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Abstract

Background

Rift Valley fever virus (RVFV) is a lethal threat to humans and livestock in many parts of

Africa, the Arabian Peninsula, and the Indian Ocean. This systematic review’s objective was

to consolidate understanding of RVFV epidemiology during 1999–2021 and highlight knowl-

edge gaps relevant to plans for human vaccine trials.

Methodology/Principal findings

The review is registered with PROSPERO (CRD42020221622). Reports of RVFV infection

or exposure among humans, animals, and/or vectors in Africa, the Arabian Peninsula, and

the Indian Ocean during the period January 1999 to June 2021 were eligible for inclusion.

Online databases were searched for publications, and supplemental materials were recov-

ered from official reports and research colleagues. Exposures were classified into five

groups: 1) acute human RVF cases, 2) acute animal cases, 3) human RVFV sero-surveys,

4) animal sero-surveys, and 5) arthropod infections. Human risk factors, circulating RVFV

lineages, and surveillance methods were also tabulated. In meta-analysis of risks, summary

odds ratios were computed using random-effects modeling. 1104 unique human or animal

RVFV transmission events were reported in 39 countries during 1999–2021. Outbreaks

among humans or animals occurred at rates of 5.8/year and 12.4/year, respectively, with

Mauritania, Madagascar, Kenya, South Africa, and Sudan having the most human outbreak

years. Men had greater odds of RVFV infection than women, and animal contact, butcher-

ing, milking, and handling aborted material were significantly associated with greater odds

of exposure. Animal infection risk was linked to location, proximity to water, and exposure to

other herds or wildlife. RVFV was detected in a variety of mosquito vectors during interepi-

demic periods, confirming ongoing transmission.
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Conclusions/Significance

With broad variability in surveillance, case finding, survey design, and RVFV case confirma-

tion, combined with uncertainty about populations-at-risk, there were inconsistent results

from location to location. However, it was evident that RVFV transmission is expanding its

range and frequency. Gaps assessment indicated the need to harmonize human and animal

surveillance and improve diagnostics and genotyping. Given the frequency of RVFV out-

breaks, human vaccination has strong potential to mitigate the impact of this now widely

endemic disease.

Author summary

Rift Valley fever virus (RVFV) is a globally important mosquito-transmitted zoonosis that

is also directly transmissible via aerosolization of body fluids from infected animals.

RVFV outbreaks cause mass mortality of young livestock and pregnancy losses in both

humans and animals. Severe human cases also result in hemorrhagic fever, encephalitis,

and death. Loss of livestock additionally threatens the livelihood of people who depend on

animals for income and food. In endemic areas, initiation of RVFV outbreaks is con-

nected to weather events that cause excess rainfall, leading to flooding and subsequent

mosquito blooms. However, the natural cycle of RVFV transmission is complex, requiring

congregation of susceptible mammalian hosts and mosquito vectors in suitable environ-

ments. Several human vaccine candidates are in different stages of development, but none

are yet licensed for use in human populations. In this systematic review, we assessed the

1999–2021 frequency and distribution of RVFV outbreaks among humans, animals, and

vectors to identify potential locations and population targets for a human RVFV vaccine

efficacy trial. It focuses on current understanding of RVFV epidemiology and the identifi-

cation of gaps that pose critical barriers to controlling expansion of RVFV and imple-

menting new protective measures including human vaccination.

Introduction

Rift Valley fever virus (RVFV) remains an important emerging arboviral pathogen due to its

recent geographic spread and its combined disease and financial impacts on vulnerable

human populations [1]. Specifically, RVFV is listed as a priority pathogen by the World Health

Organization (WHO), the Food and Agriculture Organization of the United Nations (FAO),

and the U.S. Centers for Disease Control and Prevention (CDC) because of its ability to cause

life-threatening hemorrhagic fever and encephalitis in humans [2,3], its epidemic potential to

cause severe harm to livestock [4,5], and its potential for non-vector aerosol spread during epi-

zootics and epidemics [6,7]. The RVF virus is a member of the Phlebovirus genus, with three

main lineages, with East African, West African, and Southern African groupings. In the

absence of efficacious human drugs and/or vaccines against RVF, the virus has the potential to

trigger significant public health emergencies in affected areas.

RVFV was first identified in 1931 during an investigation into an epidemic of fatalities

among sheep on a farm in the Rift Valley Province of Kenya [8]. Since that time, its spatial

range has continued to expand from East Africa into southern Africa, West Africa, and North

Africa, and more recently outside Africa to the Arabian Peninsula [6,7,9]. RVFV can infect a
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wide range of mammalian hosts [10] and can be carried by many arthropod vectors. Floodwa-

ter Aedes spp. are important in maintenance during interepidemic periods, whereas other Dip-

tera serve as secondary vectors during outbreaks in sub-tropical and temperate regions of the

world [11–15]. RVFV results in lower case fatality rates (CFR) compared to other hemorrhagic

fever viruses [4], but its outbreaks have profound compounding effects on human subsistence

(from loss of livestock) and on national economies, related to livestock export bans [16–19].

The critical environmental reservoir of RVFV is presently unknown. Humans become

infected either through the bite of an infected vector or through exposure to infectious animal

tissues or bodily fluids such as abortus, birthing fluids, meat, milk, or blood aerosolized during

slaughtering. Other than in utero transmission, there is no evidence for human-human trans-

mission of RVFV [4]. Those infected either remain minimally symptomatic or develop a mild

form of the disease Rift Valley fever (RVF) (96% of patients), which is characterized by a febrile

syndrome with sudden onset of flu-like fever, muscle pain, joint pain, and headache [4]. Some

patients develop neck stiffness, sensitivity to light, loss of appetite and vomiting and therefore

RVF can be mistaken for meningitis [20]. While most human cases are relatively mild, a small

percentage of patients will develop a much more severe form of the disease [21]. This usually

appears as one (or more) of three distinct syndromes: ocular (eye) disease (0.5–2% of patients),

meningoencephalitis (fewer than 1% of patients) or hemorrhagic fever (fewer than 1% of

patients) [4].

Equally important is the lethal threat to peoples’ livestock. RVFV spread into naïve ecosys-

tems is driven by infected animal movement, and potentially via infected vectors [22], and can

result in death of between 70–90% of young ruminants, with sheep the most affected, and loss

of pregnancy in nearly 100% of pregnant animals [23].

Outbreaks in humans and in animals do not occur at random. Instead they are strongly

linked to excess rainfall and to local flooding events [24] and the consequent rise in mosquito

abundance [25–32]. In addition, there is mounting evidence that suggests that there is continu-

ing low-level RVFV transmission to humans and to animals between recognized epidemic

periods [33–49]. Undetected infections, particularly in livestock, provide an important reser-

voir for recurrent outbreaks, leading to a continuing threat of disease in economically mar-

ginal communities and risk of further geographical expansion.

With no human-use vaccines available, the Coalition for Epidemic Preparedness Innova-

tions (CEPI) expanded its list of target diseases to include RVF in January 2019. To date, CEPI

has supported two programs to advance human RVF vaccines in collaboration with Wagenin-

gen Bioveterinary Research (WBVR), a division of Wageningen University, and Colorado

State University (CSU). Both vaccine candidates are currently in the preclinical stages of devel-

opment. Elsewhere, the University of Oxford has developed a single dose ChAdOx1 RVF vec-

tored vaccine that is currently in phase 1 studies to determine the safety and immunogenicity

among healthy adult volunteers (https://clinicaltrials.gov/ct2/show/NCT04672824). Previ-

ously, the US Army Medical Research Institute of Infectious Diseases (USAMRIID) developed

an improved version of inactivated RVF vaccine, TSI-GSD-200, which, from early 1986 to late

1997 was given to 598 at-risk workers in their facilities, which provided effective antibody

immunity after a three dose regimen [50]. However, to date, none of these vaccines has been

trialed in endemic human populations, and none has undergone phase III clinical trials in

order to be licensed for general use. A major challenge in planning clinical trials is the lack of

precise understanding of the RVFV epidemiology and the unpredictability of outbreaks. Thus,

there was need for an in depth review of existing epidemiological data and identification of

remaining key knowledge gaps to further vaccine development.

The specific objective of this study was to consolidate the understanding of recent RVF epi-

demiology over the recent 1999–2021 period. We sought to catalogue the variability of
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national/regional incidence and prevalence, human risk factors and populations at risk, the

geospatial distribution of RVF serotypes/lineages, and the present day national and regional

human and animal RVF/viral hemorrhagic fever surveillance systems. The systematic review

also highlighted current knowledge gaps in RVFV epidemiology to establish the major chal-

lenges remaining for current efforts in development and testing of human vaccines.

Methods

To meet our study goals, we performed a systematic review of the available published literature

as well as governmental monitoring and media reports of RVF activity during the period 1999–

2021. The study results are reported according to the 2020 Preferred Reporting Items for System-

atic Reviews and Meta-Analyses (PRISMA 2020) guidelines [51]. See S1 Table for details.

Inclusion/Exclusion criteria

Studies included in the review were those that contained reports of human, animal, and/or

vector RVFV infection or exposure among individuals (of any age) in countries across Africa,

the Arabian Peninsula, and the Indian Ocean where RVFV transmission was detected during

the period January 1st 1999 to June 1st 2021, including historical, observational, and prospec-

tive studies. Serosurveys from outside this target area (Spain [52,53], Poland [54], Korea [55],

and Jordan [56]) were also catalogued, although not formally included in our analysis. Reports

containing primary human seroprevalence or incidence data, reported RVF outbreaks or

cases, details of RVF transmission, RVFV lineage distribution, and/or risk factors were

included. Reports of infections among regional livestock and wildlife during the same period

were also included.

