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Abstract: This paper presents the design and analysis of a multi degree of freedom (DOF)
electro-thermally actuated non-resonant MEMS gyroscope with a 3-DOF drive mode and 1-DOF
sense mode system. The 3-DOF drive mode system consists of three masses coupled together
using suspension beams. The 1-DOF system consists of a single mass whose motion is decoupled
from the drive mode using a decoupling frame. The gyroscope is designed to be operated in
the flat region between the first two resonant peaks in drive mode, thus minimizing the effect of
environmental and fabrication process variations on device performance. The high gain in the flat
operational region is achieved by tuning the suspension beams stiffness. A detailed analytical model,
considering the dynamics of both the electro-thermal actuator and multi-mass system, is developed.
A parametric optimization is carried out, considering the microfabrication process constraints of the
Metal Multi-User MEMS Processes (MetalMUMPs), to achieve high gain. The stiffness of suspension
beams is optimized such that the sense mode resonant frequency lies in the flat region between the
first two resonant peaks in the drive mode. The results acquired through the developed analytical
model are verified with the help of 3D finite element method (FEM)-based simulations. The first
three resonant frequencies in the drive mode are designed to be 2.51 kHz, 3.68 kHz, and 5.77 kHz,
respectively. The sense mode resonant frequency is designed to be 3.13 kHz. At an actuation voltage
of 0.2 V, the dynamically amplified drive mode gain in the sense mass is obtained to be 18.6 µm. With
this gain, a capacitive change of 28.11 f F and 862.13 f F is achieved corresponding to the sense mode
amplitude of 0.15 µm and 4.5 µm at atmospheric air pressure and in a vacuum, respectively.

Keywords: MEMS gyroscope; electro-thermal actuator; non-resonant; multi-DOF; high gain; capacitive
sensing; robustness

1. Introduction

Accelerometers and gyroscopes are the most dominant among the MEMS-based inertial sensors.
The unprecedented and remarkable success of inertial sensors in consumer and portable electronics,
especially in smart phones and gaming consoles, has made MEMS gyroscopes the expeditiously
growing sector in the MEMS inertial sensors industry. MEMS-based inertial sensors have a wider
application spectrum spanning from advanced automotive safety systems and short range navigation
and guidance systems for unmanned aerial vehicles (UAVs) to interactive consumer electronics
including gaming consoles, mobile phones, and image stabilization in cameras [1–5]. The conventional
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high-performance fiber optic, ring laser, and rotating wheel based gyroscopes are costly and have
a large size which makes them incompatible for most of the potential emerging applications. The MEMS
gyroscopes offer a better alternative owing to their miniaturized size, low cost, and possible integration
with integrated circuit (IC) technology [6]. MEMS gyroscopes consist of a vibrating mechanical element
for sensing angular velocity. The working principle is based on the transfer of energy between the drive
and sense modes as a result of Coriolis acceleration corresponding to input angular velocity. In the
drive mode, the vibrating mass is oscillated at a constant amplitude whereas in the sense mode the
orthogonal oscillation of sense mass due to input angular velocity is measured [7,8]. The drive mode
actuation and sense mode oscillation detection in MEMS gyroscopes is generally carried out using
electrostatic transduction mechanisms due to their low-input power requirement [9–11]. However,
the output displacement of electrostatic actuators is low. The electrothermal actuation mechanism,
based on the Joule heating effect, offers relatively large output force and displacement at low actuation
voltage and have small footprint [12–14].

The conventional MEMS gyroscopes have a mechanical structure with 1-DOF drive and sense
mode. These gyroscopes are termed as “resonant gyroscopes” in which high mechanical gain
and sensitivity is achieved by tuning the resonant frequencies of two modes to match. However,
the resonant frequency matching becomes extremely difficult due to microfabrication process tolerances
and environmental parametric variations. Moreover, the coupling mechanisms between two modes
and corresponding quadrature error is also of major concern in resonant MEMS gyroscopes [15–18].
To overcome the mode matching issue in resonant MEMS gyroscopes, multi-DOF gyroscope designs
have been presented in literature [9,19–25]. The DOF in either drive or sense mode are increased to
achieve relatively wide operating bandwidth for increased robustness. The gyroscopes are operated in
the flat region created between the two resonant peaks, thus avoiding the need for strict frequency
matching between drive and sense modes. These multi-DOF gyroscopes are termed as “non-resonant”
MEMS gyroscopes.

The major problem faced by non-resonant gyroscopes is the intrinsically lower response outside
the vicinity of the resonant peak positions. To address this issue, several different approaches are
adopted in literature. An earlier solution for this issue was proposed using the concept of micro
machined coupled resonators with dynamic vibration absorber structure [26]. The concept of dynamic
motion amplification seems to be a feasible solution to the stated problem. In this approach, the basic
two mass oscillator controls the distance between two resonance peaks based on the mass ratios which
is a non-viable way of controlling the mechanical amplification based on the fact that second mass
needs to be very small in order to achieve large mechanical amplification. This problem is solved
by improved two mass system in which an added spring structure reduced the dependency on the
mass ratios for mechanical amplification, but this approach is still insufficient to provide adequate
control to endure imperfections due to the drift of springs with temperature variations and fabrication
imperfections [27]. A new three-mass coupled resonator is proposed to resolve the issue with improved
two mass system [28]. In this three-mass coupled resonator, the resonance and anti-resonance positions
can be easily regulated by changing the spring constant rather than changing the whole structure.
Moreover, the mechanical amplification in three-mass coupled resonators is less affected by mass ratios
and can be further improved by altering the spring constants which is more practical way to enhance
the dynamic amplification.

