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T cell subsets are considered central orchestrators of inflammation and homeostasis in

the intestine and are established targets for the treatment of inflammatory bowel disease.

While approaches aimed at the neutralization of T cell effector cytokines have provided

significant benefits for pediatric and adult patients, more recent strategies aimed at

inhibiting the infiltration of pathogenic T cell subsets have also emerged. In this review,

we describe current knowledge surrounding the function of T cell subsets in pediatric

inflammatory bowel disease and outline approaches aimed at targeting T cell trafficking

to the intestine which may represent a new treatment option for pediatric inflammatory

bowel disease.
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INTRODUCTION

Inflammatory Bowel Disease (IBD) is a heterogeneous autoimmune disorder characterized by
chronic and relapsing inflammation of the gastrointestinal (GI) tract. The twomain subtypes of IBD
are Crohn’s Disease (CD) and Ulcerative Colitis (UC) (1). Around 20% of IBD cases are diagnosed
during childhood, mainly during adolescence (2). IBD disease phenotype and natural history differ
depending on the age of onset (3). Pediatric (P)IBD can be subdivided into early onset (EO) IBD
diagnosed after the age of 10, very early onset (VEO) IBD diagnosed under age 10 and infantile
IBD diagnosed under the age of 1 (4). The global incidence of PIBD, primarily CD, is rising and CD
is currently the most common form of PIBD (5, 6). Studies from countries including Ireland (7),
Scotland (8), and Spain (9) have shown increased PIBD cases over time. The prevalence of PIBD
is higher in western populations and highest in North America and Europe (10). The “hygiene
hypothesis” suggests that lack of exposure to microbial infections in early life increases the risk of
developing CD (11–13). Genetic susceptibility (with susceptibility loci in genes encoding mediators
of the immune response to microbes such as IL23R and NOD2), environmental factors (such as
childhood infections) and the gut microbiome all contribute toward the development of PIBD
(14–16). Breast feeding can decrease the risk of PIBD (17) while exposure to antibiotics during
pregnancy increases the risk of VEO-IBD (18), likely due to changes in the microbiota (19).

Compared with adult onset IBD, PIBD is associated with early progression rates. Pediatric UC
is associated with more severe colitis at onset (20) and CD displays a more panenteric phenotype
during adolescence, with upper GI symptoms more common (21). No curative treatment exists
but current treatments [including exclusive enteral nutrition (EEN)] aim to improve the quality
of life, mitigate the psychosocial effects and reduce the need for surgery (22, 23). Common
IBD symptoms include diarrhea, abdominal pain and weight loss (2) but PIBD can lead to
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further complications such as height impairment, malnutrition,
anemia and delayed puberty (24). Delayed treatment increases
the risk of growth-related defects (25, 26) while prolonged
treatment with immunosuppressive therapies increases the risk
of opportunistic infection (27). In addition, population studies
have revealed higher mortality rates in patients with pediatric
onset IBD compared with the general population due to the
occurrence of colorectal cancer and infections (28–32). This
highlights the potential benefit of novel, more specific therapies
for PIBD. Similar to the more extensively studied adult disease,
PIBD is characterized by a dysregulated inflammatory response
to bacteria in the gut and subsequent activation and infiltration
of T cells. This review will discuss the role of T cells in the
pathogenesis of PIBD, the mechanism of T cell trafficking to the
gut and the opportunity to target T cell migration as a treatment
for PIBD.

CD4+ T HELPER CELL SUBSETS IN THE
CHRONICALLY INFLAMED INTESTINE

In the healthy gut discrimination between pathogenic and
commensal bacteria is achieved through interaction between
epithelial and immune cells in the gut-associated lymphoid tissue
(GALT) where specialized epithelial M (microfold) cells deliver
antigens to underlying lymphoid follicles (LFs) (33). In the small
intestine, LFs group together to form Peyer’s Patches (PPs) which
increase in number with age, peaking at puberty (34). Antigen
presenting cells (APCs) such as Dendritic Cells (DCs) in PPs
and LFs uptake antigens from the gut lumen and migrate to
the mesenteric lymph nodes (MLN) where they initiate T cell
responses (33). In the healthy gut, DCs preferentially promote
regulatory T cell (Treg) responses which contribute to intestinal
immune tolerance and homeostasis through the production of
anti-inflammatory cytokines such as IL-10 and TGF-β (35).

