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MicroRNA (miRNA) dysregulation in cancer causes changes in gene expression programs regulating tumor progression
and metastasis. Candidate metastasis suppressor miRNA are often identified by differential expression in primary tu-
mors compared to metastases. Here, we performed comprehensive analysis of miRNA expression in The Cancer Ge-
nome Atlas (TCGA) skin cutaneous melanoma (SKCM) tumors (97 primary, 350 metastatic), and identified
candidate metastasis-suppressor miRNAs. Differential expression analysis revealed miRNA significantly downregu-
lated in metastatic tumors, including miR-205, miR-203, miR-200a-c, and miR-141. Furthermore, sequential feature
selection and classification analysis identified miR-205 and miR-203 as the miRNA best able to discriminate between
primary and metastatic tumors. However, cell-type enrichment analysis revealed that gene expression signatures for
epithelial cells, including keratinocytes and sebocytes, were present in primary tumors and significantly correlated
with expression of the candidate metastasis-suppressor miRNA. Examination of miRNA expression in cell lines re-
vealed that candidate metastasis-suppressor miRNA identified in the SKCM tumors, were largely absent in melanoma
cells or melanocytes, and highly restricted to keratinocytes and other epithelial cell types. Indeed, the differences in
stromal cell composition between primary and metastatic tumor tissues is the main basis for identification of differen-
tialmiRNA thatwere previously classified asmetastasis-suppressormiRNAs.We conclude that future studiesmust con-
sider tumor-intrinsic and stromal sources of miRNA in their workflow to identify bone fide metastasis-suppressor
miRNA in cutaneous melanoma and other cancers.
© 2020 Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Cutaneous melanoma is the most aggressive form of skin cancer. Al-
though accounting for only 5% to 10% of cases, more than 80% of skin
cancer-related deaths are due to melanoma. Globally, close to 300,000
new cases of melanoma were diagnosed in 2018, and the incidence has
been steadily increasing over the past several decades [1,2]. When diag-
nosed early, surgical resection of primary tumors can be curative. However,
once the tumor becomes metastatic, 5-year survival decreases rapidly to
less than 20% for patients with stage IV disease [1]. Staging and prognosis
ofmelanoma tumors are based on variousmeasurements of tumor invasion,
such as the tumor thickness, and depth (in mm) to which it has penetrated
(formerly measured as the Breslow’s depth), as well as the presence of re-
gional lymph node metastases [3]. Recent advancements in the develop-
ment and clinical use of targeted therapies like BRAF and immune
checkpoint inhibitors have had success in extending patient survival.
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However, inherent or developed resistance still occurs in a large proportion
of patients with metastatic disease, leaving many with limited treatment
options [4,5]. For this reason, there is a critical need to enhance under-
standing of the mechanisms that drive metastatic melanoma to inform the
development of new targeted therapies or better apply existing therapies
to the patients most likely to benefit from them.

MicroRNA (miRNA) are a class of small non-coding RNA that regulate
gene expression at a post-transcriptional level. Expression of miRNAs is fre-
quently altered in cancer, leading to broad changes in target mRNAs, and
key signaling pathways. These changes in gene expression can promote
phenotypes that contribute to cancer progression, metastasis, and resis-
tance to therapy [6,7]. Due to the relative abundance and often restricted
expression patterns, many miRNAs can serve as biomarkers of cell-type
and disease [7,8]. IdentifyingmiRNA that are downregulated inmetastasis,
termed metastasis-suppressor miRNA, has been an area of considerable in-
terest [9–12]. Defining miRNA associated with metastasis in melanoma
ty, Kingston, Ontario, Canada K7L 3N6.
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Table 2
Patient information for primary and metastatic groups within the SKCM cohort*

Samples N† Age⁎ Sex (male:female) Breslow’s Depth⁎,# (mm)

Primary 97 64 ± 13.9 56:41 11.9 ± 13.2
Metastatic 349 57 ± 15.7 218:131 3.4 ± 4.7