In this paper, a 4-DOF MEMS gyroscope is proposed based on the concept of three-mass coupled
resonators with a 3-DOF drive mode and 1-DOF sense mode. The gyroscope is designed by considering
the microfabrication process constraints of commercially available low-cost process MetalMUMPs. [29].
This dynamic system is composed of three masses constituting of a 3-DOF drive mode for dynamic
amplification in the drive mode while the third mass being mechanically decoupled from the drive
mode form the 1-DOF sense mode. The drive and sense mode oscillations are mechanically decoupled
from each other with the help of decoupling frame. The frequency response of 3-DOF drive mode
oscillator shows that the dynamic system has three resonance peaks with flat regions in between
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the peaks. The sense mode resonant frequency is designed to lie between the flat region of first
and second resonance peak where the response gain is least sensitive to environmental changes and
parametric fluctuations.

2. Operating Principle of the Proposed Gyroscope

Figure 1 shows the schematic of the proposed MEMS gyroscope with a 3-DOF drive mode and
1-DOF sense mode. The first mass m1 which is the drive mass is excited by an external force in the
drive direction using the V-shaped electro thermal actuator. The second mass m2 transfers the dynamic
energy from the mass m1 to mass m3 which acts as a final oscillating mass. The masses m1 and m2 are
free to move in the drive direction but constrained to move in the sense direction by means of elastic
springs. The sense mode oscillations of mass m3 are decoupled from the drive direction oscillations by
means of a decoupling frame m f to minimize instabilities due to dynamical coupling between sense
and drive modes. Thus, masses m1, m2, and combination of (m f + m3) form a 3-DOF drive mode
while m3 being free to oscillate in the sense acts as a 1-DOF sense mode oscillator. The sense direction
oscillation of the mass m3, corresponding to an input angular velocity, is designed to be measured by
using parallel plate sense combs.
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Figure 1. Schematic diagram of the proposed 4-DOF MEMS gyroscope with a 3-DOF drive mode and
1-DOF sense mode oscillator.

3. Analytical Modeling for the Proposed MEMS Gyroscope

3.1. Dynamic Equations for Drive and Sense Mode

The equations of motion for the proposed MEMS gyroscope are derived using the Lagrange
equation, given as [30]

d
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where K is kinetic energy, V is potential energy, D is dissipation function, and f is the forcing function
of the vibrating system. The subscript i depicts the degree of freedom.

Figure 2 shows the lumped mass-spring-damper model for the proposed microgyroscope. The
kinetic energy, potential energy, and dissipative function for this model can be written as

K =
1
2

m1
.
x2

1 +
1
2

m2
.
x2

2 +
1
2

(
m f + m3

) .
x2

3 +
1
2

m3
.
y2

1 (2)

V =
1
2

k1x2
1 +

1
2

k12(x1 − x2)
2 +

1
2

k2x2
2 +

1
2

k23(x2 − x3)
2 +

1
2

k3x2
3 +

1
2

kyy2
1 (3)



Micromachines 2018, 9, 577 4 of 26

D =
1
2

c1
.
x2

1 +
1
2

c2
.
x2

2 +
1
2

c3
.
x2

3 +
1
2

cy
.
y2

1 (4)

Micromachines 2018, 9, x 4 of 25 

 

𝐷 =
1

2
𝑐1𝑥̇1

2 +
1

2
𝑐2𝑥̇2

2 +
1

2
𝑐3𝑥̇3

2 +
1

2
𝑐𝑦𝑦̇1

2 (4) 

k1

c1

k12
k2

k23 k3

c2
c3

cykym2

m3

mf + m3m1

x1 x2 x3 y

Fcos( t) 

(a) (b)

 

Figure 2. Lumped mass-spring-damper model of the proposed gyroscope, (a) 3-DOF drive mode, (b) 

1-DOF sense mode. 

By employing the Lagrange equation to Equations (2)–(4), the 4-DOF system of equations are 

derived as 

𝑚1𝑥̈1 + 𝑐1𝑥̇1 + 𝑘1𝑥1 + 𝑘12(𝑥1 − 𝑥2) = 𝐹 cos(Ω𝑡) (5) 

𝑚2𝑥̈2 + 𝑐2𝑥̇2 + 𝑘2𝑥2 + 𝑘12(𝑥2 − 𝑥1) + 𝑘23(𝑥2 − 𝑥3) = 0 (6) 

(𝑚3 + 𝑚𝑓)𝑥̈3 + 𝑐3𝑥̇3 + 𝑘3𝑥3 + 𝑘23(𝑥3 − 𝑥2) = 0 (7) 

𝑚3𝑦̈1 + 𝑐𝑦𝑦̇3 + 𝑘𝑦𝑦3 = 0 (8) 

For frequency analysis, the above equations can be transformed into a matrix form given as 

[𝑀]𝑋̈ + [𝐶]𝑋̇ + [𝐾]𝑋 = [𝐹𝐷] (9) 

where matrices M, C and K are given as 

[𝑋] = [

𝑥1

𝑥2

𝑥3

𝑦1

] (10) 

[𝑀] = [

𝑚1 0 0 0
0 𝑚2 0 0
0 0 𝑚3 + 𝑚𝑓 0

0 0 0 𝑚3

] (11) 

[𝐶] = [

𝑐1 0 0 0
0 𝑐2 0 0
0 0 𝑐3 0
0 0 0 𝑐𝑦

] (12) 

[𝐾] =

[
 
 
 
𝑘1 + 𝑘12 −𝑘12 0 0

−𝑘12 𝑘2 + 𝑘12 + 𝑘23 −𝑘23 0
0 −𝑘23 𝑘3 + 𝑘23 0
0 0 0 𝑘𝑦]

 
 
 
 (13) 

If the system of equation has solution 

[𝑋] = [𝐴] sin(𝜔𝑡) + [𝐵] cos(𝜔𝑡) (14) 

where A and B are vectors. 

Figure 2. Lumped mass-spring-damper model of the proposed gyroscope, (a) 3-DOF drive mode, (b)
1-DOF sense mode.

