing

to a mismatch between cellular oxygen consumption and
the amount of O2 delivery by diffusion through the culture
media. Early attempts to tackle the limitation of diffusion were
rather simple and aimed to drastically reduce the height of
the medium above the cells. Unfortunately, the amount of
medium is crucial for keeping the cells well-provisioned with
nutrients and for maintaining a stable environment. Hence, this
method is suboptimal for prolonged cell culture. Additionally,
the meniscus of the medium forming within the culture
well-causes a significant difference in the diffusion distance
across the culture surface, which requires maintaining the cells
in the middle of the well (62), which is difficult to achieve
when using cell lines with significant proliferative capacity.
Alternatively, researchers used stirring or shaking of the culture
vessel as a simple method to increase oxygen diffusion (36),
although this was at the cost of inducing mechanical stress to the
cells (63).

To overcome the above-mentioned limitations, placement
of a commercially available culture dish with a gas-permeable
bottom made of a fluorocarbon membrane in a modular
incubator chamber (an air-tight sealed plastic chamber)
filled with atmosphere-containing predetermined O2 and
CO2 levels has been employed (45, 64). Using this setup,
adherent cells receive O2 directly from the modular incubator
chamber atmosphere via the permeable membrane without
having to rely on diffusion through the medium, which has
been shown to be both effective and simple in terms of
being able to regulate pericellular pO2 closely with relatively
fast equilibration times (45, 65). Additional advantages
of modular incubator chambers compared to standard
incubators (with or without control of O2 levels) include
the elimination of gas leaks (changing oxygen levels) and the
minimization of convective forces associated with incubator
openings (66).
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FIGURE 2 | Schematic drawing of flow-through systems for in vitro intermittent hypoxia. (A) Administration of desired gas mixtures directly into a cell culture flask.

Cyclic change of hypoxic and normoxic atmosphere is ensured by a solenoid valve. Adapted with permission according to (69). (B) Perfusion-based system with cells

growing on the wall of a capillary tube. Pre-warmed medium is first divided into two circuits, which are treated with both hypoxic and normoxic gas mixtures,

respectively. Both circuits then alternately open into the capillary area seeded with cells by passing through a valve. Adapted with permission according to (70). (C)

Bioreactor based on cyclic perfusion of cells with hypoxic and normoxic medium prepared by bubbling with gas. Both hypoxic and normoxic circuit has its own pump,

pushing the medium in and out of a culture dish through a periodically-opening valve. Adapted with permission according to (71). (D) Microchip for intermittent

hypoxia coupled with cyclic stretch to cell cultures. Varying gas mixtures are pushed into a well at the center of the microchip via a valve or a gas blender, flowing out

of the well-through a separate gas outlet tube. A venting tube connected to the well-leads to a solenoid valve (not shown), which serves the purpose of periodically

changing pressure inside the well, applying indirect mechanical stimuli to cells growing on the outside of a gas-permeable membrane of the well. Adapted according

to (63) under the CC BY license. (E) Cell culture insert for intermittent hypoxia. A pillar fixated on the lid of a cell culture plate with integrated channel for gas perfusion

is immersed in medium in order to reach close vicinity of pericellular area. The desired gas is then delivered to cells via the channel and a gas-permeable membrane as

the thickness of the diffusion barrier represented by the medium may be limited down to 170µm. Adapted with permission according to (68).
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Intermittent Hypoxia—Equilibration
Challenge
While reaching and maintaining sustained pericellular O2 levels
in vitro is feasible via the methods described in the previous
section, a much greater challenge lies in developing a system that
provides researchers with a means of modeling IH, where precise
cyclic control of pericellular oxygen tension as well as its fast
equilibration is mandatory. OSA syndrome represents one of the
most blatant examples because the cycles of IH occur as often as
60 times per hour (67). This dictates the need to create a system
in which pericellular pO2 would change every minute, while
achieving equilibrium with the gas phase during each period.

Mere fast-paced changes (within minutes) in headspace O2

levels inside a modular incubator chamber cannot achieve the
desired pericellular pO2 as the equilibration of oxygen levels
across media takes a significantly longer time, depending on the
thickness of the medium overlay. For instance, a 170 µm-thick
media barrier between a human osteosarcoma cell line and the
incubator atmosphere allows for a 1.5min long equilibration,
whereas this time increases 10-fold if the overlay height is a
mere 1mm (68). Perforation of a culture plate lid has been
shown to speed up the equilibration between the pericellular and
headspace pO2, suggesting that this barrier is also important in
slowing down the diffusion of O2 toward adherent cells (19).