⁎ Median ± SD, # data missing from 25% of samples
† n = 446 one patient had paired primary and metastatic tumors

K. Watt et al. Translational Oncology 13 (2020) 100802
could provide insights into the genes and pathways that drive metastatic
progression, and potentially lead to the discovery of new therapeutic tar-
gets or biomarkers. However, many studies aiming to characterize
metastasis-suppressor miRNAs have suffered major caveats, including
sub-optimal detection methods, and failure to consider tissue- and cell-
type-specific expression patterns. As a result, extensive research efforts
have pursued miRNAs that are unlikely to have direct biological relevance
in tumor types where they have been characterized.

In the current study, miRNA expression profiles from primary and met-
astaticmelanoma tumors in The Cancer GenomeAtlas (TCGA) Skin Cutane-
ous Melanoma (SKCM) project [13] were analyzed using traditional and
emerging methodologies to identify candidate metastasis-suppressor
miRNAs. We show that primary and metastatic melanoma tumors have
complex and heterogeneousmiRNA expression profiles, identifying a previ-
ously unreported subgroup of patients with expression of the chromosome
19 miRNA cluster (C19MC). We also demonstrate that conventional differ-
ential expression, and supervised machine learning methods are both vul-
nerable to spurious identification of metastasis-suppressor miRNA due to
cell type-specific expression patterns in tissue-level profiles. These findings
support greater consideration of stromal cell populations when seeking to
identify and functionally characterize putative metastasis-associated
miRNAs using tumor tissue samples.

Methods

Datasets

Accession numbers and sample information for the datasets used in this
study are provided in Table 1.

Data Preprocessing and Normalization

miRNA and RNA Sequencing
TCGA miRNAseq and RNAseq data were screened for batch effects and

outliers, and normalized as previously described [13,21]. Filtering was per-
formed to retain miRNA expressed above the 90th quantile of overall ex-
pression in at least one sample. The final dataset comprised of expression
of 264 miRNA across 447 melanoma tumors (350 metastatic, 97 primary).
ThemiRNA sequencing data from cell lines were processed and normalized
in the same manner. All cell line datasets were analyzed separately due to
potential differences between platforms and alignment pipelines.

miRNA and mRNA Microarrays
Raw Agilent miRNA microarray data were processed using the R/

Bioconductor package AgiMicroRna [22]. Data were normalized by scaling
Table 1
Data sources and sample information

Dataset Method/platform Samples Accession Reference

TCGA Level 3 SKCM miRNAseq Illumina HiSeq 2000 97 primary tumors
350 metastatic tumors

Broad Institute GDAC
Firehose portal

[13]

TCGA Level 3 SKCM RNAseq Illumina HiSeq 2000 103 primary tumors
367 metastatic tumors

Broad Institute GDAC
Firehose portal

[13]

TCGA SKCM tumor purity scores ABSOLUTE 439 primary and metastatic tumors - [14]
Andrews et al. LM-MEL panel small RNAseq Illumina HiSeq 2000 57 patient-derived melanoma cell lines GEO GSE89438 [15]
Behren et al. LM-MEL panel mRNA array Illumina HumanHT-12

V4.0 microarray
56 patient-derived melanoma cell lines ArrayExpress

E-MTAB-1496
[16]

Boyle et al. miRNA array Agilent-016436 Human
miRNA microarray 1.0

51 melanoma cell lines
2 pools of normal melanocytes

GEO
GSE25653

[17]

Caramuta et al. miRNA array Aligent-016434 Human
miRNA Microarray 1.0

21 patient-derived melanoma cell lines
3 normal melanocytes

GEO
GSE19387

[18]

microRNAome small RNAseq Illumina and AB SOLiD
Systems NGS platforms

2 melanoma cell lines
5 normal melanocytes
5 keratinocytes
3 sebocytes
19 normal skin tissue

NCBI BioProject database
PRJNA358331

[19]

Mizrahi et al. small RNAseq Illumina HiSeq 2500 3 pools of normal primary keratinocytes GEO
GSE101192

[20]
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log-ratios to have the samemedian-absolute-deviation across arrays. Probes
with detection P-values above a 0.05 threshold in all samples were
discarded. Raw mRNA expression measured by microarray for LM-MEL
cell lines was processed and normalized using the R/Bioconductor package
limma [23], as previously described [15].

