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Hypertension is a significant risk factor for cardiovascular and cerebrovascular diseases, 
and its development involves multiple mechanisms. Gut microbiota has been reported to 
be closely linked to hypertension. Short-chain fatty acids (SCFAs)—the metabolites of 
gut microbiota—participate in hypertension development through various pathways, 
including specific receptors, immune system, autonomic nervous system, metabolic 
regulation and gene transcription. This article reviews the possible mechanisms of SCFAs 
in regulating blood pressure and the prospects of SCFAs as a target to prevent and 
treat hypertension.
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INTRODUCTION

Hypertension is a global public health problem as well as an important risk factor for 
cardiovascular and cerebrovascular diseases (Rossier et  al., 2017; Mills et  al., 2020). Increase 
in the ageing population and lifestyle risk factors consequently increases the global prevalence 
of hypertension. As of 2010, 1.38 billion people (31.1% of the global adult population) suffer 
from hypertension (Mills et  al., 2016). Consistent with the trend of hypertension prevalence, 
the number of cardiovascular and cerebrovascular deaths increased significantly from 1990 to 
2015; hypertension is responsible for 40.1 and 40.4% of deaths caused by heart disease deaths 
and stroke deaths, respectively (Forouzanfar et  al., 2017; Furie, 2020; Mills et  al., 2020). 
Hypertension is a complex and multifactorial disease affected by both genetic and environmental 
factors (Rossier et  al., 2017; Mills et  al., 2020). In the genome-wide association study of Ehret 
et  al. involving 342,415 individuals, numerous single gene variants related to blood pressure 
control and hypertension were identified, but these specific causal genes only explained a 
small proportion of the systolic pressure variation between individuals (<5%; Ehret et  al., 
2016). Therefore, identification of new diagnosis and treatment targets based on hypertension 
pathogenesis is urgently needed.

Gut microbiota and its metabolites play an important role in human health and diseases 
by affecting the body’s metabolism, immunity, nervous system and endocrine homeostasis 
(Fenneman et  al., 2020; Verhaar et  al., 2020; Yoo et  al., 2020; Wu et  al., 2021). Hypertension 
occurrence is often accompanied with gut microbiota imbalance, including decreased diversity, 
altered enterotype distribution and variation in bacterial populations (Li et  al., 2017). It is 
mainly characterised by the increase in Klebsiella, Prevotella, Coprobacillus and Enterobacter 
populations and the decrease in Anaerotruncus, Coprococcus, Ruminococcus, Clostridium, Roseburia, 
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Blautia and Bifidobacterium populations, which reduce ratio 
of Firmicutes/Bacteroidetes and the production of short-chain 
fatty acid (SCFA; Li et  al., 2017; Verhaar et  al., 2020). These 
observations provide a new perspective for hypertension diagnosis 
and treatment. SCFAs, which are the main metabolites produced 
by intestinal bacteria, ferment dietary fibre in the gastrointestinal 
tract. SCFAs can be effectively absorbed by the intestinal mucosa; 
they act as a source of energy, a regulator of gene expression, 
a participant in cell metabolism and a signal molecule recognised 
by specific receptors, thereby having an important impact on 
blood pressure regulation (Jin et  al., 2019; Poll et  al., 2020; 
Naqvi et  al., 2021). This article summarises the possible 
mechanisms of SCFAs in regulating blood pressure and reviews 
the prospect of SCFAs as a target for hypertension prevention 
and treatment.

SCFAS AND BLOOD PRESSURE

Short-chain fatty acids are an important link between the host 
and gut microbiota, which comprise different bacteria in the 
intestine, especially anaerobic bacteria, through dietary fibre 
fermentation (Kumar et  al., 2020; Ge et  al., 2021). SCFAs are 
organic fatty acids with fewer than six carbon atoms, and 
acetate, propionate and butyrate are considered the most 
important and biologically effective ones, accounting for 95% 
of the SCFAs produced by the gut microbiota (He et al., 2020). 
SCFAs are mainly produced in the colon and cecum, with a 
total concentration of approximately 150 mmol/l. As the most 
abundant anion in the colon, SCFAs are absorbed in a 
concentration-dependent manner, transported to the portal vein 
by various transporters and then migrated to other organs 
through blood circulation (Nicholson et  al., 2012; Liu et  al., 
2021). The proportion of the three main SCFAs (acetate, 
propionate and butyrate) is roughly 3:1:1, and they differ in 
their sources, distribution and potential effects on host physiology 
(He et  al., 2020; Kumar et  al., 2020; Liu et  al., 2021). Acetate 
is the main SCFA in the colon produced by most of the 
Enterococcus species and is easily absorbed and transported 
to the liver. Propionate, produced by Bacteroidetes, 
Acidaminococcus and Salmonella, is also absorbed and transported 
to the liver, promoting intrahepatic gluconeogenesis. Furthermore, 
butyrate, which is produced by Clostridium, Eubacterium and 
Roseburia, can be  used as the energy source of the intestinal 
mucosa and regulates cell proliferation and differentiation, with 
the hydroxylation product β-hydroxybutyrate (BHB) as its main 
effective component in the circulation (Wong et  al., 2006; 
Nicholson et  al., 2012; Louis and Flint, 2017; Sasaki et  al., 
2020; Liu et  al., 2021).