By employing the Lagrange equation to Equations (2)–(4), the 4-DOF system of equations are
derived as

m1
..
x1 + c1

.
x1 + k1x1 + k12(x1 − x2) = F cos(Ωt) (5)

m2
..
x2 + c2

.
x2 + k2x2 + k12(x2 − x1) + k23(x2 − x3) = 0 (6)(

m3 + m f

) ..
x3 + c3

.
x3 + k3x3 + k23(x3 − x2) = 0 (7)

m3
..
y1 + cy

.
y3 + kyy3 = 0 (8)

For frequency analysis, the above equations can be transformed into a matrix form given as

[M]
..
X + [C]

.
X + [K]X = [FD] (9)

where matrices M, C and K are given as

[X] =


x1

x2

x3

y1

 (10)

[M] =


m1 0 0 0
0 m2 0 0
0 0 m3 + m f 0
0 0 0 m3

 (11)

[C] =


c1 0 0 0
0 c2 0 0
0 0 c3 0
0 0 0 cy

 (12)

[K] =


k1 + k12 −k12 0 0
−k12 k2 + k12 + k23 −k23 0

0 −k23 k3 + k23 0
0 0 0 ky

 (13)

If the system of equation has solution

[X] = [A] sin(ωt) + [B] cos(ωt) (14)
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where A and B are vectors.

[K]− ω2[M] =


k1 + k12 − ω2m1 −k12 0 0

−k12 k2 + k12 + k23 − ω2m2 −k23 0

0 −k23 k3 + k23 − ω2
(

m f + m3

)
0

0 0 0 ky − ω2m3

 (15)

ω[C] =


ωc1 0 0 0

0 ωc2 0 0
0 0 ωc3 0
0 0 0 ωcy

 (16)

[T] =

[
[K]− ω2[M] −ω[C]

ω[C] [K]− ω2[M]

]
(17)

The relation among A, B and T is given by[
[A]

[B]

]
= [T]−1

[
[F]
[0]

]
(18)

Once A and B are known, the frequency response can be obtained as

xi(ω) =
√

Ai + Bi (19)

3.2. Mechanical Stiffness and Damping Analysis

The designed suspension system configuration of the proposed gyroscope allows the masses
m1 and m2 to move only in the drive direction but restricted their motion in the sense direction. The
mass m3 is allowed to oscillate in both the drive and sense direction which are orthogonal to each
other. The suspension system configuration of the proposed gyroscope dynamical model is shown in
Figure 3.
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Figure 3. Drive and sense mode flexural suspension for the proposed MEMS gyroscope.
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The four, double folded flexures connect the masses m1, m2, and m3 with the substrate through
anchors with each having beams of length L1x, L2x and L3x, respectively. These folded flexures beam
can be modeled as a fixed-guided beams, resulting in an overall stiffness of

k1 =
4
2

(
12EI
L3

1x

)
=

2Etw3

L3
1x

(20)

k2 =
4
2

(
12EI
L3

2x

)
=

2Etw3

L3
2x

(21)

k3 =
4
2

(
12EI
L3

3x

)
=

2Etw3

L3
3x

(22)

where w, L, and t are the width, length, and thickness of the beams, respectively, E is the Young’s
Modulus of the material and I = tw3/12 is the second moment of inertia of the rectangular beam.
The stiffness of chevron-shaped electro thermal actuator being directly connected to the mass m1,
significantly affects the natural frequency of the proposed dynamical system in the drive direction.
The chevron shaped actuator can be modeled as a fixed-fixed micro beam by neglecting the small
inclination angle θ. The stiffness kchev of the chevron-shaped actuator consisting of N beams, each
having length Lc, can be calculated as [31]

kchev = N
(

192EI
L3

c

)
= N

[
16Etw3

L3
c

]
(23)

The overall drive direction stiffness of mass m1 can be estimated by merging k1x and kchev as

k1eq =

[
2Etw3

L3
1x

]
+ N

[
16Etw3

L3
c

]
(24)

The mass m1 is connected to mass m2 which is then connected to the decoupling frame having
mass m f via four drive direction deformable quadruple-folded flexures having lengths L12x and L23x
and their stiffness is given by k12 and k23, respectively.

k12 =
4
1

(
12EI
L3

12x

)
=

4Etw3

L3
12x

(25)

k23 =
4
1

(
12EI
L3

23x

)
=

4Etw3

L3
23x

(26)

In order to minimize the zero rate drift and dynamic coupling between the drive and sense
directions of the proposed gyroscope dynamical model, the sense mass m3 is coupled to the decoupling
frame via four sense direction quintuple-folded flexures, with all the beams of length L3y. The overall
sense direction stiffness k3y of the sense mass is

k3y =
4
5

(
12EI
L3

3y

)
=

4Etw3

5L3
3y

(27)

The fluidic friction due to air between the sliding surfaces of the proof masses and the stationary
surface of the substrate is the major energy dissipation mechanism in the vibratory MEMS gyroscopes.
The total slide film damping c1x and c2x for the mass m1 and m2 oscillating in the drive direction can
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be demonstrated as Couette flow by considering an instantaneously established linear fluidic velocity
profile and is given as

c1 = µe
A1

z0
(28)

c2 = µe
A2

z0
(29)

The total slide film damping c3x for the combination of masses m3 + m f oscillating in the drive
direction can be calculated by assuming the Couette flow between the stationary substrate and the
proof mass along with considering Couette flow between the sensing combs and is given as:

c3 = µe

(
A3 + A f

)
z0

+ µe
2Ncaplcapt

ycap
(30)

The total damping c3y for the mass m3 oscillating in the sense direction results from the Couette
flow between the stationary substrate and the proof mass along with the squeeze film damping
between the sensing combs and is given as

cy = µe
A3

z0
+ µe

7Ncaplcapt3

y3
cap

(31)

where µe is the effective permittivity of the air, A is the area of the sliding surface, z0 is the distance
between the proof mass and the stationary substrate, Ncap is the no of air gap capacitors, lcap, t and
ycap are the overlapping length, thickness, and distance moved by the sensing combs respectively.

