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Abstract We have developed an image-analysis and

classification system for automatically scoring images from

high-throughput protein crystallization trials. Image anal-

ysis for this system is performed by the Help Conquer

Cancer (HCC) project on the World Community Grid.

HCC calculates 12,375 distinct image features on micro-

batch-under-oil images from the Hauptman-Woodward

Medical Research Institute’s High-Throughput Screening

Laboratory. Using HCC-computed image features and a

massive training set of 165,351 hand-scored images, we

have trained multiple Random Forest classifiers that

accurately recognize multiple crystallization outcomes,

including crystals, clear drops, precipitate, and others. The

system successfully recognizes 80% of crystal-bearing

images, 89% of precipitate images, and 98% of clear drops.
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Abbreviations

HWI Hauptman-woodward medical research institute

WCG World community grid

HCC Help conquer cancer

GLCM Grey-level co-occurrence matrix

RF Random forests

Introduction

Protein crystallization is a difficult step in the structural-

crystallographic pipeline. Lacking specific theories that

map a target protein’s physico-chemical properties to a

successful crystallization cocktail, the structural genomics

community uses high-throughput protein crystallization

screens to test targets against hundreds or thousands of

cocktails. The Hauptman-Woodward Medical Research

Institute’s (HWI) High-Throughput Screening Laboratory

uses the microbatch-under-oil technique to test 1,536

cocktails per protein on a single plate [9]. Robotic pipetting

and imaging systems efficiently process dozens of protein

samples (and thus tens of thousands of images) per day.

The bottleneck in this process is in the scoring of each

image—recognizing crystal growth or other outcomes in an

image currently requires visual review by a human expert.

To-date, HWI has generated over 100 million images,

representing more than 15 million distinct protein/cocktail

trials over 12,000 proteins.

We describe here a method developed for automatically

scoring protein-crystallization-trial images against multiple

crystallization outcomes. Accurate, automated scoring of

protein crystallization trials improves the protein crystalli-

zation process in several ways. The technology immediately

improves throughput in existing screens by removing or
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reducing the need for human review of images. Multi-out-

come scoring (e.g., clear/crystal/precipitate) in particular

can speed up crystal optimization by facilitating visualiza-

tion of a target protein’s crystallization response in chem-

ical space [10]. In the longer term, automated scoring will

enable the assembly of millions of protein/cocktail/outcome

data points into databases, where data mining tools will turn

protein crystallization into a statistical science and lead to

rational design of crystallization screens, and potentially

result in uncovering principles of protein chemistry.

Crystallization image classification and automated

scoring is a two-stage process. In the image analysis stage,

the raw image data is first processed into a vector of

numeric features. Conceptually, this stage converts thou-

sands of low-information-density image pixels to fewer,

high-density features in the vector. Next, during the clas-

sification stage, a classifier maps the feature vector to a

class, or score. Before new images can be classified, the

classifier must first be trained by applying a learning algo-

rithm to a training set of processed and pre-scored images.

The choice of features computed at the image analysis

stage sets an upper limit on the success of any classifier built

upon it. Image-feature space, like the chemical space of

crystallization cocktails, is infinite. Inspired by the incom-

plete-factorial design of protein crystallization screens, and

using previous successes and failures of crystallization

image analysis, we have developed a large set of image

features: starting with a core set of image-processing

algorithms, by varying the parameters of each algorithm

factorially, we have created a set of 12,375 distinct features.

This feature-set evolved from our earlier image-analysis

work [3, 4], which employed microcrystal-correlation fil-

ters, topological measures, the Radon transform, and other

tools. Moving from crystal-detection to multi-outcome

scoring, it was necessary to expand beyond crystal-specific

features, towards analysis of texture. We chose to add

grey-level co-occurrence matrices (GLCMs) [5], a set of

general-purpose texture descriptors, to our feature set,

following [16] and [13]. Alternative texture descriptors

used in crystallization image analysis include BlobWorld

features [11] and orientation histograms [8].

Crystals, precipitates, and other objects can appear in an

image over a range of scales, and in any orientation. Much

research in the field therefore uses image analysis methods

with explicit multi-scale or rotation-invariance properties.

Gabor wavelet decomposition is used by [11] and [8].

Wilson [17] uses Haar wavelets and Fourier analysis. Po

and Laine [12] use Laplacian pyramidal decomposition.