Despite their low peripheral circulation concentration 
(0.1–10 mM), as signal molecules, SCFAs are involved in different 
physiological and pathological processes of the host (Natarajan 
and Pluznick, 2014). Several animal model studies revealed 
that SCFAs can regulate blood pressure. In spontaneously 
hypertensive rats (SHR) and deoxycorticosterone acetate salt 
induced hypertensive rats (DHR), both high-fibre diet and 
acetate and propionate supplementation can significantly reduce 

the blood pressure levels (Pluznick et  al., 2013; Marques et  al., 
2017). Yang et  al. analysed the intestinal bacterial genome of 
stool samples and observed that the SCFA-producing microbiota 
was significantly less abundant in SHR than in the normal 
controls (Yang et  al., 2015). Similarly, Holmes et  al. found 
that SCFAs significantly correlated with blood pressure levels 
in East Asian and western population samples (Holmes et  al., 
2008). In a case report of patients with refractory hypertension, 
minocycline administration to inhibit intestinal microbiota 
could produce a powerful anti-hypertensive effect (Qi et  al., 
2015), which may be  closely related to Firmicutes/Bacteroidetes 
reduction by minocycline (Pluznick, 2013; Yang et  al., 2015). 
SCFAs not only directly affect hypertension progression but 
also regulate several hypertension-related syndromes, such as 
obesity, insulin sensitivity and diabetes (de la Cuesta-Zuluaga 
et  al., 2018; Mandaliya and Seshadri, 2019; Zhi et  al., 2019). 
Acetate and butyrate can be used as substrates for lipid synthesis, 
whereas propionate can serve as the medium of liver 
gluconeogenesis (Liu et al., 2021). Compared with the normal-
weight group, the obesity group had an altered SCFA composition 
in the faeces in which the proportion of acetate was relatively 
lower (Schwiertz et  al., 2010). SCFAs are increasingly proven 
to be  widely involved in body-weight regulation, energy 
metabolism balance, lipid metabolism and other 
pathophysiological processes (den Besten et al., 2015; Hu et al., 
2018; Barrea et  al., 2019), which cross-correlated with  
hypertension.

POSSIBLE MECHANISM OF SCFAS 
REGULATING BLOOD PRESSURE

Short-chain fatty acids have an important impact on blood 
pressure regulation, whereas hypertension occurrence is typically 
accompanied with the decrease in SCFAs production. Moreover, 
a number of potential mechanisms have been proposed to 
explain this association, including specific receptors, immune 
system, autonomic nervous system, metabolic regulation, cell 
senescence and gene transcription.

G-Protein-Coupled Receptors
Through receptor binding, SCFAs can directly regulate blood 
pressure. The currently discovered SCFA receptors are mainly 
G-protein-coupled receptors (GPR), such as GPR41, GPR43, 
GPR109A and olfactory receptor (Olfr) 78 (Priyadarshini et al., 
2018; Muralitharan et  al., 2020; Poll et  al., 2020; Yao et  al., 
2020). Interestingly, SCFAs binding to different receptors play 
a diametrically opposite role in blood pressure regulation 
(Bolognini et  al., 2016; Pluznick, 2017).

GPR41 and GPR43 are widely distributed throughout the 
body. They are activated when they bind to acetate, propionate 
and butyrate (Kim et al., 2013; Kimura et al., 2020; Muralitharan 
and Marques, 2021), whereas GPR109A specifically binds to 
butyrate and BHB (Thangaraju et  al., 2009). GPR41 could 
be  expressed in vascular smooth muscle cells and endothelial 
cells; its expression is necessary for SCFA-mediated vasodilation 
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(Natarajan et  al., 2016). Natarajan et  al. added propionate to 
the diet of GPR41−/− and GPR41+/− mice; consequently, propionate 
produced an anti-hypertensive effect in the latter and an opposite 
effect in the former (Natarajan et  al., 2016). Blood pressure 
was significantly higher in GPR41-knockout mice than in wild-
type mice, with a more pronounced systolic pressure level 
(Natarajan et al., 2016). After GPR41 knockout, mice exhibited 
thickening of aorta and increase in vascular collagen, consequently 
causing vascular fibrosis and hypertension (Natarajan et  al., 
2016). Similarly, Onyszkiewicz et al. demonstrated that butyrate 
can pass into the bloodstream through the gut–vascular barrier 
and act on GPR41/GPR43 to relax the mesenteric artery, thereby 
significantly mitigating hypertension (Onyszkiewicz et al., 2019).