Flow-Through Systems and Microfluidics
Multiple models for IH in vitro that meet the requirements of
a more dynamic approach have been developed and validated.
For instance, cyclic changes of gas mixtures flowing directly
into cell culture flasks (Figure 2A) (69) or microfluidic devices
capable of directly supplying cells with precise gas mixtures
via a system of miniature channels (72–74) have been used.
Other perfusion-based systems rely on growing the cells directly
on the walls of tube-like channels, through which medium is
pushed (Figure 2B) (70). Alternatively, bioreactors containing
peristaltic pumps that drive the hypoxic and normoxic media
to the cells in a cyclical manner from reservoirs pretreated by
bubbling the desired gas mixtures through the liquid may be
employed (Figure 2C) (71, 75). A shared downside of perfusion-
based approaches is the shear stress being exerted on the cells
during perfusion with the equilibrated medium and/or gases.
To minimize this problem, a polydimethylsiloxane (PDMS)
microfluidic chip consisting of a chamber through which oxygen-
rich and oxygen-poor air is pumped in a periodic fashion has
been constructed. Unlike in other microfluidic settings, cells
are not in the chamber itself but rather are in direct contact
with it by growing on a gas-permeable membrane, which allows
for close control and fast equilibration of pericellular O2, while
diminishing mechanical stress. Furthermore, the modulation of
pressure in the chamber mediates a cyclical stretching of the
cell culture that simulates the periodic expansion of the heart or
lung (Figure 2D) (63). Using a similar principle, the development
of a PDMS pillar with an oxygen perfusion channel, coated
with Parylene-C to ensure better oxygen isolation and faster
equilibration, has been reported. The pillar can be mounted
on the top of each well of a common culture dish (Figure 2E)
(58, 68). It then streamlines a precisely defined gas mixture in

very close vicinity of the cellular monolayer, bypassing most of
the culture medium diffusion barrier. Cells are isolated from
the apparatus itself; therefore, no shear force is present (58).
Unlike the microfluid approach (63), this method is well-suited
for culture plates using standard-sized wells as it does not have
to cope with the limited space of miniaturized chambers inside
a chip.

Membrane-Bottom Based Approaches
Growing cells on commercially available cultureware dishes,
fitted with gas-permeable fluorocarbon membrane, may be used
not only for maintenance of sustained hypoxia (as mentioned
above), but also for efficient recreation of intermittent hypoxia.
Enclosing such a culture dish in a sealed cabinet while controlling

FIGURE 3 | Schematic drawing of membrane-bottom systems for in vitro

intermittent hypoxia. (A) Periodic change of pO2 in a cell culture cabinet is

appropriately reflected only in the pericellular area of a gas-permeable

membrane cultureware, which allows for unlimited diffusion of oxygen and fast

equilibration times, whereas standard plastic dishes only enable diffusion

through the medium overlay, posing as a barrier. Adapted with permission

according to (45). (B) Custom-made plateholders of a volume no more than

20ml connected to gas-permeable bottom dishes in an air tight fashion serve

the purpose of limiting the volume of gas mixtures that need to be periodically

exchanged during intermittent hypoxia regimes. The required gas mixtures are

prepared and pre-warmed in a gas blender, brought into the plate holder by

gas inlet tubing, allowing for unlimited diffusion of oxygen between the plate

holder and adherent cells, and subsequently flushed out through a gas outlet

tube to make room for a fresh gas mixture. Adapted with permission

according to (64).
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O2 levels, e.g., by a programmable digital controller, enables for
rapid and reproducible exposure of cells to intermittent hypoxia,
without the need for diffusion through a culture medium
(Figure 3A) (45, 65). The limitations of such an approach
include the large volume of gases (O2, N2, and CO2) required
to achieve the rapid exchange of the inner cabinet atmosphere
associated with significant culture media evaporation (despite
humidification) and gas pressure changes inside the cabinet
or inside the sealed culture dishes due to heat expansion of
gas (45), all of which adversely affect the performance of IH
exposure. Minoves et al. (64) modified the setup by combining
the gas permeable culture dishes with a customized plate-holder
equipped with its own gas tubing. This was designed to seal the
plate off from the surrounding atmosphere, replacing the hypoxic
chamber with a significantly smaller space, and thus limiting
the volume of air to be pumped in and out during each cycle
(Figure 3B).