3.3. Output Force and Displacement Analysis of Electrothermal Actuator

The schematic of V-shaped electro thermal micro actuator is shown in Figure 4. Heat is generated
due to Joule heating on the application of a potential difference V on the anchors of the beams,
which results into forward pushing of the central shuttle due to the symmetrical expansion of the
V-shaped beams.
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The output displacement of the chevron-shaped electro-thermal actuator in the closed-form,
by combining the electric-thermal and thermo-mechanical models, can be written as [32]

ymax = (F1 − F2)

(
V2

PE

)
(32)
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where, F1 and F2 are the flexibilities of the thermal actuator due to voltage V and external force PE
respectively. Corresponding stiffness are: K1 = 1

F1
and Kchev = 1

F2
. The voltage and external forces are

similar in terms of causing tip displacement and generating force. Equation (32) can be rewritten as

ymax = F2.Fmax = F2.(PV − PE) (33)

where PV =
(

F1
F2

)
V2 shows the corresponding force for the applied voltage. Fmax is the output force

generated by the electrothermal actuator having stiffness Kchev at the maximum displacement ymax

and is given by
Fmax = (PV − PE) (34)

Assuming ζ = F1
F2

, the output force of electrothermal actuator can be written as

Fmax = ζV2 − PE (35)

The impacts of the input parameters (i.e., voltage and external load), structural parameters
(i.e., beams and shuttle geometry), material properties (i.e., coefficient of thermal expansion, modulus
of elasticity and resistivity), on the output responses (i.e., maximum force output and tip displacement)
can be obtained using Equations (33) and (35).

The stiffness-force model of the electro-thermal actuator shows a relationship between output
force and displacement by considering the actuator to be a spring with stiffness Kchev. The stiffness
of the actuator being dependent on the inclination angle θ plays an imperative role in the response
of the proposed non-resonant gyroscope. Figures 5 and 6 shows the impact of the inclination angle
θ on the stiffness, output force generation, and displacement, respectively. The inclination angle θ is
chosen to be 2.6◦ based on the fact that maximum displacement of 7.396 µm took place at that angle
with reasonable amount of output force 1971.4 µN and stiffness value of 194.47 N/m in the presence
of an external load.

There is also a minute dependence of electrothermal actuator stiffness on the temperature as
shown in Figure 7 and there is small change in the stiffness of the chevron-shaped electro-thermal if
the temperature rises as the result of applied input voltage due to the decrease in the value of Young’s
modulus of nickel [33]. In our proposed gyroscope, the highest temperature is 62.3 ◦C on the arms of
the chevron-shaped actuator and the corresponding stiffness is 194.47 N/m.
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4. Parametric Design Optimization of the Proposed MEMS Gyroscope

The proposed MEMS gyroscope is designed to be operated in region between the first two
drive mode resonance peaks which allows to minimize the effect of environmental variations and
microfabrication process uncertainties. Thus, to maximize the gain in the flat operational region
between first two resonant peaks, a parametric design optimization is carried out by varying the
stiffness values of different suspensions connecting the masses to each other and to substrate.
The parametric optimization of the proposed gyroscope dynamical model is done by maximizing the
concerned variables response using grid search method [34,35]. In this method, the maxima of curves
are explored for certain realizable range of values for the parameters being optimized. The 3D graphs
are plotted using analytical model and the system response including gain in the region between
resonance peaks and positions of resonance peaks is analyzed for varying stiffness values. The analysis
is carried out at a fixed actuation voltage of 0.2 V to electrothermal actuator. Figures 8–12 show the
system response and operational range for the proposed gyroscope dynamical model in the drive
mode by changing the stiffness values of the mechanical springs including k1, k2, k3, k12, and k23.
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Figure 8. (a) Response amplitude and bandwidth optimization graph for the variation of k1; (b) Top
view and (c) Contour plots of the system response.

Figure 8a shows the response amplitude and bandwidth graph of the proposed electro-thermally
actuated microgyroscope for the variation of k1. Figure 8b, c shows the top view and contour plots of
the system response and bandwidth, respectively. The response amplitude of the system is shown by
the legend in Figure 8. The dynamic response of the system shows that position of the first, second, and
third resonance frequencies moves to higher values by increasing the value of the k1. But the position
of the third resonance peak is most significantly affected by changing the value of k1. The response
amplitudes have the highest values at the resonance peaks for lower values of k1. But with the increase
in the value of k1, the response amplitudes show a decreasing trend on the resonance peaks. Also the
value of the response amplitude in the valley between the first and second resonant frequency shows a
decreasing trend with increasing the value of k1 as shown by the colors legend in the top view of the
system response.
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Figure 9. (a) Response amplitude and bandwidth optimization graph for the variation of k12; (b) Top
view and (c) Contour plots of the system response.

Figure 9a shows the response amplitude and bandwidth graph of the proposed electro-thermally
actuated microgyroscope dynamic model for the variation of k12. Figure 9b,c shows the top view
and contour plots of the system response and bandwidth, respectively. The response amplitude of
the system is shown by the legend in the Figure 9. The dynamic response of the system shows that
position of first and third resonance frequencies moves to higher values while the position of the
second resonance frequency moves to lower value by increasing the value of the k12. But the position
of third resonance peak is significantly affected by changing the value of k12. The response amplitudes
have higher values at the first and second resonance peaks while for the third resonance peak the
response amplitude has lower values for higher values of k12. But with the increase in the value of
k12, the response amplitudes show the increasing trend on the first and second resonance peaks and
a decreasing trend for the third resonance peak. Also the value of the response amplitude in the valley
between the first and second resonant frequency shows the increasing trend with increasing the value
of k12 as shown by colors of legend in the top view of the system response.
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Figure 10. (a) Response amplitude and bandwidth optimization graph for the variation of k23; (b) Top
view and (c) Contour plots of the system response.