In PIBD dysbiosis leads to pathogenic T helper type 1
(Th1), Th2, Th9, and Th17 cell responses and an imbalance
of Treg cells. Forkhead box P3 (FOXP3)+ Treg cells play an
essential role in intestinal tolerance and gut homeostasis (36).
The importance of the FOXP3 transcription factor is highlighted
by Immunodysregulation Polyendocrinopathy Enteropathy X-
linked (IPEX) syndrome, a rare disease caused by mutations in
the gene encoding FOXP3 which results in severe autoimmunity
and intestinal disease at infancy and early fatality due to the loss
of Treg cells (37–39). This phenotype has been attributed to a
dysfunction in Treg subsets which are critical towardmaintaining
immune tolerance in the gut. Along these lines, decreased levels
of FOXP3+ Treg cells have also been reported in peripheral
blood from patients with mild, moderate and inactive PIBD
(40). Separately, decreased levels of FOXP3+ Treg cells were
found in the colonic Lamina Propria (LP) of pediatric CD
patients compared to healthy controls, though these decreased
levels were reversed upon treatment with the TNF-α inhibitor
infliximab (41).

However, several studies have also reported contrasting results
showing increased levels of FOXP3+ Treg cells in the intestinal
LP of pediatric CD patients (42, 43). Increased FOXP3+ Treg

cells were found to occur in association with elevated levels of
TGF-β1, suggesting that they maintain their anti-inflammatory
phenotype (42). Higher levels of FOXP3+ Treg cells were
also found in the ileal mucosa of pediatric CD patients when
compared with adult CD patients and significantly higher levels
of FOXP3+ Treg cells were found in the ileum and colon of
treatment naïve pediatric CD patients compared with healthy
controls (44). In addition, higher levels of FOXP3+ Treg cells
have also been demonstrated in the peripheral blood, as well
as the inflamed intestinal mucosa of PIBD patients (45, 46).
Interestingly, levels of FOXP3+ cells were reported to be reduced
in the intestinal mucosa of PIBD patients in remission when
compared to those with active disease, although the levels of
circulating Tregs remained elevated (45). Overall, these studies
suggest that intestinal levels of FOXP3+ cells are most elevated
during active PIBD but are modulated upon treatment.

Although such elevated levels of Tregs might be expected
to exert a more profound immunosuppressive effect in the
inflamed PIBD intestine, it remains to be fully determined
whether the function of these cells is intact, and if not,
whether this may contribute to disease pathology. The precise
and complex role of FOXP3+ Tregs in the context of PIBD
remains to be fully uncovered. In particular, whether these
cells can play an important role in restricting pathogenic
inflammation and/or promoting homeostasis and resolution
will be important. Of interest in this regard, and pointing
to the importance of intact Treg function, is the observation
that gut homing CD4+ Treg cells express high levels of
retinoic acid inducible CD38 and the co-inhibitory receptor
T-cell immunoglobulin and Immunoreceptor Tyrosine-based
Inhibition Motif (ITIM) domain (TIGIT) (47). In PIBD, loss
of TIGIT expressing CD38+ T cells in peripheral blood
was found to correlate with shorter remission periods (47).
Furthermore, other FOXP3-ve Treg subsets may also play
significant roles. IL-27, which induces the differentiation of
naïve CD4+ T cells into Type 1 regulatory T cells (Tr1)
cells, is encoded in a susceptibility locus for EO IBD (48,
49).