The primary objective was to obtain population-based survey data. However, georeferenced

location-specific case reports were also included in spatiotemporal analysis. There was no

restriction according to the language of publication.

Excluded studies were those that reported laboratory-based studies or intervention trials

among experimental animals in controlled settings. Reports, reviews, or opinion articles with-

out primary data were also excluded.

Information sources and search strategy

To maximize detection of eligible RVFV transmission studies, we searched the online data-

bases PubMed, Web of Science, African Journals Online, The Cumulative Index to Nursing

and Allied Health Literature (CINAHL), The Scientific Electronic Library Online (SciELO),

Elsevier, ResearchGate, and the Program for Monitoring Emerging Diseases (ProMED) list-

serv site. Animal outbreak data recorded by the World Organization for Animal Health (OIE)

was recovered from their databases, the 2005–2021 WAHIS (https://wahis.oie.int/#/home),

and the older Handistatus II database (https://web.oie.int/hs2). Other sources of papers and

reports that were also retrieved included: i) polling colleagues involved in RVF research or

control for any non-indexed ‘grey literature’, ii) using Google Scholar referrals for ‘similar

papers’, iii) scanning of literature found in personal archives, and iv) obtaining non-indexed

citations found among the reference lists of the papers reviewed in our study. Details of the

information sources and search strategy used are available in S1 Text.

Selection process

Review of titles and abstracts was performed by two trained reviewers who independently

searched for data content meeting study requirements. The studies found potentially suitable
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for inclusion after title-abstract review were then obtained for full-text review from online or

library sources. Where a single report contained data on multiple individual community sur-

veys, each of these surveys was separately abstracted and given a unique ID number for inclu-

sion in sub-group comparison analyses. Studies with insufficient details of the incidence or

prevalence of RVFV infection were not included, and cases of duplicate publication or

extended analysis of previously published data were removed from the list of selected refer-

ences for this review. Full listings of included and excluded references are provided as Support-

ing Information files S2 and S3 Tables.

Data collection process

Included papers were abstracted by two independent reviewers, and their relevant features

entered into a purpose-built database created with Google Forms. The entries were then stored

in a shared master spreadsheet in Google Sheets. The included papers and data registry down-

loads were archived in electronic text (pdf) or spreadsheet formats at the Department of Pedi-

atrics, Stanford University School of Medicine, and at the Center for Global Health and

Diseases, Case Western Reserve University.

Data items

For the human and animal RVFV exposures or clinical cases reported, information was

entered into the database based on UN geographic region (https://unstats.un.org/unsd/

methodology/m49), country, and the sub-national administrative location details that were

reported. Islands in the Indian Ocean, normally classified as ‘Eastern Africa’ by the UN, were

grouped separately for our analyses. The beginning and ending month and year of the reported

RVF activity or exposure study were recorded, as well as information about whether the event

was a recurrence of transmission in a previously affected area, whether there had been flooding

before the event, and whether the period involved an El Nino-Southern Oscillation (ENSO)

event. When outbreaks spanned more than one calendar year, the year of onset was used to

classify the event. Study design and the eligible study population were recorded for each report

and whether the report involved human cases, domestic or wildlife animals, or arthropod vec-

tors, and the number of affected individuals by species. Where available, age and gender distri-

butions were captured for both animal and human studies, along with any potential risk

factors that were studied, and which were found to be significant by that study. Factors evalu-

ated for human exposure risk were age and age class, gender, occupation, socio-economic sta-

tus, and participation in the animal care activities of feeding, herding, sheltering, or milking

livestock, as well as assisting birth, butchering, or skinning, and disposal of aborted material,

or consumption of raw milk. Factors evaluated for animal RVFV exposure were age and age

class, sex, breed, body condition, herd size, grazing strategy, and environmental conditions

including proximity to water, local vegetation, rainfall, and mosquito control measures. Our

data extraction tool was designed to capture factors related to the area the animal was raised

(water sources nearby, mosquito exposures, rainfall, vegetation), herd factors (grazing strategy,

mosquito control measures, herd size) and individual risk factors such as body condition and

breed. In some animal studies, the age of the animal (by dental examination) and sex could be

objectively assessed at the time of sampling. We grouped common animal exposures and

determined how many studies had assessed for the risk factor and how many individual stud-

ies found statistically significant results by bivariate or multivariate analyses. Not all studies

separated the species of animals involved within each exposure, and these have been reported

as “not subdivided by species.” Information was recorded on the diagnostic tests used to iden-

tify acute cases or exposures, and on each study’s criteria used to identify suspected and
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confirmed animal or human cases of RVF. Available information regarding local RVF surveil-

lance methods was noted, as well as any information about the RVFV lineage involved in the

reported cases. Where individual outbreaks were reported in more than one publication or

governmental bulletin, case numbers and mortality for that outbreak were taken from the lat-

est reports.

Study risk of bias assessment

We used an abridged version of the Liverpool Quality Appraisal Tool (LQAT) [57,58] to assess

study quality and risk of bias of included studies because of the tool’s flexibility in accommo-

dating different study designs and in creating potential bias assessments specific to our diverse

set of studies. Scoring involved assessment of possible subject selection bias, response bias, fol-

low up bias, bias in risk factor assessment, bias in outcome assessment, or possible bias in

reporting the outcome. Scoring also included whether the study’s analysis involved adjustment

for potential confounders. The LQAT score, combined with recorded information about study

design and power, were used to classify reports as weak (score 1–5), moderate (score 6–8), or

strong evidence (score 9 or 10) regarding local risk for disease or exposures. Each study was

assessed independently by two reviewers with discrepancies resolved in consultation with a

third reader.

Effect measures

We enumerated the cumulative number of outbreaks reported within national and sub-

national borders over time, and the observed incidence or period prevalence by location. How-

ever, because of significant heterogeneity created by reporting bias, relative risk comparisons

among the multiple locations were considered unreliable. Continent-wide RVF risk assess-

ment for Africa, based on climate, weather, population, and landscape factors has been

recently well studied [59–64] and so was not repeated here. We have, however, updated prior

meta-analysis assessment [65] of individual human risk factors to provide evidence regarding

specific sub-groups who might serve as suitable high-risk subjects for a human vaccine trial.

Because the chances of infection were based on post hoc determination of exposures, summary

odds ratios derived by random effects statistical modeling were used to determine the strength

of these associations in the meta-analysis.

Synthesis methods

Outbreaks and exposures were classified into five groups: 1) acute human RVF cases, 2) acute

animal cases, 3) human RVFV exposure data (based on sero-surveys), 4) animal exposure

data, and 5) arthropod infection data. These were tabulated over time and space using fre-

quency measures and geo-located, when necessary, using Google Earth Pro software (available

at https://www.google.com/earth/versions/). The two decades of inclusion (1999–2010 and

2001–2021) were assessed jointly and then separately to determine the evolution of disease,

changes in detection of disease through improved diagnostics, and the effects of more robust

surveillance. Regional maps at the national and sub-national level were then prepared using

QGIS software (https://www.qgis.org/en/site/) using base maps supplied by the Database of

Global Administrative Areas (GADM) (version 3.4, (April 2018, www.gadm.org/data, licensed

for non-commercial purposes; see www.gadm.org/license). Surveillance systems in animals,

humans, and vectors were categorized either as early warning systems, detection in hospital-

based surveys, use of sentinel herds for surveillance, or farmer reported syndromic surveil-

lance. For meta-analysis of individual human level risk factors, results from those included

studies with relevant human exposure data were entered into Comprehensive Meta-Analysis
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software, v.3 (CMA, Biostat, Englewood, NJ) for calculation of pooled summary estimates of

exposure effects, along with their confidence intervals. Heterogeneity levels were scored using

Higgins’s and Thompson’s I2 statistic [66]. Summary estimates of intervention effects were

computed using Der Simonian and Laird random-effects modeling [67] implemented by the

CMA software. Summary data were presented visually by Forest plots showing the respective

odds ratio and 95% confidence interval (CI95%) for the pooled analysis. Assessment for poten-

tial publication bias was carried out by visual inspection of funnel plots, and statistically by cal-

culating the Egger test. To explore heterogeneity and factors that could potentially modify the

summary estimates of effect, we performed subgroup analyses stratified by study risk of bias,

and by year of publication. For the sensitivity analysis, each meta-analysis was retested with

the exclusion of one study at a time to assess the possibility of a disproportionate impact of any

individual study on summary estimates.

Results

Studies and RVFV reports selected for inclusion

Initial screening of online publication databases yielded 7097 listings for RVF or RVFV during

the period January 1999-June 2021 for our initial review (Fig 1). These were supplemented by

771 georeferenced outbreak case reports obtained from OIE databases World Animal Health

Information System (WAHIS, https://wahis.oie.int/#/home) for events after 2004, and from

OIE Handistatus II (https://web.oie.int/hs2/report.asp?lang=en) for earlier 1999–2003 events.

Other sources, including private archives, governmental reports, ProMed listings, listings from

previous systematic reviews [65,68], and non-indexed citations (found in Google Scholar and

in bibliographies of papers under review), provided an additional 667 reports for consideration

for possible inclusion. After removal of duplicates, 1976 unique articles or reports were

Fig 1. PRISMA systematic review flow diagram of data collection and evaluation. Online searches for publications and data registers (left side flow) were

supplemented by governmental outbreak reports, non-indexed citations found in local archives, and citations found within the reference lists of the papers that

were reviewed (right side flow).

https://doi.org/10.1371/journal.pntd.0009852.g001

PLOS NEGLECTED TROPICAL DISEASES Review of RVFV epidemiology for a human vaccination trial

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009852 January 24, 2022 7 / 42

https://wahis.oie.int/#/home
https://web.oie.int/hs2/report.asp?lang=en
https://doi.org/10.1371/journal.pntd.0009852.g001
https://doi.org/10.1371/journal.pntd.0009852


selected for full text review. After the full text review was performed, 285 events reported in

281 publications, plus the 771 events identified in OIE databases and 48 from grey literature,

identified a total of 1104 unique human or animal RVFV transmission events for inclusion in

the analysis.

