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Abstract

Motivation: Current technologies for single-cell DNA sequencing require whole-genome amplifica-

tion (WGA), as a single cell contains too little DNA for direct sequencing. Unfortunately, WGA intro-

duces biases in the resulting sequencing data, including non-uniformity in genome coverage and

high rates of allele dropout. These biases complicate many downstream analyses, including the de-

tection of genomic variants.

Results: We show that amplification biases have a potential upside: long-range correlations in rates

of allele dropout provide a signal for phasing haplotypes at the lengths of amplicons from WGA,

lengths which are generally longer than than individual sequence reads. We describe a statistical

test to measure concurrent allele dropout between single-nucleotide polymorphisms (SNPs) across

multiple sequenced single cells. We use results of this test to perform haplotype assembly across a

collection of single cells. We demonstrate that the algorithm predicts phasing between pairs of

SNPs with higher accuracy than phasing from reads alone. Using whole-genome sequencing data

from only seven neural cells, we obtain haplotype blocks that are orders of magnitude longer than

with sequence reads alone (median length 10.2 kb versus 312 bp), with error rates <2%. We dem-

onstrate similar advantages on whole-exome data from 16 cells, where we obtain haplotype blocks

with median length 9.2 kb—comparable to typical gene lengths—compared with median lengths of

41 bp with sequence reads alone, with error rates <4%. Our algorithm will be useful for haplotyp-

ing of rare alleles and studies of allele-specific somatic aberrations.

Availability and implementation: Source code is available at https://www.github.com/raphael-

group.

Contact: braphael@cs.princeton.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, single-cell DNA-sequencing technologies have

enabled the measurement of the genomic changes in individual

cells (Gawad et al., 2016). This technology has been used to

measure somatic mutations in normal tissue (Lodato et al., 2015 ;

McConnell et al., 2013), to quantify somatic evolution in cancer

(Navin, 2015; Wang et al., 2014), to investigate the genomes of

unculturable microorganisms (Marcy et al., 2007), and for other

applications.

Unfortunately, it is not yet possible to directly sequence the

DNA molecule(s) present in a single cell. Rather, current single-cell

DNA-sequencing technologies first perform whole-genome amplifi-

cation (WGA), in order to obtain sufficient DNA to sequence.

Several WGA methods have been introduced, with the three most

common being degenerate oligonucleotide primed PCR (DOP-PCR),

multiple displacement amplification (MDA), and multiple annealing

and looping-based amplification cycles (MALBAC) (Gawad et al.,

2016). The lengths of the amplified genomic fragments, or ampli-

cons, range from 200 to 300 bp for DOP-PCR, to 1–5 kb for

MALBAC, and up to 10–100 kb for MDA (Sherman et al., 2017).

As WGA uses repeated cycles of amplification, any errors or non-

uniformity in coverage obtained during early cycles of amplification

are amplified in later cycles. Thus, WGA results in highly non-

uniform coverage of the genome Figure 1a, which is apparent in the

observed strong correlations between read depth at genomic loci

within the distance of an amplicon (Zhang et al., 2015).

The amplification bias resulting from WGA leads to challenges

in identifying genomic variants in single cells, and thus is a negative

of single-cell sequencing technology. Considerable efforts have

been made to develop analysis algorithms that overcome this bias

VC The Author(s) 2018. Published by Oxford University Press. i211

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34, 2018, i211–i217

doi: 10.1093/bioinformatics/bty286

ISMB 2018

https://www.github.com/raphael-group
https://www.github.com/raphael-group
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty286#supplementary-data
https://academic.oup.com/


(Bakker et al., 2016; Garvin et al., 2015) and to design WGA meth-

ods with less bias (Chen et al., 2017; Picher et al., 2016).

In this article, we demonstrate a positive aspect of amplification

bias: since neighboring genomic loci are often co-amplified, the

correlation in sequence coverage between neighboring alleles on the

same chromosome can be used to phase haplotypes in diploid

genomes (Fig. 1b). Diploid genomes, such as the human genome,

consist of pairs of homologous chromosomes, distinguished by

single-nucleotide polymorphisms (SNPs), and other small genomic

differences. Current DNA-sequencing technologies yield sequence

reads that originate from a mixture of both homologous chromo-

somes, losing information about the chromosomal origin of each

read. Thus, for any pair of heterozygous SNPs that are further apart

than a read length, the alleles that are present on the same chromo-

some are unknown.