It has been suggested that the loss of balance between anti-
inflammatory FOXP3+ Treg cells and pro-inflammatory IL-17A
expressing T cells (Th17 cells) can contribute to the pathogenesis
of IBD (50). The pathogenic role of Th17 cells in gut homeostasis
and inflammation is complex. Although originally considered
pathogenic in nature, clinical trials evaluating specific strategies
aimed at IL-17A neutralization in adult CD patients were found
to result in a worsening of disease outcomes, at least in some
patients (51). Notwithstanding these observations, a recent study
showed an increase in Th17 cells in peripheral blood from
patients with PIBD which was attributed to increased serum
levels of the Th17-inducing pro-inflammatory cytokines IL-23
and IL-6 (40). Interestingly, one study showed higher serum
levels of Th17 signature cytokines IL-17A and IL-22 in pediatric
patients with UC compared to those with CD (43) while another
study showed upregulation of IL-17A and IL-22 mRNA in
the colon of patients with both UC and CD when compared
with healthy controls (46). Furthermore, a recent study showed
significantly higher serum levels of IL-17A in PIBD patients
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compared with controls (52). These studies suggest a pathogenic
role for Th17 cells in PIBD.

In addition to more recent analyses of Treg and Th17
subsets, earlier studies focused on characterizing the influence
of Th1 vs. Th2 responses in the pathogenesis of PIBD.
Based upon observations in adult patients, CD has classically
been characterized as being associated with elevated Th1 type
responses, whereas UC is associated with an “atypical” Th2
type response (53, 54). While early reports indicated that a
similar dichotomy could be observed in PIBD patients (55, 56),
a more complex picture has since emerged. For example, the
Th2 transcription factor GATA-3 and the Th1 signaling molecule
signal transducer and activator of transcription (STAT)4 were
found to be significantly upregulated in the mucosa of patients
with UC, highlighting the possible importance of both Th1 and
Th2 subsets in the pathogenesis of pediatric UC (57). In contrast,
it has also been reported that levels of expression of IFN-γ were
reduced in the peripheral blood of newly diagnosed pediatric
CD patients (58). While such reports highlight a lack of clarity
concerning the relative contribution of distinct T subsets toward
the pathogenesis of PIBD, it is also noteworthy that the frequency
at which Th subsets can be detected changes dramatically with
age especially during childhood (59, 60).

While most data concerning the nature of Th responses in the
context of PIBD have focused on the subsets described above,
there is also mounting evidence that less well-characterized
subsets may play important roles. For example, CD4+ effector
T cell subsets expressing high levels of IL-9 (Th9 cells) have also
emerged as potential important players in the pathogenesis of
adult UC and in preclinical models of disease (61). However,
whether this subset plays a significant role in the pathogenesis
of pediatric UC remains to be determined.

OTHER T CELL SUBSETS IN THE
CHRONICALLY INFLAMED INTESTINE

As well as the CD4+ T helper cell subsets described above,
several other immune cell subsets have been reported to influence
the balance between T cell tolerance and inflammation in
the intestine. Group 3 Innate lymphoid cells (ILC3s) have
been shown to specifically induce the destruction of activated
commensal bacteria specific T cells (62). However, the expression
of major histocompatibility complex (MHC) class II was found
to be lower in ILC3 cells from patients with PIBD which could
contribute toward the dysregulation of T cell responses and gut
homeostasis (62). PIBD patients were also found to have fewer
CD39 expressing intraepithelial CD8+ memory T cells and γδ

T cells compared with non-IBD controls (63). CD39 degrades
excessive extracellular ATP and helps maintain gut homeostasis
(63). Pediatric patients with newly diagnosed UC but not CD
were found to have higher circulating levels of activated CD4+
and CD8+ T lymphocytes expressing β1 integrin, correlating
with biomarkers of mucosal and systemic inflammation (64). In
addition, a further study demonstrated decreased Vδ2+ T cells
in the peripheral blood of pediatric CD patients, but an increased
infiltrate of integrin β7 expressing Vδ2+ T cells in the colon,

which exacerbated inflammation through the release of TNF-α
(65). Such studies highlight the potential therapeutic benefit of
inhibiting pathogenic T cell trafficking to the gut.

The orchestrating role of different T cell subsets in mediating
inflammation and homeostasis in the intestine underlines their
potential as therapeutic targets in IBD. Further investigation
into the specific roles of T cell subsets, beyond CD4+ T helper
subsets, in UC and CD may optimize this therapeutic potential.
In particular, efforts aimed at restricting the ability of pathogenic
T cell subsets to traffic to and infiltrate intestinal tissues is an area
of intense investigation.