Report characteristics

Of the 285 included reports selected from the published literature, 91% were in peer-reviewed

journals, 7% were in governmental reports, and 2% were in abstracts or published correspon-

dence. Following the regional designations of the United Nations, 43% of these papers

reported RVF activity in East Africa, 13% in West Africa, 13% in the Arabian Peninsula, 10%

in North Africa, and 10% in Southern Africa. The countries of Kenya (n = 42 reports), Saudi

Arabia (n = 32), Tanzania (n = 24), South Africa (n = 22), Madagascar (n = 14), Sudan

(n = 13), Mauritania (n = 11), and Mozambique (n = 11) were the most frequent subjects of

RVF outbreak reports and surveys. Thirty percent of reports documented active epidemics/

epizootics, 61% were exposure studies performed during interepidemic periods, and 7% were

post-epidemic survey studies. One hundred sixty-five (58%) were cross-sectional surveys of

humans or animals, 60 (21%) were acute case series, 35 (12%) involved prospective cohorts,

and 4 (1%) were case-control studies. Forty-two (15%) reported on vector testing in affected

areas. Among published studies, 195 (68%) were non-randomized, 79 (28%) involved some

form of random sampling, and 11 (4%) did not clearly indicate how sampling was done. In

terms of study quality, the median LQAT score for published studies (where higher scores

indicated higher quality studies) was 6 (range = 2–11, IQR 5–7), meaning the majority of stud-

ies had moderate-to-high risk of bias in assessing risk by location or by sub-population. Details

of all included studies, including individual risk-of-bias scores are provided in S2 Table.

Where RVFV transmission or RVF epidemics/epizootics occurred, 1999–

2021

Overall, 39 countries had evidence of RVFV circulation in humans, animals, or vectors during

the 1999–2021 period, based on detection of probable or confirmed acute cases, positive PCR

testing, or serosurvey results (Fig 2 and S4 Table). Eighty-three reports documented 124 loca-

tions in 19 countries that had 4,353 probable or confirmed acute human RVF cases and 755

deaths (Fig 3), whereas 107 reports documented acute RVF animal events (470 OIE confirmed

cases) in 31 countries between 1999 and 2021 (Fig 4). The median year of reported events was

2010. Outbreaks of clinical disease among humans or animals occurred at average rates of 5.8/

year and 12.4/year, respectively, with Mauritania, Madagascar, Kenya, South Africa, and

Sudan having the most human outbreak years. When month of onset was given for active epi-

zootics or epidemics, in East Africa, 77% (27/35) of outbreaks began between November and

January; for southern Africa, 80% (8/10) began between March and June; for West Africa, 92%

(12/13) began between July and October; for the Arabian Peninsula, 93% (13/14) began

between August and October; and for North Africa, 67% (6/9) began between September and

October.

Maps in Figs 3 and 4 show the sub-national administrative regions where acute human and

animal cases were reported during the earlier (1999–2010) or latter (2011–2021) halves of our

study period, or both. The countries with multiple repeated human outbreaks across both

early and later time intervals were Kenya (n = 4), Mauritania (n = 5), South Africa (n = 4) and

Madagascar (n = 2). S5 Table lists dates, place names, GPS locations, reported human case

counts, incidence rates per 100,000, reported numbers of deaths, and estimated case fatality

risks.
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In terms of epizootic activity, Fig 4 highlights the countries that experienced repeated acute

RVF outbreaks among animals during one or both decades of the 1999–2021 period. These

were Kenya (n = 4), Madagascar (n = 2), Mauritania (n = 6), Mayotte (n = 2), Mozambique

(n = 2), Senegal (n = 3), and South Africa (n = 4).

Serosurveys of human and animal RVFV exposure

Of the population surveys performed during interepidemic periods to detect evidence of prior

local RVFV circulation, 50 surveyed human populations, 79 surveyed livestock populations,

and 23 tested local wild animals. Of these, eight jointly surveyed both humans and livestock,

and nine surveyed both wildlife and livestock. A summary of available diagnostic assays used

to identify anti-RVFV antibodies is presented below in Table 1.

In several animal surveys performed during interepidemic periods, low rates of livestock

and wildlife anti-RVFV IgM seropositivity or IgG seroconversion were detected in areas of

Namibia, Senegal, South Africa, and Kenya [47,78–80] suggesting unsuspected ongoing RVFV

transmission in those locations without detection of concurrent clinical RVF cases. Also of

Fig 2. Regional map of countries exposed to RVFV infection based on findings of studies included in the systematic review. Countries were categorized as to whether

there was evidence of human, animal, or arthropod RVFV infection during the 1999–2021 era. Base map is from Database of Global Administrative Areas (GADM)

(version 3.4, (April 2018, www.gadm.org/data.html).

https://doi.org/10.1371/journal.pntd.0009852.g002
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note were animal studies that showed serologic evidence of RVFV circulation among animals

or humans within areas that had no prior evidence of RVFV circulation. These were, among

animals only, in Libya [OIE], Tunisia [81], and Western Sahara [82] in North Africa; but in

either humans or animals, in Sierra Leone [36], Côte d’Ivoire [83], Djibouti [84], Rwanda

[85,86], and eSwatini [OIE], i.e., geographical areas in sub-Saharan Africa with no previously

documented transmission. Anti-RVFV antibody testing of human patients in health centers in

Ghana [87] and Jordan [56] did not detect evidence of local exposure.

RVFV lineage studies

Twenty-six papers reported on sequence analysis of RVFV isolates from recent and more dis-

tant outbreaks in an attempt to identify the geographic extent of specific viral lineages in circu-

lation at the time. Although variants have been seen to cluster in East African, West African,

and Southern African groupings, the results from different studies are heterogeneous, and

nomenclature for these variants has not yet been standardized. The included studies on strain

and lineage are summarized in S6 Table.

Differences are noted depending on the segment(s) of the viral genome analyzed, the clus-

tering algorithm used, and the reference isolate used as a ‘type specimen’ for comparison.

Sub-lineages of the Eastern group were found in the 1997–1998 Kenya/Tanzania RVF out-

break, as well as the 2000–2001 Saudi Arabia/Yemen outbreak [88,89]. These were most simi-

lar to the RVFV isolates from humans, animals, and insects during the Kenya 2006–2007

epidemic (when variants termed Kenya-1, Kenya-2, and Tanzania-1 co-circulated) [88,90].

Fig 3. Sub-national administrative regions experiencing acute human cases of RVF during the years 1999–2021. Locations are shaded according to

whether they experienced outbreaks before or after 2011, or if they had outbreaks during both periods. Base map is from Database of Global Administrative

Areas (GADM) (version 3.4, (April 2018, www.gadm.org/data.html).

https://doi.org/10.1371/journal.pntd.0009852.g003
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Later 2008–2009 isolates from outbreaks in Comoros [91], Mayotte, and Madagascar [92,93]

were also from the Eastern group. Although Eastern African group isolates were recovered

from Mauritania in 2010 [94] and Senegal in 2013 [95] in West Africa, outbreaks in these

countries in other years have identified a separate West African lineage grouping of RVFV iso-

lates [96,97]. Grobbelaar and colleagues [98] have used the sequence from the viral Gn surface

peptide to compare 198 isolates recovered between 1944–2010 from across Africa and the Ara-

bian Peninsula, and have defined 15 different lineages, which they have labeled A through O

(Table 2). South African isolates in 2008 were grouped in the C lineage, related to the Kenya-1

lineage. However, during 2009–2011, South African isolates were predominantly found in a

new, separate lineage H [99], while one isolate in Northern Cape Province was from lineage K.

Lineage K was later identified in a small South African outbreak in 2018 [100], and in an

RVFV-infected Chinese expatriate working in Angola in 2016 [101].

Human outbreak characteristics

During human outbreaks, surveillance and reporting efforts varied greatly from location to

location. We observed that among human outbreak reports, the calculated incidence rates of

probable or confirmed human RVFV infections among local or regional residents varied

between 0.01 and 91 per 100,000 population, with a median value of 2.5. Case fatality risks for

these probable or confirmed cases varied from zero to 65% (median = 14.3%) in locations

where more than one case was reported (n = 107 locations from 41 publications, see S5 Table).

Fig 4. Sub-national administrative regions experiencing acute animal cases of RVF during the years 1999–2021. Locations are shaded according to whether

they experienced outbreaks before or after 2011, or during both periods of time. Base map is from Database of Global Administrative Areas (GADM) (version 3.4,

(April 2018, www.gadm.org/data.html).

https://doi.org/10.1371/journal.pntd.0009852.g004
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The cumulative human exposure to RVFV infection is also heterogeneous across locations.

In endemic areas, this cumulative exposure is usually estimated from cross-sectional surveys

based on the population prevalence of human anti-RVFV IgG seropositivity at different ages.

Among the 25 well-designed population-based serosurveys (scored as having low risk-of-bias)

among our included reports (n = 44), IgG seroprevalence during interepidemic periods ranged

from (0.15%) in Madagascar in 2014–2015 [40] to 22% in eastern Kenya in early 2006 [103]

and again in 2013–2014 [104], with an overall median intra-epidemic value of 5.2% (IQR 1.8%

- 13%) seropositivity across all 25 surveys.