Haplotype assembly is the process of reconstructing the haplo-

types of an individual—i.e. assigning the alleles of heterozygous

SNPs to the corresponding chromosome of origin—from sequence

reads obtained from an individual. Since each read generally derives

from a single chromosome, if a read spans multiple SNPs, then the

observed alleles are presumed from a single haplotype. Haplotype

and SNP phase information has applications in population genetics

(Tewhey et al., 2011) and clinical and medical genomics (Glusman

et al., 2014; Roach et al., 2010; van de Ven et al., 2012) as well as

being used to improve other analyses such as SNP imputation and

genotyping (Browning and Yu, 2009; Marchini et al., 2007) and

somatic variant calling (Bohrson et al., 2018). Obtaining long

continuous haplotype blocks is a challenge as the distance between

adjacent SNPs is longer than reads and read fragments in most

sequencing technologies. Long reads and other technologies that

provide long-range phase information, such as linked-read and Hi-C

data, have been used to improve the length of haplotype assemblies

(Edge et al., 2017; Patterson et al., 2015; Pirola et al., 2016; Zheng

et al., 2016), and there are microfluidic techniques designed to re-

cover haplotypes of single-cell data (Chu et al., 2017; Fan et al.,

2011). However, none of these techniques can be applied to existing

short-read single-cell data, and may be prohibitively expensive for

new experiments.

We describe an algorithm that exploits amplification bias

across a collection of sequenced single cells to assemble haplotypes

(a)

(c)

(b)

Fig. 1. (a) Single-cell DNA sequencing typically requires WGA to obtain sufficient quantities of DNA, which results in non-uniform read depth with correlation at

scale of amplicons. Since the two homologous chromosomes are amplified independently, read-depth correlations are strongest between sequence reads origi-

nating from the same chromosome/haplotype. (b) Amplicon-scale read-depth correlations, combined with high rates of allelic dropout result in increased rates of

concurrent allelic dropout for pairs of alleles originating from the same haplotype, where entries of the dropout vectors dA and db indicate whether alleles A and

b, respectively, are measured in each cell. (c) We derive a phasing score for pairs of nearby SNPs based on the P-values of concurrent dropout for different phas-

ings of alleles. High or low values of the phasing score correspond to amplification fragments containing pairs of alleles that are likely to be on the same haplo-

type. These amplification fragments are used as input to haplotype assembly algorithms, augmenting phasing information from read fragments containing

alleles found on the same read
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(Fig. 1c). This algorithm is based on the observation in (Zhang

et al., 2015) that homologous chromosomes are amplified almost

independently during WGA, and thus show similar rates of amplifi-

cation bias. Thus, amplicon-scale correlations in read depth provide

a signal to phase heterozygous SNPs across amplicon lengths.

Specifically, our model leverages allele dropout, where one of the

two alleles of a heterozygous SNP is not measured in a cell, a com-

mon feature of single-cell sequencing data (Gawad et al., 2016).

Alleles of two nearby SNPs on the same chromosome are likely to

drop out (not be covered by an amplicon) concurrently. We derive a

statistical test of concurrent dropout of alleles of heterozygous

SNPs. We validate our approach using both whole-genome and

whole-exome DNA single-cell sequencing data, and show that our

approach predicts haplotype phase with high accuracy, achieving

>90% accuracy on top-ranked 22% of pairs of SNPs within

amplicon-length distances. We use pairs of SNPs exhibiting high

rates of concurrent dropout to define amplification fragments that

we input into an existing haplotype assembler (Edge et al., 2017).

We obtain haplotype blocks that are three to four orders of magni-

tude larger (10.2 kb versus 312 bp on whole-genome data, 9.2 kb

versus 41 bp on whole-exome data) than obtained using read infor-

mation alone, with low increase in assembly errors.

2 Materials and methods

WGA methods used in single-cell sequencing result in datasets with

high rates of allele dropout, where alleles that are present in the gen-

ome are not observed in a sequenced cell. The primary cause of allele

dropout is the failure of amplification of a genomic region from one

of the two homologous chromosomes during WGA. Thus, one

expects to observe correlations in rates of allele dropout between

alleles of SNPs whose distances are within the length of an amplicon

(up to 10–100 kb, depending on the WGA method). More specifical-

ly, since an amplicon contains DNA sequence from one homologous

chromosome, one expects to observe a higher rate of concurrent

dropout (dropout of both alleles in one cell) for a pair of alleles on

the same haplotype and within the length of an amplicon, than for

two alleles on different haplotypes. We describe a statistical test

to evaluate such concurrent dropout between alleles for a pair of

SNPs. We then use pairs of alleles which show strong evidence of

significant concurrent dropout as input to a haplotype assembly

algorithm.