Unsupervised Clustering
Hierarchical clusteringwas performed using normalizedmiRNA expres-

sion profiles after median-centering. Euclidean distance was used for rows
(miRNAs) and Spearman correlation for columns (samples). Clustering of
miRNA expression and xCell score correlations used Euclidean distance
for both rows and columns. Average linkage was used in all cases.

Differential miRNA Expression Analysis
Differences in miRNA expression between primary and metastatic tumors

were evaluated using the Mann-Whitney U test, corrected for multiple testing
using the Benjamini-Hochberg adjustment. Effect sizes were calculated using
the formula: r ¼ Z� ffiffiffi

N
p [24]. Z=Mann-WhitneyUZ statistic, N=sample size.

Feature Selection and Classification Using Supervised Machine Learning
Algorithms

Feature selection was performed using the MATLAB ‘sequentialfs’ func-
tion [25], along with a custom script incorporating five different classifica-
tion algorithms (linear support vector machine (SVM), linear discriminant
analysis, decision trees, k-nearest neighbor, and an ensemble model of
boosted classification trees). Briefly, data were partitioned for 10-fold
cross-validation. Training data were used to train themodel, and the feature
selection criterion was computed as the overall accuracy of the predictions
on the test set. Feature selection was repeated ten times, resulting in the se-
lection of 50 feature sets. The ability of the selected miRNA features to dis-
criminate between primary and metastatic tumors was verified using the
Classification Learner App inMATLAB, running a collection of 23 classifica-
tion algorithms to classify the tumors with 10-fold cross-validation. The
quality of each classification model was assessed using confusion matrices,
and a receiver operating characteristic (ROC) curve.
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Survival Analysis and Associations to Clinical Data
Kaplan-Meier survival analysiswas performed using the observed survival

interval (OSI), representing the time between tumor sample procurement and
death or last follow-up. Patients were stratified into ‘high’ or ‘low’ groups
based on median miRNA expression. Statistical significance between the
Figure 1. Unsupervised clustering identifies subgroups of patients with uniqu
normalized, and filtered miRNA expression. Columns represent patients, and rows re
Two miRNA clusters of interest highlighted with black bars, 1 and 2. (B) Spearman rho
axis, left to right on the x-axis). Clusters 1 and 2 from (A) shown. (C) Schematics of th
chromosome.
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survival curves was calculated using the log-rank test. Associations between
miRNA expression and patient age and Breslow’s depth were assessed using
Spearman’s correlation. Differences in expression of miRNA between groups
with different clinical parameters were assessed using the Mann-Whitney U
test for two groups, or the Kruskal-Wallis H test for three or more groups.
e miRNA expression patterns. (A) Hierarchical clustering of median-centered,
present miRNA. Metastatic samples are marked in pink, primary samples in blue.
correlation matrix for miRNA ordered by genomic location (top-bottom on the y-

e C19MC and mi-5045/514 miRNA clusters located on chromosome 19 and the X



Table 3
Significantly differentially expressed miRNA between primary and metastatic
tumors