The BlobWorld features used by Pan et al. [11] incorporate

automatic scale-selection. Our features are rotation-

invariant, and are computed on multiple low-pass-filtered

copies of the original image, though our methods do not

formally constitute a hierarchical image decomposition.

Crystals, precipitates, and other reactions can also co-

occur in the same image, and so some systems classify

local regions or individual objects of an image rather than

reasoning on the image globally. Both [18] and [6] use

edge-detection to separate foreground objects; individual

objects are then analyzed and classified. By contrast, [8]

divide the image into overlapping square sub-regions, then

analyze and classify each square; objects in the image

(crystals, etc.) may span multiple squares. We follow the

discrete-object approach in some steps of our analysis, and

the sliding-window approach in others. In our work, how-

ever, the local analyses are aggregated into global feature

vectors prior to classification.

The computational requirements for computing this

feature-set for 100,000,000 images is intractable on most

systems. However, since the analysis can inherently be

done in parallel, we have made use of a unique computing

resource. The World Community Grid (WCG) is a global,

distributed-computing platform for solving large scientific

computing problems with human impact (http://www.

worldcommunitygrid.org). Its 492,624 members contrib-

ute the idle CPU time of 1,431,762 devices. WCG is cur-

rently performing at 360 TFLOPs, increasing by about 3

TFLOPs per week (Global WCG statistics as of December

18, 2009). Our Help Conquer Cancer project (HCC) was

launched on the WCG in November 1, 2007, and Grid

members contributed 41,887 CPU-years to HCC to date, an

average of 54 years of computing per day. HCC has two

goals: first, to survey a wide area of image-feature space

and identify those features that best determine crystalliza-

tion outcome, and second, to perform the necessary image

analysis on HWI’s archive of 100,000,000 images.

We have developed three classifiers based on a massive

set of images hand-scored by HWI crystallographers [14,

15], with feature vectors computed by the World Com-

munity Grid HCC project. Although many works in the

literature use a hyperplane-based decision model (e.g.,

Linear Discriminant Analysis [13], Support Vector

Machines [11], our classifiers use the Random Forest

decision tree-ensemble method [2]. Alternative tree-based

models include Alternating Decision Trees used by [8], and

C5.0 with adaptive boosting used by [1].

Materials and methods

Image analysis

Raw image data was converted to a vector of 12,375 fea-

tures by using a complex, multi-layered image-program

running on the WCG. A set of 2,533 features derived from

the primary 12,375, and computed post-Grid, augment the

feature-set, creating a final set of 14,908 features.
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The initial analysis step identifies the circular bottom of

the well, approximately 320 pixels in diameter. All sub-

sequent analysis takes place within the 200-pixel-diameter

region of interest w at the centre of the well, so as to

analyze the droplet interior and avoid the high-contrast

droplet edge. The bulk of the analysis pipeline comprises

basic image analysis and statistical tools: Gaussian blur

(Gr) with standard deviation r, the Laplace filter (D), Sobel

gradient-magnitude (S) and Sobel edge detection (edge),

maximum pixel value (max), pixel sum (R), pixel mean

(l), and pixel variance (Var). Several groups of features are

computed, as described next.

Basic statistics

The first six features computed are basic image statistics:

well-centre coordinates x and y, mean l(w), variance

Var(w), mean squared Laplacian lðDðwÞ2Þ, and mean

squared-Sobel l(S(w)2).

Energy

The next family of features measures the maximum

intensity change in a 32-pixel neighbourhood of the image.

Let vector n ¼ nj ¼ sinðpj=16Þþ1

2
: j 2 f0; . . .; 31g

� �
. Then a

32 9 32-element neighbourhood filter is the outer product

N = n � n, and the energy feature of the image is

er ¼ max N� DðGrðwÞÞ2
n o

.

Euler numbers

These features measure the Euler numbers of the image.

Given a binary image, the Euler number is equal to the

number of objects in the image minus the number of holes in

those objects. The raw image is transformed into binary

images br and br,s by two methods. First, by Sobel edge

detection and morphological dilation: br = dilate(edge

(Gr(w)), and second, by thresholding, perimeter-detection,

and 3 9 3-pixel majority filtering: br;t ¼ majority

ðperimð½w [ t�ÞÞ. The resulting features are Er = euler(br),

and Er,t = euler(br,s).