2.1 Quantifying concurrent dropout
We obtain DNA-sequencing data from n single cells from the same

individual, and assume that these cells share m heterozygous SNPs.

Consider a pair of heterozygous SNPs with alleles A, a for the one

SNP and alleles B, b for the other SNP. For an allele A, we define

the dropout vector dA to be a binary vector of length n, where

dA;s ¼ 1 if we do not observe any reads containing allele A in cell s,

and dA;s ¼ 0 otherwise. Thus, dA indicates the dropout for allele A

across cells. For an allele A, let nA ¼
P

sdA;s be the number of drop-

outs, or cells where A is not measured. Similarly, for a pair of alleles

A and B, let nAB ¼ dA � dB ¼
Pn

s¼1 dA;s � dB;s be the number of con-

current dropouts of alleles, i.e. the number of cells where both A

and B are not observed. The key idea of our model is that if the dis-

tance between SNPs is less than the length of an amplicon, and if

alleles A and B are on the same haplotype, then concurrent dropout

of A and B is more frequent than expected by chance. Conversely, if

SNPs are far apart or A and B are present on different haplotypes,

then we expect that amplification of these alleles is independent,

and concurrent dropouts are random events.

Let NAB be a random variable indicating this number of concur-

rent dropouts between alleles A and B across n cells. Under the null

model, dropouts between allele A and allele B are independent.

To compute the distribution of NAB under the null, we need to

compute the probability wX;s ¼ PrðdX;s ¼ 1Þ that allele X drops out

in cell s for each allele and cell. However, wX;s varies by locus,

allele X, and cell s. Locus-specific and allele-specific variability in

dropout rates results from context-specific amplification, sequencing

or alignment biases. Cell-specific variability in dropout rates

results from differences in sequencing depth and uniformity of

coverage across cells. Since it is difficult to model each of these

effects directly, we instead compute a weighted exact distribution

PrðNAB ¼ nABjnA; nB;wÞ, where w are cell-specific weights obtained

from the observed number of dropouts across all loci in each cell.

See Leiserson et al. (2016) for details of similar weighted tests used

in other biological applications.

Specifically, let D be the 2m� n matrix whose rows correspond

to the 2 m dropout vectors for the set of alleles of m heterozygous

SNPs. We compute the P-value PrðNAB � nABjD1�; . . . D2m�;D�1 � � �D�nÞ
of observing nab or more concurrent dropouts, conditioned on the

observed row sums and column sums of the matrix D. Computing this

P-value is non-trivial. Leiserson et al. (2016) introduced the WExT algo-

rithm to compute a saddlepoint approximation of a P-value for the

related problem of mutually exclusive events. We use a recent release of

the WExT software that computes a saddlepoint approximation for the

co-occurrence test statistic NAB.

2.2 Augmenting haplotype assembly with amplification

fragments
Haplotype assembly is the reconstruction of haplotypes from local

information about groups of alleles that are present on the same

chromosome. The input for haplotype assembly is a set of fragments

F , where a fragment f 2 F defines a phasing over a set of SNPs—

e.g. f ¼ ABcjabC, where j delineates the two chromosomes, indi-

cates alleles A, B, c are on one chromosome and alleles a, B, C are

on the other. Haplotype assembly algorithms aim to find the most

likely haplotypes from the set F . Typically, the set F of fragments is

equal to F r, the set of sequenced reads (or paired-end reads in the

case of mate pair libraries). This is because alleles of two SNPs meas-

ured on the same read (or paired-read) are highly likely to reside on

the same haplotype.

We extend the fragment set F using a set of amplification frag-

ments defined from pairs of alleles from neighboring SNPs that dem-

onstrate concurrent dropout, using the statistical test defined in the

previous section. A pair of SNPs, having alleles A, a for one SNP

and alleles B, b for the second SNP, can be phased in two ways:

ABjab or AbjaB. As noted by Zhang et al. (2015), during WGA,

homologous chromosomes are amplified independently. Thus, we

assume the random variables NAB and Nab are independent under

the null hypothesis, and combine the P-values PAB and Pab using

Fisher’s method to obtain a single P-value PABjab ¼ PrðT � tÞ where

t ¼ �2; ðlog PAB þ log PabÞ and T follows the v2
4 distribution, since

two P-values are combined. For each pair of SNPs, this procedures

yields two P-values, PABjab and PAbjaB, corresponding to the strength

of evidence against the null model of independence for each phasing.