The Olfr is a seven-pass transmembrane GPR (known as 
Olfr78  in mice and OR51E2  in humans) that also serves as 
a receptor for SCFAs, especially acetate and propionate (Segers 
et  al., 2019; Kotlo et  al., 2020). In mice, Olfr78 is mainly 
distributed in the kidneys and blood vessels; when activated, 
it can increase blood pressure, possibly because it affects the 
vascular smooth muscle cells in renal afferent arterioles and 
peripheral blood vessels (Pluznick et al., 2013; Miyamoto et al., 
2016). The renal afferent arteriole is the main site for renin 
secretion and storage. In Olfr78-knockout mice, plasma renin 
and blood pressure levels are decreased (Pluznick, 2014; 
Miyamoto et  al., 2016). Treating Olfr78-knockout and 
non-knockout mice with an identical dose of propionate, the 
former showed lower blood pressure levels; this may be caused 
by the stimulation of cyclic adenosine monophosphate (cAMP) 
production in glomerular cells, resulting in renin release (Pluznick 
et  al., 2013; Pluznick, 2014). In peripheral vascular smooth 
muscle cells, Olfr78 expression may affect the baseline blood 
pressure (Hsu et  al., 2018). Moreover, propionate mediated by 
Olfr78 receptors can produce a blood pressure-boosting effect, 
mainly by resisting its powerful anti-hypertensive effect caused 
by other receptors or pathways (Pluznick et  al., 2013; 
Pluznick, 2017).

Olfr78 and GPR41 produce effects through different G 
protein-α subunits and second-messenger systems; Olfr78 
activates adenylate cyclase type 3 (AC3) and Golf in the olfactory 
signalling pathway to induce cAMP production, while GPR41 
and GPR43 activate Gαi and/or Gαo to decrease cAMP (Pluznick 
et  al., 2013). After being activated by SCFAs, these receptors 
are coupled with different second messengers and generate 
opposite effects on blood pressure (Pluznick et  al., 2013). 
Therefore, the mechanisms and physiological effects of SCFAs 
on blood pressure regulation are complex and diverse, and 
the abovementioned contrasting effect may explain the blood 
pressure fluctuations mediated by SCFA level alteration 
(Figure  1). Pluznick et  al. reported that exogenous propionate 
injection (0.1 mmol) into mice could cause a large (20 mm 
Hg) and rapid (within 1–2 min) blood pressure drop, which 
would then return to the normal level within 5 min; after the 
injection, the blood pressure level was lower in Olfr78−/− mice 
than in wild-type mice (11.9 ± 1.6 mm Hg vs. 5.5 ± 0.5 mm Hg; 
p < 0.000013). In addition, to verify the role of GPR41 receptor 
in blood pressure regulation, they used the same method and 
found that after exogenous propionate injection (10 mmol, 

maximum physiological dose), the blood pressure level slightly 
decreased in GPR41+/− mice (2.9 ± 1.6 mmHg) and moderately 
increased in GPR41−/− mice (4.5 ± 2.4 mmHg; Pluznick et  al., 
2013; Pluznick, 2014, 2017). Thus, after exogenous SCFA 
administration, the blood pressure of Olfr78−/− mice would 
be  greatly reduced. The reason could be  that SCFAs could 
only bind to GPR41 to exert an anti-hypertensive effect, with 
no Olfr78 antagonism; in contrast, SCFAs in GPR41−/− mice 
could only bind to Olfr78, with no GPR41, thereby increasing 
blood pressure (Pluznick et  al., 2013; Pluznick, 2014, 2017). 
The opposite effect of SCFAs on blood pressure regulation 
may be related to the different sensitivity of Olfr78 and GPR41 
towards SCFAs. Plasma SCFAs at basal concentrations 
(0.1–0.9 mmol) could activate GPR41 to induce vasodilation 
and lower blood pressure; conversely, SCFAs with a higher 
concentration (0.9 mmol) could activate Olfr78 to increase renin 
release and blood pressure levels (Miyamoto et al., 2016). Given 
that Olfr78 can adjust the inappropriate GPR41/GPR43-mediated 
hypotension resulting from excessively elevated circulating SCFA 
levels, the acute hypotensive effect of propionate is accentuated 
at low physiological doses (Pluznick, 2014). Hence, the role 
of different SCFA concentrations in different tissues must 
be  determined.