Radon-Laplacian features

These features are based on a straight-line-enhancing filter

inspired by the Radon transform. Let R be the function

mapping images to images, where each output pixel is the

maximal sum of pixel values of any straight, 32-pixel line

segment centered on the corresponding input pixel. Let

wr ¼ R DðGrðwÞÞj jð Þ and wr,t = [wr[t].

Two subgroups of Radon-Laplacian features are mea-

sured. The global features include global maximum

rr = max(wr), hard-threshold pixel count hr;t ¼
P

wr;t,

and soft-threshold pixel sum sr;t ¼
P

soft wr; tð Þ, where,

for each pixel value x, softðx; tÞ ¼ tanhð4x=t�4Þþ1

2
. The blob

features are based on foreground objects (blobs) obtained

from the binary image wr,t.

The first blob feature is the count cr,t of all blobs in wr,t.

The remaining fourteen blob features ur,t,j = l(pj) are

means (across all blobs in wr,t) of geometric properties

based on [18]. Per blob, fourteen such properties are mea-

sured: the blob area (p1), the blob/convex-hull area ratio

(p2), the blob/bounding-box area ratio (p3), the perimeter/

area ratio (p4), Wilson’s rectangularity, straightness, cur-

vature, and distance-extrema range, and distance-extrema

integral measures (p5, p6, p7, p8, p9), the variance of cor-

responding blob pixels in Gr(w) (p10), the variance of

corresponding blob pixels in wr (p11), the count of promi-

nent straight lines in the blob (peaks in the Hough transform

of wr) (p12), values of the first and second-highest peaks in

the Hough transform (p13, p14), and the angle between first

and second-most-prominent lines in the blob (p15).

Five additional feature subgroups are computed post-

Grid. Each summarizes the blob features across all

parameter-pairs (r,t) where wr,t contains one or more

blobs. The blob means v1, …, v18 measure the means of all

ur,t,1, …, ur,t,15, hr,t, sr,t, and cr,t values. The blob maxs are

vectors xj ¼ ½ur�;t�;1; . . .; ur�;t�;15; hr�;t� ; sr�;t� ; cr�;t� ; r�; t��,
where, per j, ðr�; t�Þ ¼ arg max

r;t
ur;t;j
� �

. The blob mins are

similarly defined vectors yj, but with ðr�; t�Þ ¼ arg min

r;t ur;t;j
� �

. The first blobless r and first blobless t are scalar

features measuring the lowest values of r and t for which

wr,t contains zero blobs.

Radon-Sobel features

This feature group duplicates the previous set, but substi-

tuting the Sobel gradient-magnitude operator for the

Laplace filter, i.e., using wr = R(S(Gr(w))).

Sobel-edge features

These features are similar to the pseudo-Radon features,

with the following differences: they use wr = S(Gr(w)),

binary image edge(Gr(w)) in lieu of wr,t, without a

threshold parameter t, with blob maxs and mins as vectors

of the form ½ur�;1; . . .; ur�;15; rr� ; hr� ; cr� ; r��, and without a

soft-threshold-sum feature.

Microcrystal features

These features are based on the ten microcrystal exemplars

of [3]. Let Mj;h ¼ corrðDðwÞ; rothðzjÞÞ
�� �� be the product of

correlation-filtering some rotation of the exemplar image zj

against the Laplacian of the well image, and let M�
j be the
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pixel-wise maximum of all Mj,h. Then the peaks of M�
j are

the points in w that most resemble some rotation of the jth

exemplar. Three feature subgroups are calculated. The

maximum correlation features mj ¼ maxðM�
j Þ measure the

global maxima. The relative peaks features q20%
j , q40%

j ,

q60%
j , and q80%

j count the number of local maxima in M�
j

exceeding 20, 40%, etc., of the value of mj. The absolute

peaks features aj,l (computed post-Grid) approximate the

number of local maxima in M�
j exceeding 26 distinct

thresholds l.

GLCM features

These features measure extremes of texture in local regions

of the image. The GLCM of an image with q grey values,

given some sampling vector d = (dx, dy) of length d, is the

symmetric q 9 q matrix whose elements cjk indicating the

count of pixel pairs separated spatially by d with grey-

values j and k. Haralick et al. define a set of 14 functions on

the GLCM that measure textural properties of the image.

Our analysis employs the first 13: Angular Second Moment

(f1), Contrast (f2), Correlation (f3), Variance (f4), Inverse

Difference Moment (f5), Sum Average (f6), Sum Variance

(f7), Sum Entropy (f8), Entropy (f9), Difference Variance

(f10), Difference Entropy (f11), and two Information Mea-

sures of Correlation (f12, f13). The last Haralick function

(Maximal Correlation Coefficient) was discarded due to its

high computational cost.