miRNA Log2 fold-change FDR-adj P-value abs(r)⁎

mir-205 -8.65 9.79E-30 0.56
mir-203 -4.98 5.21E-21 0.47
mir-200b -2.27 8.12E-19 0.44
mir-200c -2.65 5.82E-18 0.43
mir-200a -2.35 6.55E-18 0.43
mir-141 -2.64 1.75E-14 0.38
mir-224 -1.30 7.82E-10 0.32
mir-675 1.54 4.05E-09 0.30
mir-215 1.15 6.81E-07 0.26
mir-625 0.64 4.29E-06 0.25
mir-153-2 1.64 1.32E-05 0.24
mir-1274b 1.09 2.06E-05 0.23
mir-206 -2.43 5.35E-05 0.22
mir-29c 0.79 7.50E-05 0.22
mir-452 -0.76 7.50E-05 0.22
mir-218-2 0.60 8.50E-05 0.21
mir-508 -1.85 8.50E-05 0.21
mir-514-1 -1.95 8.50E-05 0.21
mir-514-2 -1.90 8.50E-05 0.21
mir-514-3 -1.95 8.50E-05 0.21

⁎ Effect size (small 0.1, medium 0.3, large 0.5).
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Cell-Type Enrichment Analysis
Tumor purity estimates produced using ABSOLUTE [26] were plot-

ted for the SKCM tumors. RNAseq gene expression from tumors was
used to assess the enrichment of 64 immune and stromal cell types
using the xCell webtool (http://xCell.ucsf.edu/) [27]. Cell enrichment
scores were computed and compared between primary and metastatic
tumor samples. Significant differences were determined using the
Mann-Whitney U test. The association between miRNA expression and
cell-type enrichment scores was assessed using Spearman’s correlation.
Associations between stromal-enriched miRNA and expression of cell-
type specific markers (Keratinocytes: KRT1, KRT5, KRT14, CASP14,
IVL, LOR; Melanocytes: DCT, GPNMB, TYRP1, TYR, MLANA, MITF; Im-
mune cells: CD14, CD3E, CD3D, CD19, CD22) were assessed using
Spearman’s correlation (Supplemental File 2), and visualized in clus-
tered heatmaps.
Distinguishing Cutaneous Stromal-Enriched miRNA
Candidate metastasis-suppressor miRNA were defined as those that

demonstrated a significant loss of expression between primary andmetasta-
tic tumors, identified in differential expression and feature selection analy-
ses. Cutaneous stromal-enriched miRNAs were identified as candidate
metastasis-suppressor miRNA that were significantly positively correlated
(rho ≥ 0.3) with the enrichment scores for the cell types most overrepre-
sented in primary tumors (Supplemental File 1). Thesewere further refined
to the miRNA expressed at >0.1% of total miRNA reads in keratinocytes
and/or sebocytes, and expressed at <0.1% of total miRNA reads in both
melanoma and normal melanocyte cell lines. Average expression across
samples within the same dataset was considered (Table S1). Six miRNA
met these criteria and were defined as cutaneous stromal-enriched (miR-
205, miR-203, miR-200a-c, miR-141), and were filtered before repeating
feature selection and classification analyses
Figure 2. Differential expression analysis and feature selection identify metas
Unsupervised hierarchical clustering of all primary and metastatic samples using the
using Spearman’s rank correlation, and rows (miRNA) were clustered using Euclidean d
mors, in blue. (B) Top 20% ofmiRNA features selected with the highest frequency. The y
(C) Hierarchical clustering of all primary and metastatic samples using only 24 miRNA i
stated. (D) Confusionmatrices the Ensemble RUSBoosted decision tree classifier construc
the Ensemble model with the current classifier indicating the prediction of primary tum
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Statistical Analysis Software
Data processing, visualization, and statistical analysis of gene expres-

sion datasets were performed using the Statistics and Machine Learning
Toolbox and custom scripts in MATLAB R2016b (Mathworks Inc.), and R
version 3.6.3 [28]. Statistical and survival analysis of clinical data was car-
ried out using IBM SPSS Statistics, version 24 (IBM Corp).