Hypoxia Mimetics
Instead of exercising control over oxygen availability, some
in vitro as well as in vivo models utilize hypoxia mimetic
agents which simulate hypoxic conditions predominantly by
increasing availability of intrinsic HIF-1α in standard cell culture
settings. This methodology can be used for both sustained and
intermittent hypoxia models, the latter of which can be achieved
by cyclic exposure to the agent (76, 77).

Precise mechanism of action of hypoxia mimetic agents
may vary depending on the particular agent used. Many of
the compounds inhibit HIF-prolyl hydroxylases (PHDs), which
are crucial for HIF-1α degradation. Cobalt chloride (CoCl2),
arguably the most widely used hypoxia mimetic, competes
with Fe2+ ions, which are necessary for enzymatic activity of
PHDs. Iron chelators, such as deferoxamine mesylate (DFO)
work by similar means. Dimethyloxalylglycine (DMOG) is a
2-oxoglutarate analog, which also inhibits PHDs and may be
utilized in hypoxic cell culture models (78–81). However, one
of the downsides to the most common PHD inhibitors is their
cytotoxicity. To overcome this problem, another PHD inhibitor
hydralazine has been successfully employed to mimic hypoxic
conditions and proved to be significantly less cytotoxic than
CoCl2 (82).

Nevertheless, other mechanisms of action, such as
mitochondrial uncoupling in case of bafilomycin A1 have
been exploited in cell culture models of hypoxia (83). Inhibition
of proteasome degradation, miRNA approaches and application
of isoflurane or N-acetyl cysteine also have HIF-1α stabilizing
effects, but these methods are predominantly utilized to
ameliorate ischemia-reperfusion injury rather than to mimic
hypoxia (80, 81).

Role of Tissue Normoxia in Hypoxic Models
To realize the importance of tissue normoxia for hypoxic
cellular models and its distinction from hypoxia, one must
first understand that the use and definition of the terms
“normoxia,” “hypoxia,” and “hyperoxia” are somewhat arbitrary
in cell culture literature as the composition of headspace gas
and not the actual pericellular microenvironment is typically

considered. Hypoxia is usually defined as the insufficient
supply of oxygen to the relevant tissue, although several other
definitions have been proposed. These definitions revolve around
the state of mitochondrial respiration and temporal dynamics
of the molecular apparatus that are centered around HIF-
1α (84).

Different types of tissues, however, have various oxygen
demands (85) and variable capillary network and blood
flow regulation, resulting in largely different tissue pO2

in vivo. Varying pO2 in different body organs in humans
have been comprehensively reviewed by others (4). The
unique pO2 of each organ, called physioxia or tissue
normoxia, warrants more elaborate experimental settings,
ideally mimicking such tissue-specific physioxia in vitro.
Clearly, considering the usual environment of an incubator
as “normoxic” represents a failure to recapitulate basic
physiological parameters. In fact, a standard incubator
atmosphere (18.6% O2) might induce severely “hyperoxic”
conditions in some cultured cells and nearly anoxic pericellular
oxygen levels in other cultured cells—all fundamentally
deviating from physiological oxygen levels observed in tissues
(4, 84). Any particular in vitro model of hypoxia should
thus aim to reach oxygen levels lower than tissue normoxia
(physioxia). Ideally, oxygen tensions present in the tissue or
disease in vivo should be implemented if the exact values
are known.

For example, pO2 in human adipose tissue has been found
to be approximately 55 mmHg, but lower pO2 levels have
been measured in the subcutaneous fat of obese subjects
with a possible link to inflammation of the tissue (86), and
thus also the pathophysiology of type 2 diabetes mellitus
(87). It has also been reported that adipose tissue-derived
stromal cells retain their natural phenotype when the O2 levels
of their physiological niche are maintained (88). Similarly,
pO2 in fetal arterial circulation, as opposed to adults, equals
approximately 30 mmHg (89), whereas that of a trophoblast
is slightly higher, 40–60 mmHg (48). The ideal pO2 for
early stage human embryonic development presented in vivo
and utilized by in vitro fertilization laboratories appears
to be in the range from 2% (∼15 mmHg) to 5% (∼38
mmHg) tension of oxygen (90). This knowledge has been
exploited in studies of embryonic and induced pluripotent
stem cells as the quality of pluripotent stem cell culture
characterized by proliferative capacity and expression of
pluripotency markers is significantly improved when the cells
are grown in incubator atmosphere commonly described in
literature as hypoxic, ranging from 1 to 10%, while higher O2

concentrations referred to as normoxic showed to be detrimental
(91–98).