Figure 10a shows the response amplitude and bandwidth graph of the proposed electro-thermally
actuated microgyroscope dynamic model for the variation of k23. Figure 10b,c shows the top view
and contour plots of the system response and bandwidth, respectively. The response amplitude of
the system is shown by the legend in Figure 10. The dynamic response of the system shows that
the position of first resonance frequency moves to a lower value while the positions of the second
and third resonance frequencies moves to higher values by increasing the value of the k23. But the
position of the second resonance peak is most significantly affected by changing the value of k23 and at
a very low value of k23, the third resonance peak almost dies out. The response amplitudes have the
highest values at the resonance peaks for higher values of k23. With the increase in the value of k23,
the response amplitudes show a decreasing trend on the resonance peaks, but the response amplitude
on the first resonance frequency is least affected by the variation in k23 except at k23 = 0 at which it
dies out. Also the value of the response amplitude in the valley between the first and second resonant
frequency shows a decreasing trend with increasing the value of k23 as shown by colors of legend in
the top view of the system response.
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Figure 11. (a) Response amplitude and bandwidth optimization graph for the variation of k2; (b) Top
view and (c) Contour plots of the system response.

Figure 11a shows the response amplitude and bandwidth graph of the proposed electro-thermally
actuated microgyroscope dynamic model for the variation of k2. Figure 11b,c shows the top view
and contour plots of the system response and bandwidth, respectively. The response amplitude of
the system is shown by the legend in the Figure 11. The dynamic response of the system shows that
position of first and second resonance frequencies moves to higher values by increasing the value of the
k2. But the position of third resonance peak is least affected by changing the value of k2. The response
amplitudes have the highest values at the resonance peaks for lower values of k2. But with the increase
in the value of k2, the response amplitudes show a decreasing trend on the resonance peaks. Also the
value of the response amplitude in the valley between the first and second resonant frequency shows
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a decreasing trend with increasing the value of k2 as shown by colors of the legend in the top view of
the system response.
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Figure 12a shows the response amplitude and bandwidth graph of the proposed electro-thermally
actuated microgyroscope dynamic model for the variation of k3. Figure 12b,c shows the top view
and contour plots of the system response and bandwidth, respectively. The response amplitude of
the system is shown by the legend in the Figure 12. The dynamic response of the system shows
that position of first and second resonance frequencies moves to higher values while the position of
third resonance frequency moves to lower value by increasing the value of the k3. But the position
of first resonance peak is most affected by changing the value of k3. The response amplitude has the
highest value at the first resonance peak for lower values of k3. But with the increase in the value of k3,
the response amplitudes show a decreasing trend except at values near k3 = 100 on the first resonance
peak. Also the response amplitude shows the increasing trend till k3 = 100 on the second resonance
peak after which it again starts decreasing. The value of the response amplitude in the valley between
the first and second resonant frequency shows an increasing trend with increasing the value of k3 till
at k3 = 100 after which it also starts decreasing as shown by the colors legend in the top view of the
system response. The optimized design parameters for the drive mode oscillator obtained through 3D
graphs are listed in the Table 1.

Table 1. The summary of the optimized design parameters for drive mode oscillator.

Parameters Analytical Values

m1 3.0036 × 10−7 kg
m2 3.00 × 10−7 kg
m f 7.9276 × 10−8 kg
m3 2.3178 × 10−7 kg

m f + m3 3.1864 × 10−7 kg
kchev 194.47 N·m−1

k1x = 2Etw3

L3
1x

30 N·m−1

k2x = 2Etw3

L3
2x

30 N·m−1

k3x = 2Etw3

L3
3x

70 N·m−1

k12x = 2Etw3

L3
12x

110 N·m−1

k23x = 2Etw3

L3
23x

50 N·m−1

5. FEM-Based Electro-Thermal-Structural Analysis

In this section, a detailed FEM-based simulation methodology for the proposed microgyroscope
is presented. Starting with the modal analysis, the different mode shapes and resonant frequencies of
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the structure are shown. Initially, a static structural analysis is performed to analysis the temperature
distribution, output force, and displacement of the electro-thermal actuator. Afterwards, a modal and
harmonic analysis is performed to analyze the frequency response of the dynamic system for 3-DOF
drive mode oscillator. The material properties used for the thin-film nickel in the FEM simulations are
summarized in Table 2. Figure 13 shows the sequential diagram for the FEM-based analysis in which
blue arrows indicate the input parameters while the yellow arrows indicate the output response of the
specific analysis.

Table 2. The material properties used for thin-film Nickel in FEM based simulations [36].

Property Value Unit

Thermal conductivity 91 W·m−1·K−1

Air conductivity 0.0256 W·m−1·K−1

Coefficient of thermal expansion 12.7 × 10−6 K−1

Electrical resistivity 200 × 10−9 Ω·m
Young’s modulus 214 × 109 N·m−2

Poisson’s ratio 0.3 –
Density 8908 kg·m−3
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5.1. Modal Analysis

To verify the natural frequency response using the developed analytical model in Section 3.1,
a FEM-based natural frequency analysis is carried out. The boundary conditions and material
properties are input parameters while mode shapes and resonant frequencies are the output responses
of the modal analysis. The structural parts are modeled using Solid 98 elements. The optimized mesh
size is selected based on patch conforming algorithm for tetrahedrons method control. The desired
mode shapes with their associated resonant frequencies are shown in Figure 14. Table 3 shows the
comparison of the drive mode resonant frequencies obtained using FEM analysis to that obtained
using an analytical model. The percentage deviation is less than 1%, thus validating the accuracy of
the developed analytical model.

Table 3. Comparison of the analytical and FEM-based modal analysis results.