MECHANISMS OF T CELL TRAFFICKING

Whether gut resident T cells play instructive roles in homeostasis
or inflammation, they must first home specifically to the
intestinal tissues. In order for lymphocytes to travel through
the endothelium into a specific tissue, they undergo three
main steps: rolling, adhesion and trans-migration or diapedesis.
Rolling is mediated by selectins and supported by integrins,
whereas integrins mainly facilitate firm adhesion and diapedesis.
Chemokine signaling is also important to guide the cells toward
the tissue and activate their adhesion molecules (66).

For trafficking to the gut, initially, naïve T cells have to
travel from the blood to GALT and MLN. GALT consists of the
inductive sites of the intestinal tissue, mainly PPs and isolated
lymphoid follicles (ILF) (67). BothGALT andMLN are associated
with high endothelial venules (HEV) through which the T cells
travel. HEV express mucosal addressin cell adhesion molecule-
1 (MAdCAM-1) and peripheral node addressin (PNAd), which
bind to L-selectin expressed on the T-cell surface (68–72)
(Figure 1A). This allows tethering and rolling of the cells
on the endothelial surface, which is then followed by firm
adhesion, by binding of integrins α4β7 and lymphocyte function-
associated antigen-1 (LFA-1; CD11a/CD18; αLβ2) on the T-cell
surface to their ligands on the endothelial cells, MAdCAM-1
and intercellular adhesion molecule-1 (ICAM-1), respectively
(69). To promote this adhesion, integrins are activated by
inside-out signaling via chemokine receptors, specifically CCL21
and CXCL12 binding chemokine receptors CCR7 and CXCR4,
respectively, on T-cells. Firm adhesion is followed by trans-
endothelial migration into the lymphoid tissue (69, 71, 73, 74).

The naïve T cells that enter the MLN and GALT become
activated into colitogenic effector T cells, such as Th1 and Th17,
but they also obtain a “gut homing” phenotype. This phenotype is
characterized by upregulated adhesion molecules and chemokine
receptors, especially α4β7 and CCR9, which bind to MAdCAM-
1 and CCL25, respectively, on GALT and α4β1 and CXCR3,
which bind to VCAM-1 and CXCL10 on activated endothelium
(73–75). Upon entering GALT or MLN, lymphocytes encounter
antigen through DCs, causing their polarization into effector
cells and imprinting the gut homing phenotype (Figure 1A). A
specific DC subset, which is CD103+, appears to be significant
for this interaction and subsequent imprinting of the gut homing
phenotype (76, 77). CD103+ DCs are derived from intestinal
LP, and they express high levels of Aldh1a2, a gene encoding
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FIGURE 1 | Naïve T-cell trafficking to GALT/MLN and gut homing T cell trafficking to LP and epithelium. (A) Naïve T-cells in the HEV need to undergo rolling, by

interaction of L-selectin on their surface with MAdCAM-1 and PNAd on the endothelial cells. Binding of chemokines CCL21/CXCL12 to the chemokine receptors

CCR7/CXCR4 activates αLβ2 integrin to bind to ICAM-1, leading to firm adhesion and diapedesis. When inside the GALT/MLN, the T-cell interacts with DCs that

produce RA, to upregulate α4β7 and CCR9, giving it a “gut homing” phenotype. (B) The gut-homing T cell expresses CCR9, which binds to CCL25, produced by

epithelial cells and anchored to microvascular endothelium. This causes the activation of α4β7 integrin, which binds to MAdCAM-1, leading to trans-migration of the T

cell to intestinal LP. There it can stay, as a colitogenic Th1/Th17 cell, or move, again through CCR9-CCL25 interactions, toward the epithelium, where it downregulates

(Continued)
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FIGURE 1 | α4β7 and upregulates αEβ7, which binds to epithelial E-cadherin. The T cell then resides in the epithelial layer as a CD8+ IEL. Therapeutic targeting can

be seen in green. GALT, Gut-associated lymphoid tissue; MLN, mesenteric lymph node; HEV, high endothelial venule; MAdCAM-1, mucosal addressin cell adhesion

molecule-1; PNAd, peripheral node addressin; ICAM-1, intercellular adhesion molecule-1; DC, dendritic cell; RA, retinoic acid; IEL, intraepithelial lymphocyte. Figure

created with Biorender.com.

an isoform of retinaldehyde dehydrogenase (RALDH), which is
mediator of the metabolic pathway converting vitamin A into
retinoic acid (RA) (76–79).