Under phasing ABjab, we expect high dropout concurrence for allele

pair {A, B} and allele pair {a, b} and independent dropout for allele
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pairs {A, b} and {a, B}. Thus, we expect to see a low P-value PABjab

and a high P-value PAbjaB.

We summarize the evidence in support of each phasing using a

phasing score defined as

h ¼ �log
PABjab

PAbjaB

� �
: (1)

Here, h > 0 indicates stronger evidence for phasing ABjab, while

h < 0 indicates stronger evidence for phasing AbjaB. Large values of

jhj suggest that the allele pairs for one phasing have more concurrent

dropout than expected by chance compared with the allele pairs for

the other phasing, and thus are more likely to have come from same

haplotypes. We define a set of amplification fragments F c contain-

ing allele pairs whose absolute values of the phasing scoring jhj � c,

for a non-negative threshold c. We then use a haplotype assembly

algorithm, HapCut2 (Edge et al., 2017) to assemble haplotypes

using the combined set of sequence and amplification fragments

F ¼ F r [ F c as input.

3 Results

We tested our model on two single-cell DNA-sequencing datasets:

whole-genome sequencing of neurons (Lodato et al., 2015) and

whole-exome sequencing of breast cancer cells (Wang et al., 2014).

3.1 Whole-genome single cell sequencing of neurons
We first evaluated the performance of our model on synthetic dip-

loid cells constructed from sequenced X chromosomes in single-cell

DNA sequencing of neurons from a male individual, UMB1465

(Lodato et al., 2015). This dataset includes whole-genome sequenc-

ing from n ¼ 16 single cells and two bulk samples. The single cells

were amplified using MDA, and a recent analysis (Sherman et al.,

2017) estimates that these samples had MDA amplicons lengths up

to 200 kb, with a median of 19 kb and 95th percentile of 103 kb. To

create synthetic diploid cells, we extracted the haploid X chromo-

somes from each sequenced cell (Fig. 2a), excluding the pseudo-

autosomal regions PAR1 and PAR2 on chromosome X as defined in

human reference genome assembly GRCh37.p13. To account for

variability in dropout rates between cells, we downsampled all cells

to a fixed number of reads, and formed pairs of cells based on the

total number of covered positions in the samples. We generated

simulated haplotypes using population-level allele frequencies

acquired from dbSNP, and spiked these alleles into the sequencing

data. We introduced sequencing error into the spiked-in alleles

based on the Phred quality scores of individual reads. Further details

on the simulation can be found in Supplementary Material S1.

To infer haplotypes, we applied the statistical test described in

Section 2 to all pairs of SNPs within 50 kb of each other. Next, we

constructed a set F c of amplification fragments for a phasing score

value jhj >¼ c and input the amplification fragments F c and read

fragments F r into HapCut2 to assemble haplotypes.

We evaluated the ability of the phasing score to accurately phase

pairs of SNPs at varying distances and over a range of values jhj
(Fig. 2b). We found that the proportion of fragments whose phase

was predicted correctly, increases with the absolute value jhj of the

phasing score, indicating that jhj is correlated with the the accuracy

of phasing. With larger amplicon lengths (50 kb–1 Mb and 1–5 Mb)

the fragment accuracy decreases rapidly as the phasing score

decreases. In addition, relatively few fragments have high phasing

scores jhj, demonstrating that few SNPs are accurately phased when

the distance between SNPs exceed the length of WGA amplicons.

For haplotype assembly, we use pairs of SNPs whose distance is

50 kb or less. Over this set of SNP pairs, we are able to correctly

phase fragments with 77% accuracy overall. However, if we restrict

to the set of fragments with scores jhj � 1, the top 22% of frag-

ments, we obtain an accuracy of 91%.

We assemble haplotypes using amplification fragments F c and

read fragments F r as input to HapCut2 (Edge et al., 2017) as

described in Section 2. We ran HapCut2 with a range of thresholds

c for the phasing scores, where for each c, we supply HapCut2 with

F r [ F c, the set of sequence fragments and amplification fragments.

We also run HapCut2 using only sequence reads F r to get a baseline

measure of results using only short reads. In each case, we ran

HapCut2 with default parameters.

We evaluate the resulting haplotype assemblies using the follow-

ing metrics (Fig. 2c).

1. The N50 is the length of a haplotype block such that half of all

phased variants are in a block at least as long.