Immunoregulation
The immune system and excessive inflammation have been 
increasingly proven to participate in hypertension development. 
T-lymphocyte subsets, such as T helper (Th) 1, Th2, Th17, 
regulatory T (Treg) and CD8+ T cells, are involved in regulating 
blood pressure and tissue damage (Wenzel et  al., 2016; Ren 
and Crowley, 2019). SCFAs are important regulators of immune 
pathways, including intestinal and immune homeostasis, 
inflammatory cell biology and inflammatory response (Li et al., 
2018b; Parada Venegas et  al., 2019; Ratajczak et  al., 2019). 
Bartolomaeus et  al. observed that in mice with hypertension 
induced by angiotensin (Ang) II, propionate attenuated the 
response of various T cells to Ang II, such as Th17 and memory 
T-cell reduction, thereby lowering the blood pressure level; 
this process was confirmed to be Treg-dependent (Bartolomaeus 
et  al., 2019). Moreover, butyrate can regulate hypertension 
occurrence and development through the immune response. 
In vitro, butyrate can decrease the interleukin (IL)-6 and tumour 
necrosis factor-α (TNF-α) levels caused by Ang II and induce 
Treg differentiation in vivo and in vitro; this SCFA can also 
reverse the elevated Th17 and IL-17 levels in patients with 
hypertension (Furusawa et  al., 2013; Ohira et  al., 2013; Singh 
et  al., 2014; Wang et  al., 2017; Kim et  al., 2018). In mice, a 
high-fibre diet or acetate supplementation can significantly 
reduce systolic and diastolic pressure and improve cardiac 
fibrosis and left-ventricular hypertrophy, related to the 
downregulation of the signal transduction of the proinflammatory 
cytokine IL-1  in the kidney (Marques et  al., 2017). For salt-
sensitive hypertension, the exogenous supplementation of BHB 
precursor inhibits the formation of the renal inflammasome 
NOD-, LRR- and pyrin domain-containing protein 3, thereby 
attenuating hypertension (Chakraborty et  al., 2018).
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The anti-inflammatory effects of SCFAs (especially butyrate) 
may be  mediated by histone deacetylase (HDAC) inhibition in 
vascular endothelial cells (Chang et  al., 2014; Li et  al., 2018a; 
Yang et al., 2020). HDAC inhibition contributes to the prevention 
of vascular inflammation and related diseases; in SHR, HDAC 
activation is closely related to hypertension (Cardinale et al., 2010; 
Chun, 2020; Li et  al., 2020). Verdin et  al. proved that as an 
HDAC inhibitor, BHB could increase the histone acetylation level, 
promote the expression of the antioxidants factor forkhead box 
O3a (FOXO3a) and metallothionein 2 (MT2) and ultimately 
protect the body from oxidative stress (Shimazu et  al., 2013). 
Furthermore, the butyrate and valerate levels in the faeces of 
patients with preeclampsia were significantly decreased; 
correspondingly, butyrate directly downregulated lipopolysaccharide-
induced hypertension in preeclampsia rats by regulating macrophage 
function and inhibiting HDAC (Chang et  al., 2014). In addition, 
butyrate injection in Npr1+/− mice significantly lowered the blood 
pressure levels and reduced renal inflammation and fibrosis by 
inhibiting HDAC (Kumar et  al., 2017).

In addition to providing energy to the intestinal epithelium, 
SCFAs promote the integrity of the intestinal epithelium and 
help repair the damaged epithelium (D’Souza et  al., 2017). 
Thus, inhibition of these mechanisms are inhibited would lead 
to uncontrolled infiltration between the lumen and adjacent 
vessels, thereby inducing systemic inflammation and subsequently 
participating in hypertension pathogenesis (Jama et  al., 2019). 
SCFAs can also promote the secretion of anti-inflammatory 

intestinal hormones, including glucagon-like peptide 2 (GLP-2; 
Onal et al., 2019). As a specific intestinal growth factor, GLP-2 
can promote the growth of normal intestinal mucosa, repair 
the damaged intestinal epithelium and protect the intestinal 
mucosal barrier (Brubaker, 2018; Chang et al., 2021). Moreover, 
SCFAs, especially butyrate, can enhance the β-oxidation process 
of the cells in the intestinal mucosa, consume oxygen in the 
intestinal lumen and then create a favourable intestinal 
microenvironment to promote the growth of beneficial bacteria 
and inhibit the proliferation of potential pathogenic 
microorganisms; ultimately, the immune inflammatory response 
related to hypertension is alleviated, and target organ damage 
is relieved (Cani, 2017; Guan et al., 2020). Similarly, Kim et al. 
confirmed that butyrate treatment in mice with Ang II-induced 
hypertension can ameliorate microbial imbalance and intestinal 
barrier dysfunction, thereby reducing the mean arterial pressure 
(Kim et al., 2018). Therefore, the metabolites of gut microbiota 
can protect host’s health locally by regulating the intestinal 
barrier and immune response (Figure  2).

Autonomic Nervous System
Hypertension occurrence is closely related to autonomic nervous 
dysfunction (Mancia and Grassi, 2014; Kalla et  al., 2016). In 
SHR, long-term stimulation of cardiac vagus nerve preganglionic 
neurons could lower blood pressure (Moreira et  al., 2018), 
whereas short-term vagus nerve stimulation could improve the 