Retinoic acid has been shown to be important for gut homing
imprinting of both T and B lymphocytes, by upregulating α4β7
and CCR9 molecules (80, 81). Vitamin A deficiency results in
a significant decrease in α4β7+ T cells in lymphoid organs and
depletion of T cells from the small intestinal LP (80). Intestinal
DCs and epithelial cells produce RA, which binds and signals
through RA receptor-retinoid X receptor heterodimers expressed
by recruited T and B cells (78, 79, 82). The RA receptor complex
acts as transcription factor (78) contributing to the “gut homing”
phenotype of GALT lymphocytes (80, 81). These B cells will
then be activated into antibody producing plasma cells, which
will undergo class switching into IgA producing cells in an RA
dependent manner, and will reside in the intestinal mucosa (79,
81, 83). Gut tropism can be inhibited by LE540, a small molecule
that blocks RA binding to RA receptor (81). FoxP3+ natural
regulatory T cells (nTreg) can also be induced into a gut-homing
phenotype in the MLN, further suggesting that in the steady state
there is a balance of regulatory vs. effector T cells that might be
disrupted in pathogenic conditions such as during IBD (84, 85).
However, in adoptive transfer models of colitis, molecules such as
L-selectin and CCR7, which allow homing to MLNs and GALT,
seemed to be more important for Treg suppressive abilities than
LP gut homing molecules, such as β7 integrin (86–88).

The gut-homing effector T cells re-enter the circulation and
travel to the small intestine LP by binding to CCL25, mainly
secreted by small intestine epithelial cells and anchored to the
cell surface of LP microvascular endothelial cells. This in turn
promotes activation of α4β7 for firm adhesion to MAdCAM-1
and migration to LP (69, 71–73). MAdCAM-1 is constitutively
expressed by gut associated endothelium; however, its expression
is upregulated in inflamed LP venules during both CD and UC
(89). Some gut lymphocytes, mainly CD8+ T cells in the murine
small intestine, reside inside the intestinal epithelial layer instead
of the LP, and are termed intraepithelial lymphocytes (IEL). IEL
need to further travel through the LP and the basal membrane to
the intestinal epithelium, a process similarly mediated by CCR9
and CCL25 chemokine signaling (70, 90, 91). When IEL enter the
epithelium, they downregulate α4β7 and upregulate αEβ7, which
binds to E-cadherin on intestinal epithelial cells, anchoring them
to the epithelium (90) (Figure 1B). CCR9/CCL25 expression
mediates rapid induction of αEβ7 in murine CD8+ IEL and
adhesion to E-cadherin (90).

Less is known on the mechanism of immune cell trafficking
to the colon, compared to the small intestine. Activated CD8+
T cells required α4β7 to enter the colonic mucosa, but not
CCR9, whereas CCL25 is expressed in very low levels in normal
colon (92–94). On the other hand, blocking the CXCR4/CXCL12
chemokine signaling axis, inhibited lymphocyte adhesion to the

colon as well as the small intestine (95). Moreover, vitamin A
deficiency only reduced migration to the small intestine, not the
colon, in a mesenteric lymphoblast transfer in rats, indicating RA
is not required for “colon homing” (96). The orphan receptor
GPR15 has been identified as a colon-homing receptor for human
and murine effector CD4+ T cells, but not human Treg, making
it a potentially attractive target for colitis intervention (97, 98).
Expression of GPR15 is altered in UC, where it is enhanced
in non-inflamed biopsies from UC patients when compared to
inflamed biopsies (99). In contrast, CCL25 is upregulated in the
inflamed colon of UC patients, and most infiltrating effector T
cells (90%) in the inflamed tissue are CCR9+ compared to <10%
in normal colon (100). This might indicate there is a shift in T
cell chemokine receptor expression during active colitis, from
GPR15 to CCR9 expression. In a mouse model of acute colitis,
CCR9/CCL25 are upregulated in the colon, and play a regulatory
role by controlling DC subsets balance (101).