Finally, tissue pO2 has been measured and found to be
significantly reduced in the majority of tumors in patients.
Knowing these values is particularly important because the
properties of cancer cells, such as sensitivity to chemotherapeutic
agents, change dramatically under hypoxic conditions (4).
Modified tissue pO2 has also been observed and recorded in
myocardial infarction (99), retinopathy (100), and pre-eclampsia
(101), and to a limited extent also in OSA (102, 103).
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EFFECTS OF PERICELLULAR PO2

CONTROL ON HYPOXIA SIGNALING
IN VITRO

The need to tailor experimental conditions of in vitro hypoxia,
namely O2 levels, to meet those found in living patients is further
purported by mechanisms occurring in hypoxia at cellular and
molecular levels, many of which are directly involved in disease
pathophysiology. These predominantly include the upregulation
of HIF-1α (104), nuclear factor-kappa B (NF-κB) (105, 106),
and reactive oxygen species (ROS); the decreased availability of
nitric oxide (107); or complex changes in ion channel activity
(108). It has been shown multiple times in both cell culture
and in vivo that these processes are very tightly governed by O2

concentration (109–112). Namely, HIF-1 expression, which is a
central molecule in cellular signaling during hypoxia, increases
exponentially as oxygen tension decreases (113). Using gas-
permeable plates that ensure close control of pericellular pO2

cycles for IH has found that different pO2 levels around the
cells and its dynamics significantly vary in their effect on HIF
and NF-κB expression (45). This would explain the contradictory
results reported by different studies employing varying modes
of hypoxia induction when exploring its influence on HIF
mechanisms (69, 75).

Sustained Hypoxia
The influence of pericellular pO2 measurement and control
can be shown by the example of tumor hypoxia. The in vivo
tumor microenvironment is characterized by unique oxygen
tension values, which may have a considerable influence on
clinical treatment, influencing the efficacy of anti-cancer drugs
and radiotherapy (4). In fact, in vitro hypoxia has already
been utilized to simulate the effect of oxygenation dynamics on
breast cancer radiosensitivity, which was found to be diminished
in hypoxia, taking advantage of the ability to continuously
measure pericellular pO2 (114). The cancer cell culture model
has also been employed to develop a new hypoxic probe, which
accumulated inside tumors in vivo as well as in vitro, which
implies that this culture condition might prove to be a useful tool
in drug testing (115). To this end, a microfluidic chip, capable of
creating pO2 gradients and evoking multiple oxygenation states,
has been developed (116). A myriad of other microfluidic devices
could also be devised for the purpose of accurately recreating
tumor phenotypes in a dish (63, 117).

In vitro hypoxia may also be studied to uncover the
molecular mechanisms ameliorating ischemia/reperfusion injury
in neurons (118) or cardiomyocytes (119). A perfusion-based
model of murine cardiomyocytes subjected to abrupt anoxia
and reperfusion was discovered to be an optimal platform
for demonstrating the opening of mitochondrial permeability
transition pores (mPTP). Because mPTP is a protein complex
in mitochondria activated during ischemia-reperfusion injury
leading to cell death, this model could be utilized to study
its molecular nature, which still has not been fully elucidated,
and eventually to develop a pharmacological approach to block
it (119). In addition, a steady perfusion-based microfluidic

system has been developed to continuously monitor the effects
of hypoxic insults on the electrophysiological properties of
cardiomyocytes. At the hypoxic level, which is translatable
to a 5% oxygen concentration, L-type calcium currents were
decreased that corresponded to in vivo observations and the
stunned myocardium hypothesis (120).

Intermittent Hypoxia
The significance of precise pO2 maintenance also applies to IH
modeling. A recent study explored the effect of IH in OSA
on insulin resistance and the results from the in vitro model,
which utilized gas-permeable dishes and OSA pathophysiology,
were in accord with the animal model and patient cohort
observations, including changes in NF-κB modulation (65).
Moreover, adipocytes grown on the same type of cultureware
and that were subjected to clinically-relevant IH exhibited an
accumulation of triglycerides, which correlates with the observed
link between obesity and OSA in patients (42). Conversely,
culturing adipocytes in suboptimal settings without pericellular
pO2 monitoring has led to conflicting results on whether hypoxia
increases HIF expression (87, 121, 122).