We compute GLCMs and evaluate their functions on

every 32-pixel-diameter circular neighbourhood within w,

for sampling distances d [ {1, …, 25}, and at three gray-

scale quantization levels q [ {16, 32, 64}. For fixed (d, q)

and fixed neighbourhood, the range and mean of each fj are

measured across all fd : dj j ¼ dg. Feature values are

computed by repeating the measurement for all valid

neighbourhoods, and recording the maximum neighbour-

hood mean gmax
d;q;f , minimum neighbourhood mean gmin

d;q;f , and

maximum neighbourhood range grange
d;q;f .

Truth data

Truth data was obtained from two massive image-scoring

studies performed at HWI: one set of 147,456 images,

representing 96 proteins 9 1,536 cocktails [14], and one

set of 17,895 images specifically containing crystals [15].

A randomly selected 90% of images from these data sets

were used to evaluate features and train the classifiers. The

remaining 10% were withheld as a validation set.

The raw scoring of each image in the Snell truth data

indicates the presence or absence of 6 conditions in the

crystallization trial: phase separation, precipitate, skin

effect, crystal, junk, and unsure. The clear drop condition

denotes the absence of the other six. In combination, these

conditions create 64 distinct outcomes. To simplify the

classification task, we define three alternative truth

schemes: a clear/precipitate-only/other scheme, a clear/

has-crystal/other scheme, and a 10-way scheme (clear/

precipitate/crystal/phase separation/skin/junk/precipitate

& crystal/precipitate & skin/phase & crystal/phase &

precipitate), and have trained a separate classifier for each

scheme.

Conflicting scores from multiple experts from the 96-

protein-study [14] were handled by translating each raw

score to each truth scheme, and then eliminating images

without perfect score agreement.

Random forests

The random forest (RF) classification model uses boot-

strap-aggregating (bagging) and feature subsampling to

generate unweighted ensembles of decision trees [2]. The

RF model was chosen for its suitability to our task. They

generate accurate models using an algorithm naturally

resistant to over-fitting. As a by-product of the training

algorithm, RFs generate feature-importance measures from

out-of-bag training examples, useful for feature selection.

RFs naturally handle multiple outcomes, and thus do not

limit us to binary decisions, e.g., crystal/no crystal. RFs

may also be trained in parallel, or in multiple batches: two

independently trained RFs can be combined taking the

union of their trees and computing a weighted average of

their feature-importance statistics. Finally, earlier, unpub-

lished work suggested that naı̈ve Bayes and other ensem-

bles of univariate models could not sufficiently distinguish

image classes; RFs, by contrast, work naturally with multiple,

arbitrarily distributed, (non-linearly) correlated features.

For this study, we used the randomForest package [7],

version 4.5-28, for the R programming environment, ver-

sion 2.8.1, 64-bit, running on an IBM HS21 Linux cluster

with CentOS 2.6.18-5.

The 10-way classifier

The 10-way classifier was generated in two phases: feature

reduction, and classifier training. In feature reduction

phase, nine independent iterations of RF were applied.

Each iteration trained a random forest of 500 trees on an

independently sampled, random subset of images from the

training data. Feature ‘‘importance’’ (mean net accuracy

increase) measures were recorded for each iteration, and

then aggregated using the randomForest package’s com-

bine function. The maximum observed standard deviation

in any feature across the nine iterations was 0.08%. From

the aggregated results, the 10% most-important (1,492 of

14,908) features were identified (see Fig. 1).
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In the final training phase, five independent iterations of

RF were applied. Each iteration trained a random forest of

1,000 trees on an independently sampled, random subset

of images from the training data (see Table 1). The feature-

set was restricted to the top-10% subset identified in the

first phase. The 1,000-tree-forests from each iteration were

combined to create the final 5,000-tree, 10-way RF clas-

sifier. This classifier was then used to classify 8,528 images

from the validation set, using majority-rules voting.