Deficiency of β7 integrin in mice or antibody blockade of
α4β7 or MAdCAM-1 molecules, severely impairs lymphocyte
trafficking to GALT and intestine and ameliorates disease
pathology in a mouse model of CD-like chronic ileitis (102–
104). Although CCR9/CCL25 signaling is seemingly important
for T cell trafficking to small intestinal LP, mice lacking any
of these molecules have almost normal numbers of LP T
cells, suggesting other mechanisms are in place to facilitate
gut immune cell migration in the absence of this chemokine
axis (105). Location appears to be an important determinant
as to whether CCR9 plays a major role or not, as shown by
competitive adoptive transfer experiments using both wild type
and CCR9-/- α4β7+ T cells. These cells were more dependent
on CCR9 for entry to the intestinal epithelium than the LP
and in the proximal rather than the distal small intestine (94).
Other chemokine receptor/chemokine pairs that are potentially
important in recruiting T cells to the inflamed LP include
CXCR3/CXCL10, CXCR4/CXCL12 and CCR6/CCL20 (95, 106).
The expression of CXCR3 and its ligands CXCL9, CXCL10,
and CXCL11 is upregulated in the inflamed colon of patients
with PIBD (107). Blocking of CXCR4/CXCL12 axis reduced
adherence of LP lymphocytes to intestinal microvessels, as shown
by intravital microscopy in mice, in both normal conditions
and during TNF-α induced inflammation, whereas blocking of
CXCR6/CCL20 axis only affected adherence in inflamed tissue
(95). CCL20 is upregulated in colon tissue of IBD patients and
mice after DSS-colitis (108, 109).

STRATEGIES TO TARGET T CELL
TRAFFICKING

Therapeutic approaches in PIBD are for the most part aimed
at alleviating symptoms to facilitate healthier growth and
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TABLE 1 | Drugs targeting lymphocyte trafficking currently under clinical trial.

Drug Target Phase Indication Outcomes

Abrilumab (AMG181) Antibody against α4β7

integrin

2 UC and CD Positive outcomes,

particularly for UC

AJM300 Oral α4 integrin antagonist 3 UC Phase 2 trial in UC positive

TRK-170 Oral α4 integrin antagonist 2 CD Unknown

Firategrast (SB 683699) Oral α4 integrin antagonist 2 CD Unknown

Etrolizumab (rhuMAb Beta7) Antibody against β7 integrin 3, 1 for PIBD UC and CD, PIBD UC results disappointing,

some UC trials terminated

Alicaforsen (ISIS-2302) ICAM-1 antisense inhibitor 2 UC and CD Limited efficacy

Vercirnon (GSK1605786;

CCX282-B; Traficet-EN)

Oral CCR9 antagonist 3 CD Limited efficacy

Ontamalimab (PF-

00547659; SHP647)

Antibody to MAdCAM-1 3 UC and CD Promising results in phase 2

trial in UC

Ozanimod (RPC1063) Oral S1PR1 and 5 agonist 3 UC and CD Preliminary results in UC

positive

development, while minimizing drug adverse effects, to improve
quality of life for patients (110). Generally, the guidelines for
the use of drugs in pediatric patients are based on adult
studies, however, the pharmacokinetics and pharmacodynamics
of drugs in children are different and doses have to be
adjusted accordingly, for each child (111, 112). The therapeutic
strategy for PIBD is to start gradually, with enteral nutrition
intervention, and/or corticosteroid administration to achieve
remission. However, in severe cases, more aggressive approaches
are recommended, to induce mucosal healing and enter a state of
“deep remission.” These approaches include immunomodulatory
drugs, such as azathioprine and methotrexate (MTX), as well
as biologics, mainly TNF-α inhibitors, and most commonly
infliximab and adalimumab (113).