Similar to adipocytes, when other cell types underwent a
protocol of IH with defined pO2 in vitro, the results were
consistent with other IH models. For instance, gene expression
profiles of neutrophils, monocytes, and airway epithelial cells
all matched the results found in OSA patients, further hinting
at the role of inflammation in the pathophysiology of the
disease (123–126). Constant monitoring of pO2 of the PC12
cell line confirmed the central role of HIF-1α in the molecular
response to IH (127). The same molecule was found to be
upregulated in skin vasculature taken from the biopsies of OSA
patients as well as in the aortas of mice and human cultures
of coronary artery endothelial cells, where IH was maintained
by gas bubbling in the medium (128). Additionally, a protective
mechanism of pancreatic cells exposed to IH and hyperglycemia
based on ROS reduction both in vivo and in vitro has been
described (129).

Furthermore, a myocardial ischemia model was adopted using
gas-permeable culture dishes to study the effect of different
hypoxic modalities. Continuous measurements of pericellular
pO2 showed that IH, simulating repeating cycles of ischemia and
reperfusion, OSA, or several pulmonary conditions resulted in a
considerably more pronounced inflammatory response and cell
injury than that ofmild hypoxia, comparable to or at earlier stages
even greater than that of severe hypoxia. This is in agreeance with
the fact that OSA is considered to be an independent risk factor of
cardiovascular disorders (130). The addition of cyclic stretching
mimicking heart and/or lung movements was demonstrated to
act synergistically with IH, upregulating the HIF-1α pathway
in mesenchymal stem cells, and showing that this model
could be superior to others when simulating IH in these
organs (63).

Downsides of Conventional Systems
Discrepancies in the results of the role that hypoxia has on
cell cultures could be attributed to a number of variables, such
as using different cell types (69) or species (87). Nevertheless,
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if the native pO2 of the tissue type in question as well
as its temporal development in the disease being studied
were to be respected and incorporated into the in vitro
model as suggested (4), variability in results could arguably
be reduced.

Despite this, many recent publications pertaining to
in vitro hypoxia still implement the simplified model, which
does not consider the difference between headspace and
pericellular O2 tensions. Such studies encompass various areas
of hypoxic research, ranging from IH (131–133) to the tumor
microenvironment (134, 135) to reperfusion injury modeling.
In regards to the latter, placing cells into anoxic conditions
generally reflects the ischemic insult occurring in vivo (132, 136).
Notwithstanding, the absence of pericellular O2 measurements
makes it virtually impossible to ascertain whether there is a
higher concentration of oxygen in the control group and by what
margin. This makes any interpretation of the results complicated,
especially because the cell cultures used in these studies for their
sensitivity to ischemic hypoxic injury, such as cardiomyocytes
(132), neurons (137), kidney (138), and endothelial cells (139),
tend to have relatively high oxygen consumption rates (85).
Moreover, these studies generally do not include information
about the height of the medium overlay above the adherent
cell culture, which introduces yet another unknown variable
that possibly affects the results and reproducibility (17, 18).
Furthermore, certain studies employed only chemical insults
to mimic hypoxia (134, 140–142). Logically, some studies then
report that cell cultures have no merit in this area of hypoxia
research (139), while others state that the results gained from
these models are in line with studies in vivo (136, 143). This
highlights the importance of maintaining strict conditions
for in vitro hypoxia characterizing the experimental setup in
detail, including pericellular pO2 values and, in case of IH, pO2

equilibration time.

3D CELL CULTURES

A special consideration must be given to 3D tissue cultures as
they differ significantly from the cultured adherent cells discussed
in this review. Introducing the element of three-dimensionality
to cell cultures, which is arguably an intrinsic feature of all
multicellular organisms, can improve the potential of in vitro
models to recapitulate the in vivo environment (144). This also
applies to conditions in which hypoxia plays an important role,
including cancer, as the 3D organization has been found to play
an integral part in tumor biology, considering the actual tumor
architecture and dynamic interactions with the surrounding
environment (145). While some models employ only single
cell type spheroids (146), more complex platforms, reflecting
physiological interactions found in vivo include multiple cell
types in a 3D structure, such as cancer stromal or endothelial
cells (147, 148) as reviewed earlier (149). For example, a study
investigating the role of OSA in cancer employed a 3D cell culture
model comprising both tumor spheroids and patient-derived
monocytes subjected to IH and found that themonocyte-induced
HIF-1α-dependent production of VEGF promoted tumor growth

(150), providing some molecular insights into the link between
the two diseases (151).