Acute human RVF outbreaks were reported across Africa, the Arabian Peninsula, and the

Indian Ocean from 2000–2021 (Fig 5). The highest number of reported human RVF events

occurred in 2006–7, starting in East Africa, moving to Sudan (North Africa) and then to the

islands in the Indian Ocean during 2007–2008, as part of an evolving epidemic and epizootic

of the East African RVFV lineage. In East Africa, new RVFV outbreaks have recurred annually

since 2016, whereas no new human cases have been reported in the Arabian Peninsula since

2001. RVF flared in southern Africa in multiple episodes between 2008 and 2011 and West

Table 1. Currently used serologic assays for detection of RVFV exposure in humans.

In-house Methods
Method Publication Target antibody Brief description

ELISA1 LaBeaud et al. 2008 [69] IgG Indirect ELISA for presence of anti-RVFV IgG antibodies at Stanford University School of

Medicine using inactivated MP-12 strain for coating antigen. Validated in humans

ELISA DIVA1,2 McElroy et al. 2009 [70] IgM or IgG Two parallel ELISA to distinguish naturally infected from vaccination. Validated in goat

and humans. Does not distinguish IgG vs IgM

ELISA1 Paweska et al. 2005 [71] IgM and IgG IgG sandwich and IgM capture assay that uses irradiated whole virus for antigen.

Validated in humans

ELISA1 Paweska et al. 2007 [72] IgG Antigen made using recombinant N protein. Validated in humans

ELISA1 Jansen Van Vuren and

Paweska, 2009 [73]

IgM and IgG Indirect ELISA for IgG and IgM separately. Antigen made using recombinant N protein.

Validated in humans

VNT3 Winchger Schreur et al. 2017

[74]

All neutralizing

antibodies

Uses a virulent RVFV that expresses enhanced green fluorescent protein. Not species

specific

Optical Fiber

Infrasound Sensor

Sobarzo et al. 2007 [75] IgG Sandwich based ELISA and antigens are immobilized on an optical fiber that makes it

more sensitive. Validated in humans

Luminex DIVA2 Van der Wal et al. 2012 [76] IgM and IgG Bead based assay that detects RVFV Gn and N proteins

Commercially available methods
Manufacturer

IFA4 EUROIMMUN IgG Approved for clinical testing

IFA4 EUROIMMUN IgM Approved for clinical testing

ELISA1 Biological Diagnostic

Supplies Limited

IgM and IgG Approved for clinical testing

ELISA1 ID-Vet IgG Competitive ELISA kit for the detection of anti-RVFV antibodies in serum or plasma.

Multi-species that includes human validation

ELISA1 ID-Vet IgM IgM Antibody Capture ELISA for the detection of anti-nucleoprotein IgM antibodies.

Validated for ruminant serum and plasma

1ELISA: enzyme-linked immunoassay
2DIVA: Differentiating Infected from Vaccinated Animals
3VNT: Viral neutralization test
4IFA: immunofluorescent antibody

Rows 2–6 and row 8 are adapted from Petrova, et al., BMJ Glob Health 2020,doi:10.1136/bmjgh-2020-002694 [77] under Creative Commons CC BY-NC

https://doi.org/10.1371/journal.pntd.0009852.t001
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Table 2. Rift Valley fever virus lineage determinations for isolates recovered in recent epidemics, based on cluster analysis of gene sequences for the viral Gn surface

protein. (Based on Grobbelaar, et al. 2011 [98])

Grouping Grobbelaar

System

Year Country Species Lineage Notes Reference

East African lineage C 2000–

01

Saudi Arabia, Yemen Human Very similar to 1997–98 isolates/variants Kenya-1,

Kenya-2, and Tanzania-1

[88,89]

lineage C 2006–

07

Kenya Humans, Livestock,

Vectors

[88,90]

N/A 2007 Comoros Humans Similar to Kenya 2006–7 [91]

lineage C Madagascar [92,93]

West African Mauritania, Senegal,

Niger

Related to Kenya-1 lineage [96,97]

Southern

African

lineage C 2008–

09

South Africa [98]

lineage H 2009–

11

South Africa [102]

lineage K 2009–

11

South Africa [102]

lineage K 2018 South Africa [100]

lineage K 2016 Angola/China [101]

https://doi.org/10.1371/journal.pntd.0009852.t002

Fig 5. Acute human RVF events per year during 1999–2021, by geographic regions across Africa, the Indian Ocean, and the Arabian Peninsula.

https://doi.org/10.1371/journal.pntd.0009852.g005
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African countries Mauritania and/or Senegal have reported cases across multiple years, 2003.

2010, 2012–3, 2015–6, and again in 2020.

A larger number of acute animal RVF events (N = 273), compared to human events

(N = 132), was reported during the 1999–2021 period studied. The reported animal events in

southern Africa (N = 31) and in the Indian Ocean islands (N = 19) were concentrated during

the 2008–2011 period (Fig 6). By contrast, animal events in West Africa and East Africa were

reported during most years of the targeted time interval (cumulative N = 80 and N = 118,

respectively), with the highest yearly tally being 41 reported events in 2018 (Fig 6). No animal

event was reported in the Arabian Peninsula after 2010, while only a low number of events

were reported in Central and North African countries between 2002–2019 (cumulative N = 8

and N = 9, respectively; Fig 6).

Of 28 papers that reported both human and livestock data, 17 contained information on

concurrent co-local RVF epidemic and epizootic activity. These reports documented com-

bined human/animal RVFV transmission events in Saudi Arabia [105,106] and Yemen [107]

in 2000–2001; in Egypt [108] and Mauritania [109] in 2003; in Kenya [5,90] and Tanzania

[90,110] in 2006–2007; in Mauritania in 2010 [94,111] and again in 2012 [112]; in Senegal in

2013–2014 [95]; in Niger [97] and in Uganda [113] in 2016; and in Kenya [114], Mayotte

[115], and South Africa [116] in 2018.

Fig 6. Acute animal RVF events per year during 1999–2021, by geographic regions across Africa, the Indian Ocean, and the Arabian Peninsula.

https://doi.org/10.1371/journal.pntd.0009852.g006
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Evidence of vector presence and competence for interepidemic RVFV

transmission

In S7 Table we summarize 31 published studies from 1999–2021 that tested arthropod vector

species for RVFV infection potential. Our systematic review identified 21 locations (in 8 coun-

tries) with RVFV-positive vectors, including mosquitos from Aedes, Culex, Anopheles, and
Mansonia spp. and from Hyalomma spp. ticks (Fig 2). Notably, in 6 out of 10 trapping surveys

performed during interepidemic years in endemic zones, live RVFV or RVFV RNA was

detected in captured vector mosquitoes or ticks [117–122]. As the lifespan of mosquito vectors

is relatively short, the presence of RVFV viral RNA in these vectors likely represents sustained

circulation in each of the given locations.

Human risk of RVFV-related disease

Among our included studies from the systematic review, 84 reports assessed human risk fac-

tors for RVFV exposure. The factors most commonly assessed were occupation (N = 33

papers), gender (N = 30), age (N = 89), contact with animals (N = 38), travel (N = 15), as well

as proxies for mosquito exposure such as work or residence in proximity to water sources

(N = 12), and personal behaviors related to mosquito avoidance (N = 29).

Quantitative assessment of the role of gender involved estimation of chances for RVFV

exposure by men and women in endemic settings. There were 31 studies that reported RVFV

exposure (cases or anti RVFV seropositivity) according to gender (Fig 7). There was moderate

heterogeneity among these studies (I2 = 39%), and random effects modeling estimation yielded

a summary pooled OR estimate of 1.41 (CI95% 1.24, 1.60, p< 0.001) for males vs. females in

their exposure rates (Fig 7). This value, based on studies from 1999–2021, remained very simi-

lar to that calculated by Nicholas and colleagues [65] (OR = 1.36) in their meta-analysis of

studies from 1984–2011.

Greater human risk associated with animal contact

Eleven well-structured human surveys (having moderate to low risk of bias, i.e., LQAT

scores� 6) compared rates of RVFV exposure among local residents according to the extent

of their daily contact with animals, particularly ruminant livestock. Heterogeneity was high

among these studies (I2 = 68%). However, random effects meta-analysis, summarized in the

Forest plot in Fig 8, yielded a summary OR estimate signifying a 46% increase in the odds of

RVFV exposure among people with regular animal exposure (random effects model pooled

OR = 1.46, CI95% = 1.09, 1.94, p = 0.01) in at risk populations. In separate task analyses, S1–S3

Figs show Forest plots for summary estimates of associations between butchering, sheltering,

and milking livestock activities and risk of RVFV exposure among at-risk populations. The

estimates were: for butchering, OR = 3.7 (CI95% = 2.5, 5.4, p< 0.001, I2 = 75%); for sheltering,

OR = 3.4 (CI95% = 2.1, 5.4, p< 0.001, I2 = 57%); and for milking, OR = 5.0 (CI95% = 2.8, 8.8,

p< 0.001, I2 = 77%), indicating significantly higher risk with these exposures. Among these

pooled studies, there was no evidence of publication bias (by funnel plot or by Egger’s statistic).

There were no yearly trends in exposure effects, nor did sensitivity analysis indicate evidence

of any single dominant study for each exposure-related outcome.

Thirty-nine included studies assessed human RVFV-infection risk factors related to differ-

ent animal exposures and 17 of those studies linked animal exposures to acute human RVFV

infections (S8 Table). In meta-analyses performed according to specific animal contact tasks,

handling aborted material during an RVF outbreak had a pooled odds ratio of human infec-

tion (Fig 9, random effects model pooled OR = 3.65, CI95% = 2.32, 5.73, p< 0.001, I2 = 73%).
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Our survey also provided individual reports of an additional 21 significant animal contact

risk factors that had not been commonly assessed. In a study in Tanzania during the 2006–

2007 East Africa outbreak, 40% of 115 RVFV cases reported having contact with animal prod-

ucts including meat and milk from sick animals, compared to just 28% of the cases reporting

having slaughtered an animal [123]. Specifically, consumption of meat from sick animals was

associated with a nearly four-fold increased risk of RVF-associated death during the 2006–7

outbreak in Kenya [68].