2. Switch error is the proportion of phase connections between ad-

jacent SNPs that are incorrect.

Not surprisingly, we observe a trade-off between switch error rate

and length of resulting haplotype blocks, Without any amplification

fragments ðF c ¼1Þ, HapCut2 obtains haplotype blocks with a me-

dian (N50) length of 312 bp. As the phasing score threshold c

decreases, the block lengths increase by several orders of magnitude

with only relatively small corresponding increases in switch error

rate With phasing score threshold c ¼ 2.25, we obtain a block length

of N50 ¼ 10.2 kb, with a switch error rate of 0.02. At lower values

of phasing score threshold, we see larger increases in error, which

corresponds to the observed decrease fragment accuracy at the same

values (Fig. 2b). Depending on the downstream analysis that utilizes

the resulting haplotypes, these low thresholds may prove useful. For

example, at a threshold of c ¼ 0, we acquire blocks with an N50 ¼
9.96 Mb, with 92.6% of blocks containing no switch errors.

3.2 Whole-exome single-cell sequencing of

breast cancer
Whole-exome sequencing comprises a significant proportion of

available single-cell sequencing datasets (Navin, 2015), due to both

the lower sequencing costs compared with whole-genome sequenc-

ing and because of interest in measuring variation in coding regions.

Assembling haplotypes from short-read whole-exome sequencing

data is challenging as reads (or paired reads) are shorter than the

lengths of most introns. Introns are estimated to have a median

length of �1334 bp in the human genome (Hong et al., 2006), while

the median exon size is �122 bp (International Human Genome

Sequencing Consortium, 2001). Thus haplotype phase is difficult to

determine across exons from short read data.

Since WGA amplicons are typically longer than an intron, we

hypothesized that we could use our model to obtain haplotype

blocks from single-cell whole-exome data that were substantially

longer than blocks obtained with short-read sequencing data. To

test this hypothesis, we evaluated our model on single-cell whole-

exome data from a triple-negative breast cancer patient (Wang

et al., 2014). We observed that one copy of Chromosome 17 was

lost in eight cancer cells in this datasets that were indicated to be

hypodiploid. Using these eight cells we obtained the true haplotypes

for Chromosome 17 (Fig. 3a). We then applied our model to 14 nor-

mal (non-cancerous) diploid cells from the same individual. We ran

the model and constructed amplification fragments as in previous
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sections. Figure 3b shows the features of the resulting haplotype

assemblies.

Using only read fragments F r, the haplotype assemblies have a

median block length of N50 ¼ 41 bp, which, as expected, is shorter

than the length of a single exon. Using amplification fragments F c

we are able to increase the block length by several orders of magni-

tude, with only small increases in switch error (Fig. 3b). For ex-

ample, when the phasing score threshold c ¼ 2.75, we obtain a

median block length N50 ¼ 9.3 kb, with a corresponding switch

error rate of 0.04. This indicates that we are able to phase across

multiple exons. Indeed this haplotype block length is of the same

order of magnitude of the typical gene length.

Although read-based phasing is limited by the length of frag-

ments, reference-based phasing algorithm is generally able to phase

over longer genomic distances. We compared the haplotype assem-

blies we obtain to a reference-based phasing algorithm, EAGLE2

(Loh et al., 2016) (Supplementary Fig. S1). We show that while

EAGLE2 was able to provide a phasing over the whole chromo-

some, our amplification-fragment based phasing provides lower

error rates within the blocks that we obtain.

To investigate the number of single-cells required to obtain ac-

curate amplification fragments, we ran the model on subsets of cells

of size 2–15 (Fig. 3c). We find that on this data set, the fragment ac-

curacy levels off after 8–10 cells. Thus, we can obtain accurate amp-

lification fragments even with relatively few cells.

4 Discussion

Single-cell DNA sequencing is increasingly being used to explore the

genomic content of individual cells, but requires analysis algorithms

that are robust to the errors and biases in this data. In this article,

we exploit one bias in single-cell-sequencing data, amplification

bias, and show how we can leverage this local information to assem-

ble haplotypes.