FIGURE 1 | SCFAs can directly regulate blood pressure by binding to their receptors. Basal concentration of SCFAs could activate GPR41/GPR43, which triggers 
Gαi and/or Gαo to decrease cAMP, thereby inducing vasodilation and lowering the blood pressure level. A higher concentration of SCFAs could activate Olfr78, 
which triggers AC3 and Golf in the olfactory signalling pathway to induce cAMP production, thereby increasing renin release and inducing vasoconstriction. AC3, 
adenylate cyclase type 3; cAMP, cyclic adenosine monophosphate; GPR, G-protein-coupled receptor; Olfr, olfactory receptor; and SCFA, short-chain fatty acid.
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prognosis of rats with salt-sensitive hypertension (Annoni et al., 
2019). The microbiota–gut–brain axis is a complex neuro–
humoral communication network that maintains body 
homeostasis; it consists of gut microbiota, enteric nervous 
system, central nervous system and autonomic nervous system 
and its related sympathetic and parasympathetic branches. 
Through this axis, SCFAs can regulate blood pressure (Dalile 
et  al., 2019; Zubcevic et  al., 2019; Figure  3). The sympathetic 
and parasympathetic ganglia express SCFA receptors, such as 
Olfr78, GPR41 and GPR43. By acting on the receptors expressed 

in the sympathetic ganglia, SCFAs can directly regulate the 
sympathetic nervous system (Kimura et  al., 2011; Nohr et  al., 
2015), and through the receptors expressed in the parasympathetic 
ganglia, SCFAs can affect the neural feedback in the gut 
(Zubcevic et  al., 2019), Therefore, SCFAs participate in the 
neural regulation mechanism of blood pressure.

Lal et al. reported that SCFAs, especially butyrate, can directly 
activate the afferent nerve fibres of vagus nerve after being 
absorbed into the nerve endings of intestinal mucosal lamina 
propria, which help SCFAs in blood pressure regulation (Lal 

FIGURE 2 | SCFAs play a local protective role in blood pressure regulation by regulating the intestinal barrier and immune response. FOXO3a, forkhead box O-3; 
GLP-2, glucagon-like peptide 2; HDAC, histone deacetylase; IL, interleukin; MT2, metallothionein-2; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; 
SCFA, short-chain fatty acid, TH17, T helper cell 17; TNF-α, tumour necrosis factor-α; and Treg, regulatory T cell.

FIGURE 3 | SCFAs can regulate blood pressure through the nervous system. By acting on the receptors expressed in the sympathetic ganglia, SCFAs can directly 
regulate the sympathetic nervous system. They can also significantly activate vagal afferent neurons, which facilitate SCFAs to regulate blood pressure. Furthermore, 
SCFAs can directly act on the central nervous system to reduce the blood pressure. GPR, G-protein-coupled receptors; Olfr, olfactory receptor; and SCFA, short-
chain fatty acid.
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et  al., 2001). Moreover, Goswami et  al. showed that SCFAs 
can significantly activate vagal afferent neurons by increasing 
phosphorylation, with the butyrate>propionate>acetate effect 
(Goswami et  al., 2018). After transection of the sub-phrenic 
vagus nerve and pre-treatment of the colon with a nonspecific 
antagonist of GPR41/GPR43, the anti-hypertensive effect of 
butyrate is weakened; therefore, the stimulation of butyrate 
on the vagal afferent fibres may partly cause the anti-hypertensive 
effect (Onyszkiewicz et  al., 2019).

Additionally, butyrate can cross the blood–brain barrier through 
specific transporters and directly act on the central nervous 
system to regulate blood pressure; for instance, butyrate improves 
the function of astrocytes in the central nucleus (Vijay and Morris, 
2014; Yang et  al., 2018). SCFA receptors are also present in the 
para-ventricular nucleus, and injecting butyrate into the lateral 
ventricle can significantly reduce blood pressure levels in both 
the SHR and control groups (Yang et  al., 2019). In addition, 
butyrate receptors in the hypothalamus of SHR are less expressed, 
resulting in decreased reactivity; therefore, the role of butyrate 
in blood pressure regulation is affected (Yang et  al., 2019).

Metabolism
According to epidemiological and animal data analyses, 
hypertension and other metabolic disorders, such as diabetes 
and obesity, have an extremely close and reciprocal causal 
relationship (Velarde and Berk, 2005; Katsimardou et  al., 2020; 
Litwin and Kulaga, 2021). The role of SCFAs in obesity and 
metabolic regulation (glucose and lipid metabolism) has attracted 
increasing attention, and these metabolites may indirectly regulate 
blood pressure by participating in metabolism (Figure  4; 
Frampton et  al., 2020; He et  al., 2020; Machate et  al., 2020). 
After being produced by gut microbiota, SCFAs are initially 
used by intestinal epithelial cells as an energy source, and 
they can activate intestinal gluconeogenesis (IGN), which is 
important in maintaining normal blood glucose level and energy 
homeostasis (De Vadder et  al., 2014). SCFAs also circulate 
through the blood vessels and enter the liver and muscles to 
regulate energy metabolism. The SCFA propionate is a good 
precursor for glycolipid and protein syntheses (Wilson et  al., 
2017). Acetate, which is also an SCFA, is a matrix for cholesterol 
synthesis (den Besten et  al., 2013); it can directly cross the 
blood–brain barrier and act on the hypothalamus to inhibit 
appetite (Frost et  al., 2014; Hartstra et  al., 2015). Moreover, 
oral (rather than intravenous) butyrate can reduce food intake 
and improve glucose and lipid distribution through the gut–
brain axis in animals (Li et al., 2018c), whereas oral propionate 
can increase fat oxidation in humans (Chambers et  al., 2018).