The 3-way classifiers

The clear/has-crystal/other classifier-generating process

re-used the feature-importance data from the 10-way

classifier. The RF was generated in one training phase,

using four independent iterations of RF. Each iteration

trained a random forest of 1,000 trees on an independently

sampled, random subset of images from the training data

(see Table 2). The feature-set was restricted to the top-10%

subset identified in the first phase of the 10-way classifier

(n = 1,492). The 1,000-tree-forests from each iteration

were combined to create the final 4,000-tree, clear/has-

crystal/other RF classifier. This classifier was then used to

classify images from the validation set, using majority-

rules voting.

The clear/precipitate-only/other classifier was generated

by the same process, again re-using the feature-importance

data from the 10-way classifier. Training and validation

data is summarized in Table 3.

Results

Importance measures for the 14,908 image features, cal-

culated during the feature-reduction phase of the 10-way

classifier training, are plotted in Fig. 1.

Truth values from the 8,528 images from the 10-way

classifier’s validation set were compared against the clas-

sifier’s predictions. The resulting confusion matrix is pre-

sented in Table 4. An alternative representation is shown in

Fig. 2. The terms precision and recall are used in the

matrix to measure the accuracy of the classifier on each

outcome. For a given outcome X, recall, or true-positive

rate, is the fraction of true X images correctly classified as

X. Precision is the fraction of images classified as X that are

correct. Randomly selected crystal images misclassified as

clear and phase are shown in Supplementary Figures S1

and S2, respectively.
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Fig. 1 Importance measures of the 14,908 features measured during

the feature-selection phase of the 10-way classifier training. The 10%

highest-scoring features were used to train the three classifiers in this

study

Table 1 Number and distribution of image classes in training and

validation phases for the 10-way classifier

Class In

training

set

Samples per

iteration

(feature

reduction)

Samples per

iteration

(final

training)

In

validation

set

Clear 26,160 5,000 5,000 2,887

Precip 25,951 5,000 5,000 2,897

Crystal 6,415 5,000 5,000 748

Phase 5,332 5,000 5,000 564

Precip & crystal 5,843 5,000 5,000 619

Precip & skin 3,748 3,748 3,748 466

Phase & crystal 1,790 1,790 1,790 201

Phase & precip 384 384 384 45

Skin 613 613 613 62

Junk 430 430 430 39

Table 2 Number and distribution of image classes in training and

validation phases for the clear/crystal/other classifier

Class In training

set

Samples per iteration

(final training)

In validation

set

Clear 26,160 10,000 2,887

Has-crystal 16,763 10,000 1,879

Other 81,893 10,000 9,064

Table 3 Number and distribution of image classes in training and

validation phases for the clear/precipitate-only/other classifier

Class In training

set

Samples per iteration

(final training)

In validation

set

Clear 26,160 10,000 2,887

Precip-only 25,951 10,000 2,897

Other 34,882 10,000 3,872
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Truth values from the 13,830 images from the clear/has-

crystal/other classifier’s validation set were compared

against the classifier’s predictions, as were the 9,656

images from the clear/precipitate-only/other validation set.

The resulting confusion matrices are presented in Tables 5

and 6, and as precision/recall plots in Figs. 3 and 4.

Randomly selected true-positives, false-positives, and

false-negatives for each category are presented in Figs. 5

and 6.

Table 4 Confusion matrix for the 10-way classifier, representing 8,528 classified images from the validation set

Truth Machine classification Total Recall

Clear Precip Crystal Phase Precip &

crystal

Precip &

skin

Phase &

crystal

Phase &

precip

Skin Junk

Clear 2,746 3 60 53 0 0 0 0 1 24 2,887 0.951

Precip 29 2,213 45 77 343 185 1 0 2 2 2,897 0.764

Crystal 66 9 531 22 96 6 11 0 5 2 748 0.710

Phase 48 5 21 469 8 8 3 0 0 2 564 0.832

Precip & crystal 0 55 84 19 425 33 3 0 0 0 619 0.687

Precip & skin 1 46 13 6 16 378 0 0 6 0 466 0.811

Phase & crystal 3 4 67 48 33 2 42 0 1 1 201 0.209

Phase & precip 0 13 3 3 20 6 0 0 0 0 45 0.000

Skin 16 0 4 8 0 0 0 0 32 2 62 0.516

Junk 9 0 3 1 0 1 0 0 0 25 39 0.641

Total 2,918 2,348 831 706 941 619 60 0 47 58 8,528

Precision 0.941 0.943 0.639 0.664 0.452 0.611 0.700 0.681 0.431

The element in row i, column j counts the number of images truly belonging to class i, but (mis)classified as j. Diagonal elements count correctly

classified images
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Fig. 2 Precision/recall plot of the 10-way classifier. Viewed as a row

of vertical bar charts, each chart shows the relative distribution of

true classes for a given RF-assigned label. Black bars (by width) show

the proportions of false-positives. Viewed as a column of horizontal
bar charts, each chart shows the relative distribution of RF-assigned

labels for a given true class. Black bars (by height) show the

proportions of false-negatives. From either perspective, the red bar in

each chart shows the proportion of correct classifications, i.e.,

precision (width) or recall (height)