Occupational and socioeconomic factors associated with RVFV exposure

Our systematic review identified seven studies overall that found statistically significant risks

related to socioeconomic factors such as education level, ethnicity, and household size. Briefly, the

less wealthy and less educated were overrepresented among RVFV exposed people (S9 Table).

Forty-five of the 506 papers assessed occupation as a human risk factor and 14 references

found occupation to be a statistically significant factor (S10 Table). For clarification, those who

were classified as ‘herders’ may not necessarily live a pastoralist lifestyle, so they have been

given separate status. We found three studies that reported high seroprevalence among

“housewives”, which might be explained by their frequent handling of raw meat and animal

products for cooking.

Fig 7. Meta-analysis of the impact of human gender on odds of RVFV exposure in at-risk populations.

https://doi.org/10.1371/journal.pntd.0009852.g007
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Risk factors for RVF severity

Out of the 135 included papers assessing human RVFV exposure and disease, 12 presented data

on human risk factors associated with more severe RVF disease presentation (S8 Table). Persons

with severe disease were usually more likely to have had animal contact, [21,124,125]. In out-

breaks in Kenya [124,125], specific animal contact activities such as handling or consuming

products from obviously sick animals (OR for more severe disease = 2.53, CI95% = 1.78, 3.61,

Fig 8. Meta-analysis of the impact of animal exposure on odds of RVFV exposure in at-risk populations.

https://doi.org/10.1371/journal.pntd.0009852.g008

Fig 9. Meta-analysis of the impact of handling RVF-related animal abortions on odds of human RVFV exposure in at-risk populations.

https://doi.org/10.1371/journal.pntd.0009852.g009
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population attributable risk percentage [PAR%] = 19%) and touching an aborted animal fetus

(OR = 3.83, CI95% = 1.68, 9.07, PAR% = 14) were strongly linked to risk of severe (rather than

mild) human RVF disease. Older age and death of a family member were also linked to more

severe human disease [124]. In Sudan, males aged 15–29 years were overrepresented among

patients who presented with severe disease, as compared to females of the same age [126]. Envi-

ronmental factors, such as excess rainfall and muddy soil linked to emergence of mosquito

blooms have also been linked to severe human disease in both Sudan and Kenya [127,128].

Severity of human RVF was associated with the presence of concomitant co-infections. A

fatal outcome in a travel related case was attributed to the presence of concurrent hepatitis A

virus infection [45]. Additionally, a study in South Africa during the 2010 RVFV outbreak

indicated that existing HIV-positive infection status was associated with risk of the encepha-

litic form of RVF disease [129], a finding similar to experience among HIV-infected patients

in Tanzania in 2007, where all patients with HIV-positive status developed encephalitis, and of

whom 75% died [123].

Four studies performed in three countries (Kenya, Sudan, Saudi Arabia), examined the risk

factors linked to death from RVF. In Kenya in 2007, consuming and handling products from

sick animals and village and district location were linked to risk of death (OR = 3.67, CI95% =

1.07, 12.64, PAR% = 47%) [125,130]. In Saudi Arabia, a retrospective analysis of the 2000–

2001 outbreak showed that specific clinical signs were independently linked to death. These

included jaundice, bleeding, and neurologic symptoms (P < 0.0002) [131]. One study demon-

strated an increased level of RVFV replication in fatal RVFV [132].

Risk factors for animal RVFV outbreaks

Because human risk of RVFV exposure is closely associated with the local presence of infected

livestock, we reviewed factors related to animals’ risk of RVFV infection.

Herd Immunity Levels. Our systematic review included results from 174 animal studies, in

which 144 tested domestic livestock and 26 tested wild animals for RVFV exposure and/or

acute infection. Of all livestock studies included, 32 were conducted during an active epizootic,

10 were conducted just after an outbreak in the post-epidemic phase, and 97 were conducted

during interepidemic years. For wildlife surveys, 5 were carried out during an active epizootic,

5 were done in the post-epidemic phase, and 14 were performed during interepidemic periods.

Of all animal risk factors, sex and age were the most studied, and older animals and those that

had lived through outbreaks were more likely to have been exposed. A wide range of anti-

RVFV IgG seroprevalence was observed among livestock in endemic countries (4% in Senegal

[95] to 39% in Tanzania [133]) and rates were dependent on species and population sampled,

the timing of sampling, and the sampling strategy used. As a result, seroprevalence listed at a

given time and place did not imply a specific level of long-term herd immunity. A summary of

livestock risk factors is presented in S11 Table.

Herd level risks. For herd level risks, the observed effects of herd size has varied across

studies. A 2013–2014 study in a high risk area of Kenya showed that medium sized herds of

50–100 animals had a significantly higher seroprevalence compared to small herds (< 50 ani-

mal) or very large herds (>100 animals) [134], though this did not account for the differences

in animal rearing strategies dependent on herd size. The statistical significance of herd size

was lost when village was accounted for as a random effect [74]. In Tunisia, the first assessment

of serology in camels in 2017–2018 showed that camels living in smaller herds intended for

meat production had a higher seroprevalence than those used for military purposes or tourism.

Additionally, this study found that camels that had contact with ruminants had significantly

higher rates of RVFV exposure [81].
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The differing levels of RVFV susceptibility across livestock species (S11 Table) further com-

plicates the herd immunity threshold related to animal-to-human RVFV spillover. Addition-

ally, livestock had variable contact with other livestock from neighboring herds and regions.

An extensive social contact analysis from the 2008–2009 Madagascar outbreak showed that

bartering practices, in which cattle can have multiple contacts within a village, was a significant

seroconversion risk factor [135]. Such bartering practice can support inter-village RVFV circu-

lation, whereas formal trade networks or cross-border smuggling were more likely to be

responsible for trans-national and international spread [136,137].

Individual animal risks. For individual-level animal risk, studies examining cattle had

the most significant findings. Abortion was the most recognized clinical sign associated with

RVFV infection and recent abortion was significantly associated with RVFV exposure [138].

This experience was the first to identify the 2018 RVFV outbreaks in Kenya when farmer-

reported surveillance was implemented [127]. None of the included studies found an associa-

tion between underlying animal body condition and RVF risk.

Wild animals’ role in RVFV transmission

RVFV has been found in a variety of wild mammals [48]. Their role in transmission to humans

has been documented, as well as their role as viral amplifiers that contribute to increased risk

of livestock infection. Wild ruminants, especially buffalo, have been found to have significant

herd seroprevalence during inter-epidemic period in endemic areas [46,139,140]. For species-

specific risk factors, interspecific network centrality, home range and reproductive life-history

traits were associated with RVFV occurrence. S12 Table summarizes the wild animal seroposi-

tivity and acute infections identified in our literature review.

Animal vaccination

Among the included papers in this review, we identified 17 studies in six countries that

included vaccinated animals. Countries that had vaccinated cattle, sheep, or goats for RVFV

were Kenya, Tanzania, South Africa, Egypt, and Saudi Arabia [5,141–145]. In Egypt, between

2013 and 2015, seroprevalence of anti-RVFV was 14.9% among immunized cattle, compared

to 7.9% among unimmunized cattle [146]. Although livestock are required to be vaccinated

before they are exported to Saudi Arabia, a study at a livestock quarantine facility in Djibouti

found an anti-RVFV IgM-positive seroprevalence of 1.2% in sheep and goats (small ruminants

grouped as ‘shoats’) and 0.3% in cattle [141,147]. A 2009 study in Mecca, Saudi Arabia found

55.8% anti-RVFV IgG in ostensibly vaccinated sheep, but still found a 2.6% rate of IgM positiv-

ity, indicating possible ongoing circulation (despite herd vaccine status) or recent vaccination

[148].

Additional considerations for RVF risks

The range of RVFV-endemic areas is expanding, and the virus appears to travel well

[39,149,150]. In endemic countries, internal travel to or from outbreak epicenters is typically

included in suspect case definitions. A recent review by Grossi-Soyster and LaBeaud [151] has

highlighted the risk of RVFV transmission to travelers, and although most travelers will not

have direct contact with livestock, their mosquito exposure behavior needs to be assessed.

Reported surveillance methods

In animal, humans or vectors are summarized in S13 Table. Our review revealed 52 papers

specifically reporting on RVFV surveillance. Their methods are not uniformly implemented,
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but include: i) leveraged RVFV testing of samples taken during surveillance for other diseases

such as malaria, dengue, HIV, or Lassa fever [38,152–154]; ii) the use of sentinel livestock

herds in high-risk areas; iii) increased case surveillance based on monitoring of weather-

related early warning signs; and iv) international collaborations with neighboring regions to

conduct surveillance. These surveillance systems do not necessarily operate in parallel, but

instead may overlap and may only be implemented at times of perceived increased risk.

Fig 10 depicts the different types of early warning and surveillance systems and their relative

certainty. S13 Table further summarizes available information from open-source platforms on

the early warning and surveillance systems used for RVFV transmission during 1999–2021.

RVFV diagnostics

When implementing surveillance for detecting RVFV transmission, one major constraint

is the limited availability of accurate diagnostics in places where RVF disease occurs. For

both human and animals, reliance on a clinical presentation to prioritize RVFV testing is

complicated by the significant clinical diagnostic overlap with other febrile infection

syndromes.

Although detection of circulating RVFV RNA by RT-PCR can be a definitive diagnosis of

active infection, because the human and livestock viremic period is typically only 4–6 days (up

to 14 days if hemorrhagic human disease), serologic testing is more extensively used to investi-

gate the epidemiology of recent and past infection. We extracted data from 207 included

review reports on the type of assays recently employed for diagnosis of acute RVF. No studies

tested livestock and wild animals together for acute infection. The assays used to detect acute

RVFV infections are summarized in Table 3.