Resonant Frequencies FEM Analysis (Hz) Analytical Model (Hz) Percentage Deviation

1st drive mode resonant frequency 2518.1 2552.5 0.898%
2nd drive mode resonant frequency 3680.4 3725.5 0.012%
3rd drive mode resonant frequency 5772.1 5775.4 0.0005%
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5.2. Electro-Thermal and Thermal Structural Analysis for Actuator

Initially, an electro-thermal analysis was carried out to predict the temperature rise in the
electro-thermal actuator from ambient for an applied input static actuation voltage. Figure 15 shows
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the electro-thermal actuator temperature rise with increasing input actuation voltage. For an actuation
voltage up to 0.25 V, the maximum temperature in the electro-thermal actuator was less than 100 ◦C.
Figure 16 shows the temperature distribution profile in the proposed MEMS gyroscope. The maximum
temperature was concentrated in the electro-thermal actuator beams while the temperature value in
the masses of the gyroscope was negligible.

Based on the temperature values obtained using electro-thermal analysis for an applied actuation
voltage, a FEM-based thermo-structural analysis was carried out to analyze the output force generated
and displacement produced by the chevron-shaped electro-thermal actuator. Figure 17 shows the
output displacement and force generated by the actuator for the actuation voltages of up to 0.25
V. The results show that with increasing actuation voltage both the output force and displacement
are in the range of micro Newton and micrometer respectively. Figure 18 shows the displacement
corresponding to the applied voltage of 0.2 V.
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5.3. Frequency Response Analysis

The harmonic analysis was carried out to analyze the frequency response of the proposed MEMS
gyroscope. The force reaction of the electrothermal actuator obtained through thermal-structural
analysis corresponding to an actuation voltage of 0.2 V was used to perform the harmonic analysis.
The response amplitude of masses was directly dependent on the air pressure and corresponding air
damping. The values of damping incorporated in the harmonic response analysis were obtained by
the relations presented in Section 3.2. Figure 19 shows the frequency response of three masses m1, m2

and m3 in the drive mode obtained through FEM simulations.
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Figure 17. Output force and displacement of the electro-thermal actuator with increasing actuation voltage.
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Figure 18. Thermo-mechanical analysis showing the maximum displacement achieved by the device
at 0.2 V DC.

Micromachines 2018, 9, x 17 of 25 

 

 

Figure 19. Frequency response of the proposed MEMS gyroscope in the drive mode. 

The result shows that at first resonant frequency of 2.51 kHz, the displacement in the masses 

𝑚1, 𝑚2 and 𝑚3 is 20 µm, 35 µm and 48 µm respectively. The dynamic displacement amplification 

in mass 𝑚3 is 2.4 times with respect to mass 𝑚1. At second resonant frequency of 3.68 kHz, the 

dynamic displacement in mass 𝑚2 is highest as compared to mass 𝑚1 and 𝑚3. At third resonant 

frequency of 5.8 kHz, the mass 𝑚1 moves with highest amplitude while the displacement in the 

sense mass 𝑚3 is only 8 µm. The dynamically amplified gain for the sense mass 𝑚3 between the 

first two resonant peaks is 18.6 µm while the gain between second and third resonant peak is 

negligible. Thus, flat operational region between first two resonant peaks with bandwidth of nearly 

1.2 kHz is the most suitable region for the operation of the proposed non-resonant MEMS gyroscope. 

The frequency response of the sense mass m3 is shown in Figures 20 and 21 respectively for both 

the ambient and vacuum conditions which shows that that sense mode resonant frequency lies in the 

middle of first two resonant frequencies at 3.13 kHz. 

 

Figure 20. Response amplitude of the sense mass 𝑚3 of the proposed MEMS gyroscope for ambient 

conditions. 

0

10

20

30

40

50

60

70

80

90

100

2000 2500 3000 3500 4000 4500 5000 5500 6000

R
es

p
o

n
se

 A
m

p
li

tu
d

e 
(µ

m
)

Frequency (Hz)

 Response amplitude of mass m1

 Response amplitude of mass m2

 Response amplitude of mass m3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000R
es

p
o

n
se

 A
m

p
li

tu
d

e 
o

f 
S

en
se

 M
as

s 

(µ
m

)

Frequency (Hz)

Figure 19. Frequency response of the proposed MEMS gyroscope in the drive mode.

The result shows that at first resonant frequency of 2.51 kHz, the displacement in the masses
m1, m2 and m3 is 20 µm, 35 µm and 48 µm respectively. The dynamic displacement amplification in
mass m3 is 2.4 times with respect to mass m1. At second resonant frequency of 3.68 kHz, the dynamic
displacement in mass m2 is highest as compared to mass m1 and m3. At third resonant frequency of 5.8
kHz, the mass m1 moves with highest amplitude while the displacement in the sense mass m3 is only 8
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µm. The dynamically amplified gain for the sense mass m3 between the first two resonant peaks is
18.6 µm while the gain between second and third resonant peak is negligible. Thus, flat operational
region between first two resonant peaks with bandwidth of nearly 1.2 kHz is the most suitable region
for the operation of the proposed non-resonant MEMS gyroscope.

The frequency response of the sense mass m3 is shown in Figures 20 and 21 respectively for both
the ambient and vacuum conditions which shows that that sense mode resonant frequency lies in the
middle of first two resonant frequencies at 3.13 kHz.
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Figure 20. Response amplitude of the sense mass m3 of the proposed MEMS gyroscope for
ambient conditions.
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Figure 21. Response amplitude of the sense mass m3 of the proposed MEMS gyroscope for
vacuum conditions.