(a)

(b) (c)

Fig. 2. Haplotype assembly on whole-genome DNA-sequencing data. (a) We form a validation dataset of seven synthetic diploid cells with known haplotypes

from X chromosomes in whole-genome DNA-sequencing data of single neuron cells from a male (Lodato et al., 2015). (b) (Left) The accuracy of the predicted

phase for the set F c of amplification fragments with the absolute value of the phasing score jhj > c. We observe highly accurate prediction of phase for pairs of

SNPs whose distance is less than the length of amplicons (here 95th percentile of amplicon length is 103 kb). (Right) The proportion of SNP pairs included in the

set of amplification fragments F . (c) The N50 and switch error for haplotype assembly as we vary the phasing score threshold c. The N50 and switch error for the

haplotype assembly with no amplification fragments is marked with an ‘�’
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Our results demonstrate that concurrent dropout between nearby

alleles can provide amplicon-scale correlations that lead to better

haplotype assemblies than using only correlations between alleles on

the same sequence read. However, there are several limitations and

avenues for further improvement of our approach. First, many recent

haplotype assembly algorithms, including the HapCut2 (Edge et al.,

2017) used here, employ more sophisticated probabilistic models for

error in fragments. Extending our model to estimate error rates for

amplification fragments could provide better integration with the error

models in haplotype assemblers, and yield more accurate haplotype

predictions. Although our current model does not calculate likelihood

for each phasing, we may be able to estimate the error rates based on

the empirical distribution of phasing scores. Alternatively, an improved

probability model that accounts for several of the features of sequenc-

ing data—including sequencing error and observed read depth—could

be developed and would likely outperform the straightforward model

of concurrent dropout introduced here. Additionally, extending the

model to consider groups of SNPs instead of just pairs of SNPs may be

useful for identifying phase when pairwise relationships are weak. This

can be particularly useful with the lower sequence coverages that are

common in single-cell sequencing datasets.

If one’s goal is to obtain a high-quality phased diploid genomes,

there are a number of good approaches. These include: the applica-

tion of high-quality reference-based phasing algorithms (Browning

and Yu, 2009; Delaneau et al., 2013; Loh et al., 2016; Stephens

et al., 2001) that exploit large populations on genotyped individuals;

long-read (Glusman et al., 2014) or linked-read (Zheng et al., 2016)

sequencing; or specialized techniques such as Strand-Seq (Porubsk�y

et al., 2016). Phasing algorithms also exist for both bulk (Castel

et al., 2016) and single-cell RNA-seq data (Castel et al., 2016). We

do not expect that researchers will perform single-cell sequencing if

their only goal is to obtain a phased, diploid genome.

Rather, we anticipate that the approach described here will be a

useful complement for specific analyses of single-cell sequencing data.

For example, we expect that this model can be broadly useful in vari-

ant calling in single cells, which is typically significantly confounded

by amplification bias. Although we validated the model on diploid

genomes, the model is readily adaptable to copy-number aberrations,

and thus can be applied to cancer genomes which often demonstrate

high levels of aneuploidy. The information derived from our model

may be useful for allele-specific copy number calling in single cells,

which to our knowledge is not currently done in any existing single-

cell copy-number caller. Information on haplotype phase will also be

useful for calling retrotranspon insertions (Evrony et al., 2012) or

single-nucleotide variants (SNVs). Recently, (Bohrson et al., 2018)

showed how they were able to reduce false positive rates in SNV

calling in single-cell DNA sequencing by phasing SNVs to nearby

SNPs. However, many SNVs cannot be phased to SNPs with short

reads, especially in whole-exome data. Our method is able to

phase across much larger distances and across exons. An additional

application is phasing of structural variants in single-cells. SNPs on

either side of the breakpoints of a structural variant will also show

more dropout concurrence than expected by chance. An extension

of our model might allow for improved phasing of structural variants,

which could be useful in reconstructing highly rearranged

cancer genomes. Finally, additional extensions of dropout concur-

rence might be applied to single-cell RNA-seq data, e.g. by exploiting

correlations in allele-specific expression or allele-specific alternative

splicing.
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(a)

(b) (c)

Fig. 3. Assembling haplotypes on whole-exome DNA-sequencing data. (a) We validate haplotype assemblies on whole-exome DNA-sequencing data from an in-

dividual breast cancer patient (Wang et al., 2014), by comparing to the haplotype of Chromosome 17, whose haplotype we can determine from the eight cancer

cells that have lost one homolog of this chromosome. (b) Haplotype block length (N50) as a function of haplotype switch error for varying threshold of phasing

score. The N50 and switch error for the assembly with no amplification fragments is marked with an ‘�’. Amplification fragments increase the length of haplotype

assemblies by orders of magnitude with small increase in switch error. (c) The accuracy of the phasing for the highest scoring 20% of amplification fragments for

varying numbers of cells
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