While the successful use of TNF- α inhibitors may impact
T cell infiltration to the inflamed gut (114), there are currently
two drugs in the clinic that specifically target immune cell
trafficking approved for use in adult patients with IBD. These
are both monoclonal antibodies designed to block integrins
(Figure 1B). Natalizumab is a monoclonal antibody against α4
integrin subunit, and targets both α4β7 and α4β1 adhesion
molecules. Although it can block lymphocyte trafficking to
the gut, it also affects lymphocyte trafficking to the central
nervous system, mediated by α4β1 integrin (115). As a
result, natalizumab administration poses a risk of progressive
multifocal leukoencephalopathy, caused by reactivation of the
John Cunningham (JC) virus, for which 67.5% of adults with
CD were seropositive, in range with the general population
(116). On the other hand, vedolizumab poses no such risk,
since it specifically targets the α4β7 integrin, with its effects
on lymphocyte trafficking being limited to the gut (117). As
such, vedolizumab demonstrates an excellent safety profile for
use in IBD, with low rates of serious infections, malignancies
and other adverse reactions (118). However, to date neither
of these two agents have received regulatory approval for
pediatric use, although they have been used off-label, and there
have been limited reports on their successful use in PIBD
(119, 120). Vedolizumab in particular, was more effective in

pediatric UC than CD, and in anti-TNF treatment naïve patients,
rather than those previously treated with TNF inhibitors (120).
Currently, vedolizumab is mainly administered after failure of
TNF-α antagonists, but these data strongly suggest it should be
considered as a first line treatment for PIBD (121).

As well as the two approaches described above, a number
of other strategies aimed at targeting T cell trafficking are
also under clinical investigation (Figure 1; Table 1). Similar to
vedolizumab, a second anti-integrin α4β7 blocking antibody,
abrilumab, has undergone phase 2 trials in both UC and
CD, with some positive outcomes (122, 123). Other small
molecule antagonists of the α4 integrin subunit, AJM300, TRK-
170 and Firategrast, have also undergone clinical study among
adult IBD patient cohorts. A further approach currently under
clinical investigation in IBD is etrolizumab (rhuMAb Beta7),
a monoclonal antibody against the β7 integrin subunit, which
blocks lymphocyte trafficking to the gut, mediated by α4β7
integrin, and retention of IEL on the enteric epithelium,mediated
by αEβ7 (124). Etrolizumab has shown very promising results
in phase 1 and 2 clinical trials for UC (125, 126) and is
currently on phase 3 clinical trials for both UC and CD. However,
results for UC have been disappointing thus far. Significantly,
etrolizumab is currently under investigation in phase 1 clinical
trial in pediatric IBD patients, to assess pharmacokinetics,
pharmacodynamics and safety (NCT03478956). Other molecules
developed include an ICAM-1 adhesion molecule antisense
blocking agent, alicaforsen (ISIS-2302) and an orally bioavailable
CCR9 antagonist, vercirnon (GSK1605786; CCX282-B; Traficet-
EN). Alicaforsen underwent phase 2 clinical trials in both UC
and CD, with limited efficacy (127, 128), whereas vercirnon
was in phase 3 clinical trials in CD, but failed to demonstrate
efficacy (129, 130). An antibody targeting MAdCAM-1 is
also being investigated, ontamalimab (PF- 00547659; SHP647),
with promising phase 2 trials in UC, that is currently
under phase 3 trials in both UC and CD (131). Finally,
an oral sphingosine 1-phosphate receptor (S1PR) 1 and 5
agonist, ozanimod (RPC1063), has undergone phase 2 clinical
trials in UC and CD and phase 3 trials are currently
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recruiting patients for moderate to severe UC and CD.
Ozanimod is an S1PR agonist that can cause sequestration of
lymphocytes into the secondary lymphoid organs and subsequent
reduction of migrated lymphocytes in the gut and other
organs, that is currently approved for treatment of multiple
sclerosis (132).

In conclusion, targeting of lymphocyte trafficking to
the gut may represent a very promising novel therapeutic
approach for PIBD, with fewer adverse effects than general
immunomodulatory and anti-TNF therapies, due to its
more selective nature. Targeting of adhesion molecules has
been extensively studied in the clinic, with demonstrated efficacy
among adult patients and further promising new agents currently
in development. Other targets, such as chemokine receptors and
S1PR, are also available, but further study is warranted to prove
their efficacy and safety. While the overwhelming majority of

these approaches have undergone clinical investigation among
adult IBD patients, more extensive pediatric cohort trials are
necessary before an evaluation of their appropriateness for use
in PIBD.
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