Through the GPRs on the surface of intestinal endocrine 
cells, SCFAs promote the secretion of intestinal hormones, such 
as glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine 
(PYY; Zhang et  al., 2019a; Ren et  al., 2020; Wang et  al., 2020; 
Nishida et  al., 2021). In particular, GLP-1 enhances glucose 
tolerance and regulate metabolism (Suzuki and Aoe, 2021), 
whereas PYY increases satiety, reduces food intake, regulates 
intestinal movement and slows down gastric emptying to improve 
body metabolism (Freire and Alvarez-Leite, 2020; Nishida et al., 

2021). GPRs affect the influence of gut microbiota on the 
body’s energy, i.e. when intestinal GPR activation is inhibited, 
food energy absorption would be reduced (Samuel et al., 2008). 
In overweight people, propionate promotes PYY and GLP-1 
secretion, improves insulin sensitivity and reduces food intake; 
its long-term use can control weight gain and reduce abdominal 
fat (Chambers et  al., 2015b).

Short-chain fatty acids can also promote leptin secretion from 
adipocytes; leptin is a typical metabolic hormone that reduces 
food intake, increases energy release and reduces body mass 
(Chambers et  al., 2015a; Wang et  al., 2020). Insulin signalling 
in adipocytes can also be  inhibited by SCFAs, leading to the 
prevention of insulin-mediated fat accumulation and promotion 
of the metabolism of unbound lipids and glucose in other tissues 
(Kimura et  al., 2013; Jiao et  al., 2020). A pig model study 
suggested that oral SCFAs—acetic, propionic and butyric acids—
can decrease serum triglyceride, total cholesterol and low-density 
lipoprotein cholesterol levels and increase serum GLP-1, PYY 
and leptin levels, thereby reducing fat deposition (Jiao et  al., 
2018, 2020). Evidence from mouse and human research also 
supports that SCFAs regulate lipogenesis and attenuate lipolysis 
(Ohira et  al., 2016; Ivan et  al., 2017; Aguilar et  al., 2018).

Cell Senescence
Decreased vascular elasticity and compliance lead to increased 
vascular wall stiffness, which is the most important feature of 
hypertension; furthermore, hypertension occurs when endothelial 
cell senescence leads to the increase in intimal stiffness (Kaess 
et  al., 2012; Tian and Li, 2014; Li et  al., 2019). In cardiovascular 
diseases, P53 is a key regulator of the senescence of endothelial 
cells and vascular smooth muscle cells (Men et  al., 2021). As a 
vascular protective factor, BHB increases p53 acetylation via HDAC 
inhibition and weakens its activity; consequently, the expression 
of the downstream genes p21 and PUMA decreases to attenuate 
cellular apoptosis (Newman and Verdin, 2014; Liu et  al., 2019). 
BHB also significantly inhibits stress-induced premature ageing 
and replicative senescence through the p53-independent pathway. 
Furthermore, BHB indirectly increases lamin B1 level by enhancing 
the expression of the transcription factor octamer-binding 
transcriptional factor (OCT) 4, which is important for preventing 
senescence induced by DNA damage (Han et al., 2018; Mendelsohn 
and Larrick, 2018). Therefore, the protective effect of BHB on 
hypertension is possibly mediated by delaying vascular stiffness 
associated with endothelial cell senescence (Figure  5).

Gene Transcription
Short-chain fatty acids can prevent hypertension by regulating 
the hypertension-associated gene transcription in the gut–heart–
renal axis (Figure 6). Marques et al. conducted RNA sequencing 
on the heart and kidney transcriptomes of mice fed with a 
standard fibre diet, a high-fibre diet or an acetate diet for 
3 weeks. They found that high-fibre and acetate intake affected 
the expression of genes associated with heart disease and 
hypertension, including Rasal1 [associated with renal fibrosis 
(Bechtel et al., 2010)], Cyp4a14 [encoding a protein that regulates 
body fluid absorption through sodium channels (Nakagawa 
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et  al., 2006)] and Cck [associated with the anti-inflammatory 
process (Miyamoto et  al., 2012)], and genes that regulate the 
renin–angiotensin–aldosterone system (Marques et  al., 2017). 
SCFAs also upregulated genes related to circadian rhythm and 
downregulated genes related to the mitogen-activated protein 
kinase signalling pathway (Marques et  al., 2017; Segers et  al., 
2019). Cardiovascular pathology is mainly regulated by the 
gene encoding early growth response-1 (Wang et  al., 2014; 
Ho et  al., 2016), which is significantly downregulated in the 
kidney and heart with fibre intake or acetate supplementation 
(Marques et  al., 2017). Furthermore, SCFAs can promote the 
expression of genes encoding proteins involved in blood pressure 
regulation; these genes include atrial natriuretic peptide and 
brain natriuretic peptide (Thorburn et  al., 2015).