Table 5 Confusion matrix for the clear/crystal/other classifier, rep-

resenting 13,830 classified images from the validation set

Truth Machine classification Total Recall

Clear Has crystal Other

Clear 2,841 20 26 2,887 0.984

Has crystal 99 1,507 273 1,879 0.802

Other 327 1,132 7,605 9,064 0.839

Total 3,267 2,659 7,904 13,830

Precision 0.870 0.567 0.962

Table 6 Confusion matrix for the clear/precipitate/other classifier,

representing 9,656 classified images from the validation set

Truth Machine classification Total Recall

Clear Precip only Other

Clear 2,825 7 55 2,887 0.979

Precip only 22 2,571 304 2,897 0.887

Other 290 455 3,127 3,872 0.808

Total 3,137 3,033 3,486 9,656

Precision 0.901 0.848 0.897
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Discussion

Studying the confusion tables of each of the classifiers

reveals several trends. Overall, clear drops and precipitates

are easily recognized by the classifiers: 98% of all clear

drop images are correctly recognized in the simpler clas-

sification tasks; this is reduced to 95% with the 10-way

classifier. 89% of all precipitate-only images are correctly

recognized in the simpler classification task, and this result

is also reduced in the 10-way classifier, mainly due to

competition with precip & crystal, and precip & skin

categories.

Overall, crystals are fairly well detected. 80% of crystals

are detected in the simpler classification task. The 10-way

classifier has more precise categories, and some accuracy is

lost choosing between crystal, precip & crystal, and phase

& crystal categories.

The precip & crystal category seems especially attrac-

tive to the 10-way classifier, resulting in many misclassi-

fications of precip, phase & precip, and phase & crystal

images. Conversely, the phase & precip category was

ignored entirely by the classifier: none of the 45 true phase

& precip images in the validation set were correctly clas-

sified; instead, they were misclassified as mostly precip or

precip & crystal. This difficulty is likely caused by two

factors. First, the phase & precip category is the rarest

category in both the training and validation sets. Second,

phase separation seems to introduce a very weak signal in

the feature data, whereas precipitate’s signal is very strong.
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Fig. 3 Precision/recall plot of the clear/crystal/other classifier
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Fig. 5 Randomly selected true-positive, false-positive, and false-

negative images from the clear/has-crystal/other classifier’s valida-

tion set
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The phase-only outcome is both well-represented in the

data, and well-recognized by the 10-way classifier: 83%

recall and 66% precision.

The most important outcome to crystallographers is

accurately detecting all existing crystals, and improve-

ments to the classifier, the image features, and feature

selection must focus here. The 20% false-negative rate for

crystals in the clear/has-crystal/other classifier can be

dissected somewhat by examining the crystal rows and

non-crystal columns of the 10-way classifier’s confusion

matrix (Table 4). True crystal images are assigned to non-

crystal categories by the classifier at rates of 9% for clear,

3% for phase, and 3% elsewhere. Similarly, true precip &

crystal images are assigned to non-crystal categories at

rates of 9% for precip, 5% for precip & skin, and 3% for

phase. The smaller phase & crystal category is misclassi-

fied as phase 24% of the time. The crystal false negatives

assigned to clear may be the result of crystals located near

the well edge being excluded from the region of interest, or

crystals being mistaken for points of contact between the

droplet and the plastic well bottom. The majority of crystal

false negatives assigned to phase seem to be needle crys-

tals. A deeper look is required at the image features that

can better separate the clear, phase, crystal, and phase &

crystal categories.

A final note about bias: due to the inclusion of [15] data,

both the training and validation sets are enriched for crystal

outcomes (11% crystals versus an estimated 0.4% real-

world rate). Crystals represent a rare but most important

outcome. The additional crystal training data was required

in order to sufficiently train the model, but the outcome is a

model that will over-report crystals in real-world use,

resulting in a decreased precision score, but unchanged

recall.
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