Fig 10. Progressive scale of surveillance that can used to indicate an impending RVFV disease outbreak.

Republished with permission of The National Academies Press, from Under the Weather: Climate, Ecosystems, and

Infectious Disease (2001), Chapter 7: Towards the Development of Disease Early Warning Systems. P. 87; permission

conveyed through Copyright Clearance Center, Inc. under license ID #1142222

https://doi.org/10.1371/journal.pntd.0009852.g010
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Discussion

During RVF epidemics, assessment of incidence, prevalence, and associated risk factors for

infection are often based on case series of suspected patients, rather than well-designed, popu-

lation-based surveys that enumerate laboratory-confirmed cases vs. non-cases. Epidemic and

epizootic outbreak surveys are further hampered by limited access to the affected rural com-

munities, which are often experiencing severe flooding caused by excessive rainfall, and very

limited access to diagnostic testing. In addition, survey incidence/prevalence calculations may

be imprecise because of lack of accurate census information. As a result of these factors and

the irregular frequency of disease outbreaks, the epidemiology of RVFV transmission and the

risk factors for RVFV-related human disease are not well defined. In some endemic areas,

post-epidemic serosurveys have shown high community exposure to RVFV [69,104,153–158],

even though symptomatic RVF had been only rarely reported by local health care services.

Based on our consolidated picture of recent RVFV epidemiology and the knowledge gaps we

have identified, future operational research and clinical trial design should consider the factors

discussed below, with the understanding that currently available data have some significant

limitations in accurately defining human risk for RVF.

Our review indicated that during the last two decades, new patterns of RVF epidemiology

have emerged. The virus continues to expand its range across Africa countries and into new

regions within endemic countries [59,159]. It should be noted that among studies that were

technically excluded from our review, there were several completely negative serosurveys of

animals performed in Spain [52], the Canary Islands [53], Mauritius [160], Zanzibar [161],

South Korea [55], and Poland [54]. Expansion of RVFV transmission has been aided by live-

stock movement [34,162–165] and the increasing frequency of extreme weather events involv-

ing heavy rainfall and flooding [60]. The discovery of vertical transmission within arthropod

vector species other than floodwater Aedes spp. mosquitoes [166] indicates the existence of

multiple pathways for local RVFV persistence in different ecosystems during time periods that

are in between recognized outbreaks. An additional non-vector route of RVFV transmission

to humans, i.e., maternal-fetal transmission, has also been identified recently [167–169], and it

has been established that RVFV can be an abortifacient in humans [170]. Thus, treating RVF

as a concern only during large scale outbreaks in known hotspots fails to capture the full bur-

den of disease and its underlying transmission, and fails to detect new areas of emergence.

The review identified 9 actionable critical knowledge gaps for vaccine development and

testing. Until this knowledge is improved, clinical trial planning and therefore vaccine

Table 3. Summary of acute diagnostic assays employed in included studies, by species.

Number of Included Studies that Used the Following Methods for Detection of Acute RVFV Infection

Species IgM IgM,

direct1
IgM,

PCR

IgM, PCR,

direct1
IgM, PCR IgG

SC2
IgM, IgG

SC2
PCR IgG

SC2
Direct1

only

PCR

only

PCR,

direct1
IgG

SC2only

Total

Livestock 26 0 4 0 1 3 2 0 5 0 3 44

Humans 21 2 23 4 2 0 0 2 9 1 0 64

Humans, livestock 1 1 5 3 1 0 0 0 1 0 0 12

Humans, livestock,

wildlife

0 0 0 1 0 0 0 0 0 0 0 1

Wildlife 0 0 1 0 0 0 0 1 0 1 1 4

Method Total 48 3 33 8 4 3 2 3 15 2 4

1Direct: Direct detection methods include immunofluorescence assay, cell culture (virus isolation), electron microscopy, and immunohistochemistry
2SC: IgG Seroconversion of IgG (positive IgG during the study period AND a previously documented negative status from the same individual)

https://doi.org/10.1371/journal.pntd.0009852.t003
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development will continue to face practical implementation challenges that can’t easily be

overcome:

1. Gap 1: Defining the likely interval between significant RVF outbreaks is challenging

2. Gap 2: The unpredictability of livestock herd immunity

3. Gap 3: Differences in seasonality across endemic/enzootic locations.

4. Gap 4: Data challenges related to bias based on limited study designs and inconsistent

reporting.

5. Gap 5: Delineating human risk factors.

6. Gap 6: Need for consistent naming of RVFV lineages and strains.

7. Gap 7: Need for consistent RVFV testing frameworks.

8. Gap 8: Evolving better approaches to diagnostics.

9. Gap 9: The need for One Health approaches for RVFV detection and control.

Gap 1: Defining the likely interval between significant RVF outbreaks is

challenging

The limited understanding of transmission persistence during interepidemic periods is a

major gap affecting our ability to control continued expansion of RVFV, both within and

between countries. Prospective studies during interepidemic periods are needed to provide a

deeper understanding of how RVFV survives then subsequently thrives in an endemic area.

Study findings could then suggest how mitigation efforts, such as vaccination of high-risk

humans, can be implemented even before existing surveillance systems detect an outbreak.

Defining periodicity of outbreaks is challenging because, without active case finding, pas-

sive detection is an imperfect, trailing indicator of transmission, as it requires a large enough

case number of RVF clinical syndromes (e.g., abortions in livestock) to identify events. Over

the last two decades, increased availability and sensitivity of RVFV diagnostic assays, including

genotyping, have contributed to increased recognition of viral transmission. However, without

baseline interepidemic surveys in both high and low risk areas it is not possible to determine

whether RVF outbreak waves are due to persistence or to re-introduction of RVFV transmis-

sion. As the outbreak intervals for RVFV remain undefined, the lack of studies during interepi-

demic periods limit our ability to understand viral maintenance and make it difficult to qualify

endemicity in support of mitigation efforts such as vaccination. More useful data would

include concomitant active surveillance of vectors, livestock, and humans, and information on

rainfall, temperature, mosquito larval sources, and the frequency of risk-related human behav-

iors. Because RVF livestock outbreaks are up to five times more likely to occur where out-

breaks have previously occurred, and human outbreaks are more likely to occur in the same

locations as livestock outbreaks [5,171], areas with prior RVFV transmission shown in Figs 3

and 4 would be best locations to characterize interepidemic transmission.

Kenya, South Africa, Madagascar, and Mauritania have had recurrent human and domestic

animal RVF outbreaks in the last two decades and are thus most likely to experience additional

outbreaks in the near future, and thus could be most suitable for a human vaccination trial.

Notably, areas with recurrent outbreaks tend to have more robust surveillance which may

account for the higher frequency of RVF detection in those locations (i.e., ascertainment bias).

This could impact the predictability of outbreaks, and strongly affect the validity of vaccine

trial endpoints. Based on findings identified in this systematic review, RVF can be more likely
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in a given location, compared to a similar nearby location due to many factors, including the

total number of susceptible hosts (influenced by herd immunity), the presence of wildlife res-

ervoirs [172], the water retention properties of the soil and rainfall patterns [63], local cultural

practices that may increase risk (e.g., consumption of blood) or decrease risk (e.g., refusing to

eat meat from dead animals) [173], and mitigation efforts that persist between outbreaks. As

these factors can be confounded, an in-depth understanding of RVFV epidemiology is needed

to design investigations so that resources for operational research can be maximized.

Gap 2: The unpredictability of livestock herd immunity

Current prevention and readiness efforts for RVFV outbreaks rely mostly on early warning pre-

diction and a rapid livestock vaccination response, both of which occur with variable reliability.

Recovery from infection and vaccination with live-attenuated vaccines are thought to result in

lifelong neutralizing antibodies in livestock [174] and indeed, if enough livestock could be vacci-

nated for RVFV, then human spillover would be unlikely [175]. However, livestock have a rapid

turnover rate within and between herds as animals are slaughtered and sold, or arrive naïve into

the herd from new births or purchases. Additionally, livestock in RVFV endemic countries often

live in close proximity to wild ruminant species that also acquire many naïve animals each breed-

ing season. The logistics and current intermittent nature of domestic livestock vaccination cam-

paigns, in the face of unknown baseline herd immunity levels, makes full reliance on reactive

livestock vaccination a risky approach to RVFV public health control.

Most livestock animal studies have focused on cattle, sheep, and goat seroprevalence.

Although some surveys have used power analysis to determine how many animals to sample

from each species, many surveys have still opted for convenience sampling, focusing either on

sheep and goats, which are easier to handle, or on just cattle alone. The interpretation of such

livestock prevalence surveys should be viewed with caution. Animal age is also likely to influence

the results—cattle and dairy animals tend to live longer than sheep or goats, so it can appear that

their cumulative burden of exposure is higher. However, evidence of infection among younger

animals does provide evidence for recent RVFV transmission activity, and increased seropreva-

lence between years can indicate an unrecognized outbreak. When multiple species are surveyed,

rates should be calculated based on animal-years at risk and better attempts should be made to

age animals based on their dentition. Factors that confound RVFV exposure risk should be cap-

tured, such as the wealth and knowledge of the farmer [114], area livestock density, and loca-

tion-specific climate factors. We suggest factors such as nearby temporary and permanent water

bodies, land use, mobility at peak mosquito biting times, housing conditions, and rearing strat-

egy be combined with climate data to better discern spatial and temporal high-risk periods for

livestock. This will be important in defining optimal locations for human vaccination trials.