SCFAS AS A TARGET FOR THE 
PREVENTION AND TREATMENT OF 
HYPERTENSION

Short-chain fatty acids are closely related to hypertension 
occurrence and prognosis, and increasing the production of 

SCFAs can improve cardiovascular homeostasis, suggesting a 
potential target for reducing cardiovascular risk (Jadoon et  al., 
2018; Almeida et  al., 2021; Figure  7). Although the available 
data are still very preliminary, SCFAs have been found to 
be  related to the metabolism of anti-hypertensive drugs, and 
regulation of the gut microbiota metabolites, such as SCFAs, 
may help attenuate drug resistance in patients with refractory 
hypertension (Qi et al., 2015; Zhernakova et al., 2016). Internal 
and external factors, such as gut microbiota, diet and intracellular 
regulatory factors, dynamically regulate SCFAs and the 
corresponding acylation (Chen et  al., 2020). The current main 
methods for intervening and regulating SCFA production are 
as follows:

Dietary Adjustment
The effect of diet on blood pressure has been investigated in 
recent decades. A high-salt diet alters the production of SCFAs 
by disrupting the composition of gut microbiota; thus, 
hypertension develops (Bier et  al., 2018). Meanwhile, a high-
fibre diet and dietary fibre supplementation could increase the 
circulating levels of SCFAs and subsequently reduce blood 
pressure (Myint et al., 2018; Zhai et al., 2018; Zhao et al., 2018). 

FIGURE 4 | SCFAs indirectly regulate blood pressure by affecting the metabolism. SCFAs can activate IGN, which is involved in maintaining normal blood glucose 
levels and energy homeostasis. SCFAs enter the liver and muscles to improve glycolipid metabolism. SCFAs can also directly enter the blood–brain barrier and act 
on the hypothalamus to inhibit appetite. Furthermore, SCFAs promote the secretion of intestinal hormones, such as GLP-1 and PYY, which can slow down gastric 
emptying and reduce food energy absorption. SCFAs can also increase fat oxidation and promote the secretion of leptin from adipocytes; leptin is a typical 
metabolic hormone that reduces food intake, increases energy release and reduces body mass. GLP-1, glucagon-like peptide 1; IGN, intestinal gluconeogenesis; 
PYY, peptide tyrosine tyrosine; and SCFA, short-chain fatty acid.
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In an experiment using a hypertensive rat model, Marques 
et  al. indicated that the systolic and diastolic pressure levels 
were significantly lower in DHR with high-fibre diet or acetate 
supplementation than in the control group (Marques et  al., 
2017). A high-fibre diet can reduce systolic pressure from 
116 ± 19 mmHg (baseline) to 91 ± 5 mmHg and diastolic pressure 
from 75 ± 5 mmHg to 58 ± 5 mmHg, whereas acetate 
supplementation can reduce systolic pressure from 116 ± 19 mmHg 
to 85 ± 9 mmHg and diastolic pressure from 75 ± 5 mmHg to 
54 ± 5 mmHg (Marques et  al., 2017). Hence, a high-fibre diet 

can change the composition of gut microbiota by increasing 
the level of Bacteroidetes and acetate-producing enterobacteria, 
which exert a hypotensive effect through acetate production 
(Marques et  al., 2017). Similarly, in clinical studies, dietary 
supplementation with SCFAs has also achieved beneficial effects. 
Streppel et al. systematically reviewed 24 clinical trials (published 
from 1966 to 2003) investigating on blood pressure reduction 
by fibre diet. They found that an average daily intake of 11.5 g 
of fibre food could reduce systolic pressure by 1.13 mm Hg 
(95% CI, −2.49 to 0.23) and diastolic pressure by 1.26 mm 

FIGURE 5 | BHB protects the body against hypertension by delaying vascular stiffness associated with endothelial cell senescence. BHB indirectly increases the 
lamin B1 level by enhancing the expression of OCT4 and increases p53 acetylation by HDAC inhibition, thereby attenuating cellular apoptosis and delaying 
endothelial cell senescence. BHB, β-hydroxybutyrate; HDAC, histone deacetylase; and OCT4, octamer-binding transcriptional factor 4.

FIGURE 6 | SCFAs protectively regulate the transcription of genes associated with hypertension. ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; Egr-
1, early growth response-1; MAPK, mitogen-activated protein kinase; RAAS, renin–angiotensin–aldosterone system; and SCFA, short-chain fatty acid.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Wu et al. SCFAs and Hypertension

Frontiers in Microbiology | www.frontiersin.org 9 September 2021 | Volume 12 | Article 730809

Hg (95% CI, −2.04 to −0.48); these results were more significantly 
observed in people aged over 40 years and those with hypertension 
(Streppel et  al., 2005). Although the specific effects and 
mechanisms of dietary structure on SCFAs and hypertension 
remain obscure, increasing the intake of dietary fibre generally 
increases the proportion of SCFA-producing bacteria in the 
intestinal microbes and relatively augments SCFA production, 
thereby reducing the risk of hypertension.