Results

TCGA-SKCM Primary and Metastatic Melanoma Patient Characteristics

The TCGA SKCM project is the largest publicly available melanoma
tumor cohort [13]. The inclusion of both primary and metastatic tumors
provides a unique opportunity for comparison. Here, patients were
grouped based on the primary or metastatic status of their tumors (N
= 97 and N = 350, respectively). A significant difference of 7.7 years
in mean age was detected between patients with primary and metastatic
disease (Table 2; 95% CI, 4.2-11.2, P < .001), and both groups had
more males than females (73% and 60%, respectively). A significant dif-
ference in Breslow’s depth was also observed (primary: 11.9 mm; meta-
static: 3.4 mm, P < .001). This mean depth of local tumor invasion at
the primary tumor site suggests that some tumors may have already
been invasive at the time of resection.

Unsupervised Clustering Reveals Subsets of Patients with Unique miRNA Expres-
sion Profiles

Hierarchical clustering of tumor miRNA expression profiles resulted in
the formation of complex nodes, and separation of primary and metastatic
samples were highly heterogeneous (Figure 1A). However, two miRNA
nodes with starkly variable expression patterns were observed (Figure 1A,
nodes 1 and 2). Spearman correlation coefficients between all miRNA
were ordered according to genomic location, revealing that the miRNA
identified in nodes 1 and 2 were spatially related in the genome. A third
large spatially-related group with more variable co-expression was also ob-
served (Figure 1B). Indeed, all of themiRNA identified in node 1mapped to
the chromosome 19 miRNA cluster (C19MC) made up 46 genes
(Figure 1C). Acquired expression of C19MC has been reported in other can-
cers [29,30], but this constitutes a novelfinding inmelanoma. ThemiRNAs
in node 2 were made up of 14 genes in the miR-506/514 gene cluster, lo-
cated on the X chromosome (Figure 1C). The miR-506/514 miRNA have
been shown to promote a malignant phenotype in melanoma [31]. The
third group of co-expressed miRNA in the correlation matrix corresponded
to the chromosome 14 miRNA cluster (C14MC) but were mostly of low-
abundance in the tumors. Despite identifying subgroups with unique
miRNA expression profiles, hierarchical clustering was driven mainly by
large, co-expressed miRNA gene clusters, and failed to resolve primary
and metastatic tumors. To identify miRNA specifically associated with me-
tastasis, additional methods were employed.

Differential Expression and Feature Selection Analyses Identify Metastasis-Asso-
ciated miRNA in Melanoma Tumors

Differential expression analysis identified 90 miRNA significantly altered
between primary andmetastatic tumors (P< .05) (Table 3, Table S1). These
included several frequently identified and highly studied melanoma- and
metastasis-associated miRNAs that were highly downregulated in metastases
tasis-associated miRNA in primary and metastatic melanoma tumors. (A)
90 significantly differentially expressed miRNA. Columns (samples) were clusters
istance, with average linkage. Metastatic tumors are shown in pink, and primary tu-
-axis shows the number of feature subsets a miRNA appeared in, out of a possible 50.
dentified in the top 20% of selected features. All parameters the same as previously
ted using themiRNA identified in the top 20%of feature selection. (E) ROC curve for
ors.

http://xcell.ucsf.edu/)
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(miR-205, miR-203, miR-200a-c, and miR-141) [10–12,32–39]. Although
many differenceswere highly statistically significant, the effect sizeswere rel-
atively small (Table 3). Hierarchical clustering using the differentially
5

expressedmiRNA improved the separation of primary andmetastatic samples
compared to total miRNA profiles, resolving a subset of primary tumors
largely defined by expression of miR-205, miR-203, and the miR-200 family.