As the previous systematic review by Clark, et al. [68] has highlighted, and as we found in

our review, there are few studies that assess both human and animals from the same site at the

same time. The high-risk periods for livestock and humans may not necessarily overlap, as

livestock infections are undoubtedly driven by rainfall and mosquito blooms, but human out-

breaks can also expand with increased slaughtering of sick animals and the increased presence

of secondary mosquito vectors.

It is understood that livestock viral amplification is an important predecessor of human

outbreaks. The greater number of acute animal events (N = 273), compared to human events

(N = 132) identified in this review could be due to our increasing ability to detect smaller ani-

mal outbreaks or could represent our inability to reliably detect acute human cases associated

with smaller animal outbreaks [176,177]. After animal outbreaks are established, we recom-

mend broad-based human outbreak investigations that include all community members, not
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just the high-risk individuals, i.e., all individuals who may have had contact with animal prod-

ucts from the affected herd, as well as those who do not own livestock but reside in areas within

vector flight range.

Gap 3: Differences in seasonality across endemic/enzootic locations

As climate change modifies seasonal weather patterns, differences in outbreak incidence are

becoming more prominent among at-risk locations, but these changes may make epidemics

harder to predict. Eighty-nine (31%) of our included studies specifically mention flooding at

the outbreak site. A defined “rainy season” and “dry season” in tropical locations can guide

risk assessment, but it is not just rain that makes an outbreak more likely. Congregation of

many susceptible hosts and large volume slaughtering of animals (for example, as part of reli-

gious or community festivals [148,178,179]), an abundance of mosquito breeding containers

(for example, in plastic trash) [180], large-scale animal movement [181], and low baseline herd

immunity will increase the chance of RVFV outbreaks. Recent data-driven modeling efforts by

Hardcastle and colleagues [59], incorporating environmental and human and animal census

data at the district level, predict that outbreaks in southern and eastern Africa are most likely

to occur in December through July, whereas risk in the Sahelian zone will be higher in Septem-

ber through November [182]. Even within countries, seasonal rainfall can vary widely. For

example, in western Kenya, August typically has above average rainfall while the remainder of

the country remains dry [183]. Real-time regional level weather information must be consid-

ered to obtain adaptive implementation of mitigation efforts.

Pastoralist herds tend to have higher RVFV exposure, and this is influenced by the types of

ecozones where the herds circulate. Pastoralists follow water and pasture availability as they

become available in a seasonal cycle, which may involve movement through high-risk zones.

As animal protein demand increases, mostly in urban centers, more livestock will be passing

through areas that have previously experienced RVF cases, and in the presence of competent

mosquito vectors. Recent infections are more common in nomadic herds compared to agro-

pastoralist herds [184] and in herds with longer distance to travel to their night pens or to the

nearest permanent water [83]. Modeling of data from Senegal suggested that nomadic herd

movements are sufficient to account for endemic circulation of RVFV, although the co-exis-

tence of Aedes vertical transmission cannot be ruled out [185].

In addition to climate, the variety of suitable hosts present in those areas will also vary from

location to location. All potential wildlife reservoir species should be considered when compar-

ing incidences between two geographically distinct areas because wild animals’ behaviors and

range is intimately tied to topography and resource availability. In Botswana, wildlife hunters’

seroprevalence was 27% compared to a 3% community level exposure [35], showing that wildlife

exposure may contribute directly to human burden independent of domestic livestock presence.

This is further illustrated by human case exposure in Angola without documented livestock

exposure [101]. As RVFV can adapt to new ecological niches and utilize a wide variety of mam-

mals to amplify itself, including common white-tail deer [186,187], we caution not to make the

assumption that wild animals’ role in RVFV transmission will be similar between locations. All

suitable wild animals, particularly wild ungulates, should be included in calculations of regional

herd immunity and their interface with humans should be considered as a likely risk factor.

Gap 4: Data challenges related to bias based on limited study designs and

inconsistent reporting

A systematic review by Bron and colleagues [188] has summarized the patchwork of data col-

lected on RVFV epidemiology over the last century, and has highlighted the lack of
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standardized reporting as the major challenge in comparing data between locations. In our

current systematic review, which focused solely on studies from the last two decades, we con-

firm that uneven reporting remains a significant problem. Improving study designs and sam-

pling frameworks for RVFV is challenging, in part due to the lack of funding opportunities

during interepidemic periods. In outbreak reports, uncertain levels of ascertainment bias and

possible diagnostic misclassification mean that case finding and resulting case counts have

unclear accuracy. ‘Population at risk’ numbers used in incidence and prevalence calculations

are often chosen based on outdated census data without true understanding of who is at risk

within a community. With many smaller, low-budget, short-term studies (rather than large

collaborative long-term efforts) the focus turns to identifying enough cases for a meaningful

statistical analysis, which means that some studies will test only high-risk individuals working

with animals. This likely excludes vulnerable populations who have not yet been identified as

being at high-risk.

Hospital-based surveys for hemorrhagic fever surveillance are an attractive tool because

they do not require household field visits and blood samples are typically more available for

testing [38,40,152–154,189,190]. Such sero-surveillance can be compared from year to year to

gain retrospective insight on when transmission has occurred. However, as with most hospi-

tal-based studies, these efforts do not represent the population at large, so they likely underesti-

mate true incidence and overestimate the percentage of cases with severe disease.

Gap 5: Delineating human risk factors

Limitations in our knowledge of detailed human risk factors undermines ability to use targeted

strategies, such as human anti-RVFV vaccination, for prevention. For vaccine development,

the predefined geographic site(s) in which clinical trials will be conducted must contain indi-

viduals who: 1) are likely to be at a high infection risk during the trial; 2) are likely to exhibit

the primary endpoint upon infection; and 3) represent populations in which the vaccine will

likely be distributed if found efficacious. Our meta-analysis of human risk factors across multi-

ple 1999–2021 studies confirms the increased RVFV infection risk associated with male gen-

der, general livestock care, contact with animal abortus, butchering animals, and milking risks

identified in previous reviews and meta-analysis [65,191]. Not all of the studies in this system-

atic review were population-based, thus the variable reporting of associations having ‘statistical

significance’ may be attributed to differences in study design, low sample size (with lack of sta-

tistical power), and/or choice of target populations.

In most places where RVFV outbreaks occur, lack of health care infrastructure impedes

detailed description of human disease signs and performance of laboratory studies (including

assessment of viral load and immunologic responses to infection), which might be predictive

of severe disease or death. It is possible that other health comorbidities, such as concurrent

HIV or hepatitis, can influence the presentation of RVFV disease, but these associations have

not yet been widely studied. Further descriptions of the natural history of clinical and labora-

tory findings in human RVF are needed, and efforts should be made to fully assess the relative

risks from direct (non-vector) animal exposures vs. mosquito vector-borne exposure. Front-

line healthcare workers need to recognize when testing for RVFV infection is appropriate,

based on patients’ significant risk factors, and they should communicate frequently with local

veterinary colleagues to identify high-risk transmission periods.

Most risk factor analyses rely on participant recall, risking recall bias, and it has been diffi-

cult to discriminate the risk of living in the presence of susceptible livestock from risk due to

direct participation in husbandry activities or from risk due to local mosquito exposure

(including variably zoophilic and anthropophilic mosquito species). Aside from animal rearing
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activities, the association of human risk with consumption of infected animal products is con-

cerning, as this is practiced by a majority of human populations and the true infectivity by con-

sumption is still not well understood. For example, consumption of raw milk is a now well

recognized as an RVFV exposure risk factor [65,191], but no previous studies have isolated

RVFV from milk during outbreaks. Ongoing studies in Kenya [192] are conducting risk

assessments in urban areas to distinguish consumption risk factors versus risk from livestock

rearing activities common to rural areas.

RVF has been perceived as a disease of poverty, but this is likely due to its greater incidence

recognized in rural areas. It is not known whether RVFV has an urban transmission cycle, and

so far, the risk of RVF related to socioeconomic status (aside from having a pastoralist lifestyle)

is poorly defined. Choice of occupation is intimately connected to socioeconomic status and

this systematic review confirmed that the highest-risk occupations are associated with livestock

exposure. Even within occupational categories, differences in assigned tasks can carry differen-

tial risks [193]. We combined common terminology for the same profession, for example,

slaughterhouse and abattoir workers for our analysis; however, more specific factors such as

size of the slaughterhouse, species slaughtered, and available personal protective equipment

(PPE) are likely strong confounding factors.

Gap 6: Need for consistent naming of RVFV lineages and strains

A possible explanation for variation in RVF attack rates and disease severity, noted between

locations and among different hosts, could be differences in RVFV strain virulence. Laboratory

studies suggest some strain-specific differences in mortality in experimental animals [194].

However, the variability observed during natural outbreaks is likely due to site-related diag-

nostic misclassification of RVFV infection with erratic ability to detect milder cases of disease

and variable presentations due to patients’ age and health status. Our systematic review aimed

to capture strain- and lineage-specific effects; however, a meaningful analysis was obscured by

inconsistent naming of lineages due to differences in the genetic sequences chosen to be stud-

ied and different approaches to sequence homology analysis. International harmonization of

lineage identity and nomenclature will help to determine differential effects, if any, of individ-

ual RVFV lineages and strains. Formal delineation could be applied to study lineage and strain

as a potential confounders in RVF outcome measures such as disease severity in larger-scale

multi-center vaccination trials. As with SARS-CoV2 variants, a naming scheme that does not

rely on location may help to alleviate some of the disincentive and stigma for national govern-

ments to report acute cases and identify sequences of circulating genomes to identify sources

of local introduction.

Gap 7: Need for consistent RVFV testing frameworks

As highlighted earlier, identification of RVFV outbreaks and determination of the endemic

state of a country require consideration of the efficacy of surveillance efforts in place. Well

organized and implemented surveillance systems provide the basis for understanding the epi-

demiology of RVFV and provide an opportunity for warning and an opportunity to fill the

gaps in current knowledge.