Oral Probiotics
Probiotics are living microorganisms that are beneficial to the 
health of the host; clinically, they mainly consist of Lactobacillus 
and Bifidobacteria (Wegh et  al., 2019; Markowiak-Kopec and 
Slizewska, 2020). When carbohydrate is lacking, Bifidobacteria 
can produce acetate and formate through glycolysis; when 
carbohydrate is sufficient, acetate and lactate are produced 
(Aoki et  al., 2017). In rat models, Lactobacillus intake could 
lower blood pressure levels, related to the improvement of the 
intestinal barrier function and the production of peptides to 
inhibit angiotensin-converting enzyme (Nakamura et  al., 1995; 
Robles-Vera et  al., 2020). In a recent meta-analysis of 23 
randomised controlled studies, probiotics could lower systolic 
pressure levels by 3.05 mmHg and diastolic pressure levels by 
1.51 mmHg in 2037 adults with or without hypertension (Qi 

et al., 2020). However, the anti-hypertensive effect of probiotics 
is inconsistent in different populations; this effect is more 
evident in Japanese patients and patients with hypertension, 
suggesting a relationship with genetic or environmental factors 
(Dong et al., 2013; Qi et al., 2020). The anti-hypertensive effect 
of probiotics can only last for a short period of time (8 or 
10 weeks), with only a slight reduction in blood pressure (Qi 
et  al., 2020); hence, probiotic supplementation may be  used 
as an adjuvant therapy. Currently, the regulation of SCFA 
production by probiotics for hypertension treatment has not 
yet been investigated. Thus, future studies should focus on 
clarifying how probiotics influence blood pressure by gut 
microbiota metabolites.

Exercise
Exercise is an effective and safe nondrug treatment for many 
metabolic diseases. Moderate exercise combined with diet control 
can improve cardiovascular disorders, such as hypertension 
(Keating et al., 2020; Saco-Ledo et al., 2020). Through exercise, 
the composition of gut microbiota and the metabolites changes 
(Monda et al., 2017; Mohr et al., 2020). Allen et al. demonstrated 
that compared with the non-exercise group, the SCFAs in stool 
samples increased significantly after 6 weeks of endurance exercise 
in lean participants, but not in those with obesity; when the 

FIGURE 7 | Current methods used to intervene and regulate SCFA production for blood pressure normalisation. Dietary fibre, oral probiotics, exercise and FMT can 
increase the production of SCFAs, which are absorbed into the blood circulation and subsequently lower blood pressure levels. FMT, faecal microflora 
transplantation; SCFA, short-chain fatty acid.
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exercise training was stopped, the exercise-induced changes of 
microbiota were basically reversed (Allen et  al., 2018). The 
effect of moderate exercise on SCFAs provides a new possible 
mechanism to explain how exercise prevents and treats 
hypertension, suggesting an interesting research topic.

Faecal Microflora Transplantation
Faecal microflora transplantation (FMT) has been applied in 
the clinical treatment of inflammatory bowel disease and metabolic 
syndrome; it increases the diversity of gut microbiota, thereby 
changing the composition of metabolites (Weingarden and Vaughn, 
2017; Costello et  al., 2019; Zhang et  al., 2019b). Animal model 
studies have explored the effect of FMT on hypertension. Li 
et  al. transplanted stool samples separately from healthy and 
hypertensive individuals into sterile mice and reported that the 
systolic and diastolic pressure levels of mice receiving faecal 
transplants from patients with hypertension were higher than 
those of mice receiving faecal transplants from healthy individuals; 
hence, blood pressure increase could be  transmitted through 
gut microbiota (Li et al., 2017). Although relevant clinical reports 
on hypertension treatment with FMT remain unavailable, recent 
studies have shown that patients with FMT have a significantly 
increased production of SCFAs (Seekatz et al., 2018). With further 
clarification of the relationship between SCFAs and blood pressure, 
FMT could be  a new treatment for hypertension.

CONCLUSION

As dietary habits and the living environment change, the 
prevalence of hypertension increases. Gut microbiota has been 
gaining considerable attention. SCFAs, which are gut microbiota 
metabolites, can be  involved in hypertension occurrence and 

development through various pathways, such as specific receptors, 
the immune system and the autonomic nervous system. However, 
most of the studies on SCFAs in hypertension are phenotypic 
descriptions, and their specific molecular mechanisms remain 
unclear. Considering the differences in intestinal and body 
functions between rodents and humans, the research findings, 
which are mostly from rodents, cannot always be  extrapolated 
to humans. Additional studies are needed to clarify the potential 
effects and internal mechanisms of SCFAs on hypertension, 
which could provide basic information for the novel prevention 
and treatment methods of hypertension.
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