In this section, the comparison of harmonic analysis using FEM analysis and analytical modeling
is also presented and it shows that the analytical simulation results lie in good accordance with the
FEM analysis results. Comparison of response amplitude of the masses m1, m2, and m3 of the proposed
gyroscope dynamical model using FEM and analytical modeling is shown in Figures 22–24. The small
difference between the resonance peaks and response amplitude is due to the small difference between
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the values of spring constants obtained analytically and obtained through FEM-based simulations as
shown in the Table 1.
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Figure 22. Comparison of response amplitude of the mass m1 of the proposed MEMS gyroscope
obtained using FEM and an analytical model.Micromachines 2018, 9, x 19 of 25 
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Figure 23. Comparison of response amplitude of the mass m2 of the proposed MEMS gyroscope
obtained using FEM and an analytical model.
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Figure 24. Comparison of response amplitude of the mass m3 of the proposed MEMS gyroscope
obtained using FEM and an analytical model.

5.4. Robustness Analysis

Table 4 shows the parametric fluctuations which could occur due to the limitation of the
microfabrication process MetalMUMPs. The actual values of gain and new values of gain as a result
of expected changes in the nominal values of the different structural parameters are also shown in
the Table 5, which depicts that the proposed gyroscope has the potential to overcome the fabrication
imperfections. Figure 25 shows the robustness of the proposed gyroscope against the environmental
fluctuations, as there is the minor effect of environmental fluctuations on the gain of the proposed
gyroscope dynamic response in the flat region between the first two resonant peaks.

Table 4. Different parameter perturbations which could affect the robustness of the proposed gyroscope.

Parameter Nominal Size (µm) Expected Change (µm)

w1x 8 ±0.5
w12x 8 ±0.5
w23x . 8 ±0.5
w2x 8 ±0.5
w3x 8 ±0.5
L1x 526.6 ±0.5
L12x 271.1 ±0.5
L23x . 352.6 ±0.5
L2x 526.6 ±0.5
L3x 397.1 ±0.5

Table 5. Influence of parameter perturbation on the robustness of the prosed gyroscope.

Factors Gain

Actual Value 18.54 µm
For (−0.5 um) change in parameters 18.42 µm

Percentage Deviation 0.65%
For (+0.5 um) change in parameters 18.49 µm

Percentage Deviation 0.27%
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5.5. Sensitivity Analysis

The sensitivity of MEMS gyroscope is dependent on the Coriolis force Fc = 2m*Ω*v where m is
the sense mass, Ω is the angular rotation to be measured and v is the velocity of the sense mass in the
drive direction. For the resonant gyroscopes, since the mass is oscillated at resonance frequency the
displacement amplitude of sense mass is much higher and hence induced Coriolis force is also high.
However, achieving precise resonance is very challenging at the microscale owing to both fabrication
process uncertainties and temperature variations. For the proposed non-resonant MEMS gyroscope,
the sense mass m3 was oscillated in the drive direction by using an electro-thermal actuator, and the
Coriolis force corresponding to input rotation was designed to be measured by using a parallel plate
actuator. The sense mass m3 was optimized to be operated at a frequency of 3.13 k Hz which lies
in the middle of region between the first two drive mode resonance peaks of the MEMS gyroscope.
This minimizes the effect of external conditions. Moreover, the suspension beams of the sense mass
in the y-direction are optimized in such a way that the sense mode resonance frequency matches the
operational frequency of 3.13 kHz.

The input angular velocity of 50 rad/s. is applied to the proposed gyroscope as shown in Figure 26
and the response of the gyroscope is observed and shown in Figure 27. With the input angular velocity
of the 50 rad/s and the drive direction amplitude of 18.6 µm of the mass m3, the displacement
produced in the sense direction due to rotation impelled Coriolis force is 0.15 µm. The sense direction
displacement of the mass m3. is calculated with the help of sense combs in terms of capacitance change
∆C. by using the formula given as

∆C = 2Nε0tly/y2
0. (36)

where N is the total no of the sense direction parallel plate capacitors, t is the thickness of the vibrating
structure, l is the overlapping length of the comb fingures, y0 is the initial separation in the sensing
combs and y is the sense direction displacement of the mass m3 as a result of rotation impelled Coriolis
force. The capacitance change measured through Equation (36) is 28.11 f F. If the same device is
operated at vacuum, the value of the measured capacitance change is increased and is measured to
be 862.13 f F for the same angular rate of 50 rad/s due to the fact that decreasing the pressure inside
the encapsulated device package results in low energy dissipation due to both slide and squeeze film
damping phenomena [37]. The results of the capacitance change show that the sensitivity of the device
can be improved by 10 manifolds by operating the device in vacuum. The sensitivity of our device is
0.565 f F/rad/s for atmospheric while 17.24 f F/rad/s for in vacuum conditions.
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6. Discussion

Electro-thermal actuators are better in performance to electrostatic interdigitated comb drive
actuators in terms of generating large force and output displacements at lower actuation voltages
and small actuator foot prints. Moreover, the metal-based electro-thermal actuators have an added
advantage of a large thermal expansion coefficient which results in even larger output displacements
and force generation than their Silicon-based counterparts. The lateral deflection of the silicon-based
chevron-shaped electro-thermal actuators is almost 60% less than that of the nickel metal-based
electro-thermal actuators, under the comparable power consumption [38]. Thermal time constant
plays a significant role in the overall dynamic response of the system, as the operational frequency
of the electro-thermally actuated microgyroscope is governed by the heating and cooling rate of the
electro-thermal actuators arms corresponding to the applied voltage. Lower thermal time constant
leads to overall faster heating and cooling rates. The metals have better thermal time constant in
comparison to silicon and polysilicon and among the different metals electroplated nickel has the
best material properties to be used as heat actuators [38]. Moreover, insufficient time for heating and
cooling results in buildup of temperature on the device which might result in the potential failure
of the device [39–41]. Thus, for the reliable actuation using electro-thermal actuators, the resonant
frequency is kept below 5 kHz. So our gyroscope was designed keeping in view the requirement of
feasible heating and cooling rates.