As RVFV diagnostics become more widely available, physicians in hyperendemic regions

will be able to consider co-infection with RVFV in their differential diagnoses, especially for

pregnant mothers who are at risk for abortion [170]. Additionally, if hospitals are aware of cur-

rent RVFV circulation in livestock, they can go on high-alert and intensify their screening of

patients for RVF. However, the lack of specific medical therapeutics may dissuade clinicians

from testing for RVFV and favor testing for more treatable conditions, notably malaria. As the
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recent experience with Ebola virus in West Africa has taught, compassionate care must be the

cornerstone of outbreak response in order for the at-risk population to buy into control mea-

sures. Public health messaging that fuels despair results in massive underreporting, particularly

if outbreaks become political [195].

There are concerted efforts to create a pan-viral hemorrhagic fever diagnostic assay. The

Uganda Virus Research Institute (UVRI) in Entebbe has been implementing laboratory-based

surveillance for viral hemorrhagic fevers (VHF) in Uganda since 2010, which includes testing

for RVFV [196]. While this may help differentiate RVFV from other concerning viruses, we

caution about the grouping of RVFV with other hemorrhagic fevers for surveillance purposes

as RVF-related hemorrhage in humans is the rarest clinical manifestation, and the risk factors

for other forms of RVFV-related disease are different.

Development of robust RVFV surveillance systems is complex, because both animals and

humans display variably detectable disease outcomes when they become infected. Currently,

most RVFV surveillance systems are engaged only in response to climate early warning sys-

tems and are focused on periods with high-risk for large scale outbreaks. We found that recent

re-structuring of the FAO Global Animal Disease Information System (EMPRESi) has pro-

vided an open-source, easy to navigate platform for tracking reports of RVFV cases in member

countries. Since 2004, the system has recorded 1,186 animal cases of RVFV, of which 1,175

were confirmed. This reporting system relies on mandatory reporting of acute cases by

national authorities, the OIE, WHO, FAO field officers, and published reports such as those

included in this review. However, this database excludes longitudinal seroconversions, and

therefore, excludes evidence of sub-clinical transmission during interepidemic periods and so

does not capture the full extent of RVFV burden. Future modeling approaches using only

these data should consider this key missing piece in their assumptions. The lack of consistent

and systematic open-source data capture currently impedes the design of both animal and

human vaccine trials. Although RVFV is a reportable disease in many of the affected countries,

a system that relies on passive reporting is likely to miss areas of new emergence when viral

activity is below the threshold to detect excess numbers of patients with the more obvious clin-

ical signs of RVF. It should be noted that the partnership of a strong national veterinary service

with close ties to a fully equipped national laboratory is crucial to any successful surveillance

effort. If farmer-based cellphone reporting is to be successful at identifying RVF cases, farmers

need to be sensitized to the greater goals of the system and incentivized to report. Overall, the

ideal surveillance system for RVFV would utilize aspects of each of the discussed surveillance

types (Fig 10), focusing on sentinels and enhanced active case finding, including during inter-

epidemic periods, and take into account regional differences in animal and human health sys-

tems. Since RVFV is a vector-transmitted disease, and a large proportion of the world has the

potential for RVFV emergence, the management of RVFV surveillance efforts should be

regionally collaborated and all RVFV-naive countries with large numbers of livestock should

take into account past lessons about recent introductions into new geographic areas as they

prepare prevention and mitigation efforts for themselves [197–202].

Post-epidemic performance analyses have found that the lead time given by early warning

systems may not be sufficiently long to prepare and vaccinate enough livestock to contain an

outbreak. Just as reliance on a passive surveillance system for RVFV is likely to not be enough

to detect outbreaks, sole reliance on a remotely sensed early warning systems (EWS) should

also be avoided. One major limitation of climatic EWS is that they do not account for the effect

of existing herd immunity obtained either through natural infection or prior livestock vaccina-

tion. Livestock seroprevalences as high as 60% have been captured in high risk areas [203] and

up to 38% in areas that are not typically classified as high risk, such as Chad [204]. The lack of

outbreak detection, despite seemingly high-risk weather conditions, can be explained both by
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the effect of herd immunity and limitations of existing surveillance systems. With this current

level of performance, at-risk countries should not rely solely on early warning systems and

instead use them as part of integrated decision support tools, similar to those developed for the

greater Horn of Africa [205]. As RVFV outbreaks have often had an insidious onset, we rec-

ommend active case finding in high-risk areas in response to any of the previously mentioned

early warning signals.

Gap 8: Evolving better approaches to diagnostics

Because arboviral infections such as RVF often result in self-limited febrile syndromes with

non-specific signs and symptoms, isolated cases of infection are frequently misdiagnosed as

malaria in sub-Saharan Africa. This highlights the critical need for affordable and accurate

point-of-care diagnostics for RVFV [206–209]. In the majority of recent transmission surveys,

anti-RVFV IgM serology was used alone to define recent infection, and more humans than

animals were found to be positive. As commercial IgM ELISA tests are now more widely avail-

able for livestock, this gap likely represents a lack of available resources, either financial or

logistical, for testing livestock for recent infection. For suspect acute cases, IgM allows a wider

window of detection than discovery of circulating virus or viral RNA [210].

Among the 95 studies that reported human serology, the methods for human anti-RVFV

antibody detection exhibited significant variability, with most studies relying on tertiary refer-

ence laboratories for final diagnosis. Future efforts should focus on increasing the number and

capacity of local laboratories so that the burden of shipping time and costs can be alleviated.

The Covid-19 pandemic response has led to expansion of molecular diagnostic capacity in

many regions. In the aftermath of the pandemic, these important logistical and laboratory

resources should be leveraged to include other viral diseases such as RVF.

Serology serves as the basic approach for investigating individual and community level risk

factors as it can monitor changes in prevalence over time. Both enzyme-linked immunosor-

bent assays (ELISA) and viral neutralization tests (VNT) have advantages and disadvantages.

Identifying IgG-positive livestock by ELISA has often been the first step in recognizing new

areas of emergence [81,211]. However, follow up VNT should be used to confirm positive

ELISA results in new locations, especially if the seroprevalence is low (less than 1–2%) when

misclassification due to false-positive tests is of concern. For future vaccination trials, if sero-

conversion is the primary measure of local RVF occurrence in livestock, greater emphasis on

the availability of diagnostic techniques of differentiating infected from vaccinated animals

(DIVA) will be needed.

Gap 9: The need for One Health approaches for RVFV detection and

control

Expanding RVFV surveys to include human community populations at-large will identify risk

associated with socioeconomic standing, while simultaneously detecting patients with incident

infections but without presently known risk factors. To fully understand the ecology of local

transmission such broad-based human studies need to be conducted concurrently with robust

animal surveys. Recent reviews and policy papers in the human and animal health RVFV liter-

ature call for a greater emphasis on a One Health management approach, both in research and

control efforts [128,212,213]. For vaccination strategies, application of a One Health approach

would focus on the combined use of veterinary and human vaccinations. A better understand-

ing of viral transmission to all species during interepidemic periods, with an improvement of

diagnostic sampling frameworks, are within reach in the next decade. Reaching an under-

standing of the herd immunity threshold for outbreak initiation, the variability in case fatality
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risks, the contributions of vectors to both asymptomatic and symptomatic human and animal

infections, and the most influential transmission pathways will take a collaborative effort

among multiple disciplines and public health sectors.

Summary

The gaps presented here are based on a collated estimates of recent RVFV transmission. The

available case counts and serosurveys in this systematic review contribute to a body of evidence

that can guide the way forward to clinical testing of novel preventive and curative

interventions.

The identified gaps will all affect development of human vaccines for RVF, acting as poten-

tial impediments to planning and preparing clinical field trials. Trial feasibility will depend on

understanding incidence with sufficient granularity and identification of suitable target popu-

lations. Site selection faces challenges in forecasting—timing, duration and location of out-

breaks, and study population selection will depend on existing seroprevalence and the

duration of protection after prior natural exposure and infection. Definition of clinical end-

points will depend on good characterization of clinical presentations, and availability of diag-

nostic tests for differentiating non-specific febrile syndromes.

RVFV continues to transmit across Africa and nearby Indian Ocean islands at a high rate,

but at an irregular frequency. As previously noted, because of its typical mosquito-borne re-

emergent transmission, RVFV outbreaks often follow periods of excess rainfall and local flood-

ing, particularly in semi-arid regions. During the 1999–2021 period studied in this review,

human outbreaks of RVF occurred at an average rate of 5–6 events per year across the region.

The range of transmission has expanded, with human cases documented for the first time in

Saudi Arabia, Yemen, Comoros, Mayotte, Burundi, Niger, and Mali, and with re-emergence in

Uganda after multiple decades of no activity. Reported human RVF events were most common

in Mauritania, Kenya, Sudan, Madagascar, and South Africa, and each of these countries expe-

rienced multiple epidemics since 1999. In districts or counties where human cases were

reported, the median attack rate was 2.5 per 100,000 (range 0.1 to 91), and median case fatality

was 14.3% of severe cases, highlighting the significant population health burden of RVF.

Experience with veterinary vaccines indicates that pre-event vaccination can mitigate the

spread of RVFV infection. Now that human vaccines are under development, their clinical

testing and implementation should be guided by particular focus on the high-risk subgroups

(based on location and exposures) identified in this review. Effective vaccine trials will depend

on achieving accurate outbreak predictions combined with efficient animal and human case

surveillance systems.

The feasibility of such trials can be assessed using the present summary of recent epidemiol-

ogy, while approaches to trial design will be strengthened by simultaneously addressing the

gaps we have discussed here. Recommendations for vaccine trial study design will be addressed

in greater detail in a subsequent paper by the CEPI RVF study group.
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