Similarly, 3D cell culture technology has been used to study
the effect of hypoxia in the context of ischemia in various
cell types, including cardiomyocytes (152–154), astrocytes (155),
endothelial cells (156), and hypoxia related to pulmonary fibrosis
in fetal lung fibroblasts (157). Furthermore, the effects of both
continuous hypoxia and IH on vascular sprouting has been
explored in endothelial cells (158–160). Hypoxic 3D tissue
structures comprising retinal astrocytes and endothelial cells
represent a useful drug-screening tool, outperforming standard
2D co-cultures (161).

With the proliferation of experiments conducted in 3D cell
cultures, critical consideration of pericellular pO2 is warranted,
particularly because the element of three-dimensionality and
variable thickness of cellular structures introduces additional
irregularities that hamper gas diffusion and lead to the
formation of oxygen concentration gradients (162, 163). Several
novel approaches and techniques have emerged tackling the
challenges of pO2 in 3D tissue structures. Analogically to
adherent cell cultures, oxygen-sensing microelectrodes have
been employed to measure pericellular oxygen gradients
in thicker hydrogel-based tissues (164, 165). However, the
disadvantages of this approach, such as its invasive nature,
time demands and technical challenges requiring repetitive
calibrations and measurements in different spots inside the
tissue construct, motivated the search for alternative approaches.
A number of fluorescence quenching probes has been tested,
which penetrate through cells (166, 167) or are incorporated
into microbeads dispersed in a 3D hydrogel (Figure 4A)
(168), and subsequently visualized using confocal microscope
imaging. Such applications enable the establishment of a
dense network of pO2 reporter points throughout the 3D cell
culture block. Semi-quantitative approaches to the assessment
of pericellular pO2 in 3D cultures include mathematical
models (162) and probes (e.g., Hypoxyprobe) (163) or the
incorporation of paramagnetic particles into cellular spheroids
with subsequent electron paramagnetic resonance-based
detection (171).

A unique feature of 3D cell culture systems is represented
by the possibility of actively inducing a controlled oxygen
gradient across the model, based on the experimental needs. Such
gradients can be induced by perfusion with an oxygen scavenger
in the medium (159); by positioning the culture between two
micro-channel circuits perfused with gas, each with a different
oxygen level (Figure 4B) (169, 172); or by incorporation of an
oxygen-consuming reaction of specific hydrogel materials, either
encapsulating (Figure 4C) (164, 165) or being in close vicinity of
the cells (Figure 4D) (170), and thus regulating the pericellular
oxygen levels.

CONCLUSION

Cell culture models represent an invaluable research tool for
understanding the fundamental mechanisms of the pathogenesis
of hypoxia-associated conditions and diseases, as well as for
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FIGURE 4 | Schematic drawing of systems for 3D in vitro hypoxia. (A) Fluorescent sensor-laden microbeads incorporated into a 3D hydrogel with cells, serving as a

pO2 reporter throughout the 3D system. Based on a drawing by (168). (B) 3D culture positioned between two gas perfusion microchannels, which are in contact with

the culture via a gas-permeable membrane, allowing for an oxygen gradient to be formed across the culture between an oxygen-rich and oxygen-poor environment.

Adapted with permission according to (169). (C) Encapsulation of a 3D cell culture or explanted tissue by an oxygen-consuming hydrogel, creating a hypoxic

environment. The oxygen consumption is a result of the cross-linking reaction and hydrogel formation, resulting in an oxygen gradient from the top layer of the culture

to deeper, more oxygen-deprived regions. Adapted with permission according to (165). (D) Preformed oxygen-consuming hydrogel immersed in a 3D culture creates

a hypoxic environment with an oxygen gradient toward the hydrogel. The gradient and the level of hypoxia can be adjusted by moving the hydrogel across the culture

on a mobile pillar. Adapted according to (170) under the CC BY license.

the development of therapies combatting them. However,
physical laws pertaining to gas diffusion and oxygen distribution
in cell cultures impede pericellular oxygen levels, and thus
determine cellular processes. Multiple factors, including
media thickness, media mixing, convective forces, cellular
oxygen consumption, and headspace pO2 determine the
pericellular concentration of O2, which is significantly different
from the O2 levels in the gas phase in standard incubators.
As even a small change in pericellular O2 levels may elicit
variable molecular responses, the precise control of pericellular
O2 levels is required for the appropriate interpretation of
the physiological relevance of observed results as well as
for laboratory-to-laboratory uniformity. Recent advances
have produced several accessible, cost-effective, and high-
throughput tools that are capable of emulating constant
hypoxic or IH exposure closely reminiscent of the in vivo
conditions. Moreover, the incorporation of 3D tissues into

cellular models of hypoxia might bolster this line of research
even further.
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