The mass spring system proposed by Erismis [28] allows to have dynamic displacement
amplification in the sense mass of the proposed gyroscope in the flat valley present between the
first two resonance peaks. The advantages of the 3-DOF drive mode over 2-DOF counterpart is in
terms of high gain. Moreover, the design can be altered more effectively by only changing the most
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significant spring constants instead of changing the whole structure in the 3-DOF drive mode oscillator
to achieve desired bandwidth without significantly sacrificing the gain. Furthermore, this approach
leads to robust structure which has the improved tendency to encounter the fabrication imperfections
and environmental fluctuations as compared to the 2-DOF counterpart. Additionally, the drift in the
spring due to environmental changes can be more easily tolerated by using this structural approach.

The environmental temperature plays a vital role in the performance of the device. Young’s
modulus of the nickel tends to decrease with increasing temperature, and the increase in temperature
tend to change the resonant frequencies being directly related to Young’s modulus of the electroplated
nickel [33]. Moreover, temperature fluctuations significantly affect the resonator’s quality factor [42].
At high temperature, quality factor of the proposed gyroscope will be reduced [1,43]. But as the
proposed gyroscope is made to operate in the dynamic valley created between the first two resonance
frequencies, the impact of quality factor variations has the minimum effect on the performance of the
device as can be seen in Figure 25.

High gain and insensitivity of the proposed gyroscope to the structural fabrication imperfections
and environmental changes made that gyroscope a potential candidate for the reliable, robust,
and highly-sensitive gyroscope. Moreover, in this paper, the impact of inclination angle on force
output and displacement generation and stiffness of the chevron-shaped actuator is clearly depicted
which previously was approximated by using the simple relation for stiffness calculation by neglecting
the bent angle of the chevron-shaped arms, which is rather an inappropriate way of estimating the
stiffness of the chevron-shaped actuator. The choice of the proper actuator angle leads to overall greater
force and displacement generation for driving the gyroscope at a reasonably low power consumption.
Furthermore, this work gives the insight on the impact of the changing spring constants on gain and
bandwidth simultaneously using the aid of 3D graphs. This approach facilitates the designer to design
the application specific gyroscope by considering the most significant design parameter.

The power consumption of the single hot arm of the chevron-shaped actuator is given by

P =
V2

R
=

V2 A
ρL

(37)

where V is the applied voltage, A is the area, ρ is the resistivity, and L is the anchor to anchor length
of the electro-thermal actuator. Since in our gyroscope, the chevron-shaped electro-thermal actuator
consists of two hot arms, therefore the power consumption of the proposed electro-thermally actuated
gyroscope was obtained by multiplying the Equation (37) by two. The power consumption by our
proposed design is 22 mW which is significantly less in comparison to other actuation methods.
Additionally, it is far less than the electro-thermal gyroscopes proposed in the literature.

Moreover, due to the stiffness values, the air damping strongly affects the sense mass displacement
amplitude. Since MEMS gyroscopes are generally operated in a high-quality factor environment using
specialized packaging, the sensitivity analysis of the proposed gyroscope both in atmospheric air
pressure and vacuum conditions is carried out. At an actuation voltage of 0.2 V, the dynamically
amplified drive mode gain in the sense mass was obtained as 18.6 µm. With this gain and angular
rotation of 50 rad/s in the z-axis, a capacitive change of 28.11 f F for a displacement of 0.15 µm in the
sense mass at atmospheric air pressure was achieved. However, by assuming vacuum environment,
the displacement amplitude of sense mass increases to 4.5 µm with corresponding capacitance change
of 862.13 f F in sense parallel plates. A comprehensive comparison of the proposed 4-DOF MEMS
gyroscope with the already developed multi-DOF MEMS gyroscopes is presented in Table 6.
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Table 6. Comparison of the proposed gyroscope with multi-DOF microgyroscopes presented in
the literature.

Reference Actuation
Method

Sensing
Method DOF Size Gain in

Drive Mode
Mechanical
Sensitivity/

Shakoor et al.
[44] Electro-thermal Capacitive

2-DOF Drive and
1-DOF Sense

Mode

2.2 × 2.6
mm2 0.9 nm 1.7 µm/◦/s

Saleem et al.
[17] Electrostatic Capacitive

2-DOF Drive and
1-DOF Sense

Mode

2.4 × 1.6
mm2 0.2µm 0.045 f F/rad/s

Riaz et al. [10] Electrostatic Capacitive
2-DOF Drive and

1-DOF Sense
Mode

2.2 × 2.6
mm2 0.3 µm . . .

Acar et al. [45] Electrostatic Capacitive
2-DOF Drive and

2-DOF Sense
Mode

. . . 5 µm 0.72 × 10−3

µm/◦/s

This work Electro-thermal Capacitive
3-DOF Drive and

1-DOF Sense
Mode

3.2 × 3 mm2 18.6 µm 0.565 f F/rad/s

7. Conclusions

In this paper, a design implementation and verification of a high-gain electro-thermally actuated
3-DOF drive mode and 1-DOF sense mode vibratory MEMS gyroscope is presented. The performance
parameters of the proposed gyroscope are analyzed and optimized by developing a detailed analytical
model. The gyroscope design parameters are optimized using process constraints of low-cost
commercially available micro fabrication process MetalMUMPs. The results obtained through an
analytical model are verified through 3D FEM simulations. A high gain of 18.6 µm was achieved in
the non-resonant flat operational region of the proposed gyroscope by utilizing 3-DOF drive model
oscillator at a relatively lower input actuation voltage of 0.2 V. With this gain, a capacitive change
of 28.11 f F and 862.13 f F was achieved at atmospheric air pressure and in vacuum, respectively.
The proposed MEMS gyroscope allows to achieve high gain in the non-resonant MEMS gyroscopes
which eventually leads to higher sensitivity in addition to robustness against the environmental and
fabrication process variations.
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