Table 4
The top 20% of miRNA identified during feature selection to classify primary and
metastatic tumors

Identified by differential expression
and feature selection

Identified by feature selection only

miRNA Log2 fold-change miRNA Log2 fold-change

mir-205 -8.65 mir-155 0.33
mir-203 -4.98 mir-34a -0.29
mir-215 1.15 mir-517c 1.27
mir-130b 0.26 let-7c -0.03
mir-127 -0.50 mir-103-1 -0.14
mir-379 -0.44 mir-1323 1.01
mir-514-2 -1.90 mir-23a -0.03
mir-1247 0.47 mir-26b 0.04
mir-125b-2 0.29 mir-28 0.11
mir-218-2 0.60 mir-381 -0.36
mir-29c 0.79
mir-3130-1 0.94
mir-412 -1.75
mir-513c -2.31
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However, clustering of classes remained heterogeneous (Figure 2A). Differen-
tial expression of themiR-506/514miRNA cluster was detected between pri-
mary and metastatic samples. However, expression of C19MC was not
significantly altered between groups, which may contribute to the absence
of reports in the literature.

To further define miRNA that could discriminate primary and metasta-
tic tumors, ten rounds of sequential feature selection were performed, and
the top 20% of features with the highest selection frequency were consid-
ered (Figure 2B). Of these 24 miRNA, 14 were significantly differential be-
tween primary andmetastatic tumors, as well as 10 additional miRNAs not
identified in the previous analysis (Table 4). Of the differentially expressed
miRNAs, miR-205 and miR-203 were the most stable discriminating features
with the highest selection frequency. Interestingly, members of the miR-200
family that have been associated with melanoma metastasis were not identi-
fied [10,12,32,35,40]. Furthermore, twomiRNA from themiR-506/514 clus-
ter (miR-514-2 and miR-513c), and miR-517c from the C19MC cluster were
selected as discriminating features. Hierarchical clustering using the 24 se-
lected features improved the separation of primary and metastatic samples
slightly compared to clustering using the differentially expressed miRNA
(Figure 2C). However, the dimensionality was greatly reduced (24 miRNA
compared to 90 for differential expression analysis).

Next, classification analysis was used to validate the ability of the 24
miRNA identified by feature selection to discriminate primary andmetasta-
tic tumors. An ensemble decision treemodel using the RUSBoost algorithm
(appropriate for class imbalance) [41] performed the best at predicting
tumor class, with an overall prediction accuracy of 86.6% and a specificity
of 88% (true negatives). However, the sensitivity was only 80% (true posi-
tives), giving the model an overall precision of 66% (the proportion of re-
sults that are true positives; Figure 2D). Plotting the rate of true positives
against the rate of false positives produced a ROC curve with an AUC =
0.93 (Figure 2E). Notwithstanding acceptable overall performance and
classification of metastatic tumors, 20% of primary tumors were
misclassified. Despite this, these analyses confirmed that the miRNA identi-
fied by feature selection could discriminate a large proportion of primary
tumors from metastases.

Cutaneous Epithelial Cell-Types Are Enriched in Primary Melanoma Tumors

To further examine the candidate metastasis-suppressor miRNA identi-
fied by differential expression and feature selection (defined as those
Figure 3. Cutaneous epithelial cell-types are enriched in primary SKCM melanom
and metastatic (purple) SKCM tumors. (B) Violin plot of ABSOLUTE purity estimation
metastatic SKCM tumors derived from RNA-seq gene expression quantification. Larges
(P < .001, Mann Whitney U). (D) xCell enrichment scores for keratinocytes, sebocytes,
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miRNAs downregulated between primary and metastatic tumors),
Kaplan-Meier survival analysis was performed to assess patient survival in
relation to miRNA expression. Interestingly, no significant differences in
survival curves were identified for patients with high or low expression of
miR-205, or miR-203 (miR-205 P = .805; miR-203 P = .265) (Figure S1,
A and B), despite being the most differential miRNA between primary
andmetastatic tumors, and the most stable discriminating features. In addi-
tion, no differences in survival were detected for miR-200a, miR-200b,
miR-200c, or miR-141 that were also highly differentially expressed in pri-
mary andmetastatic tumors (data not shown). Visualizing miR-205 expres-
sion in primary and metastatic tumors revealed that a surprisingly large
number had no expression of the miRNA (Figure 3A), raising questions as
to the source of expression.

To assess the possible sources of miRNA expression in the SKCM tumors,
tumor purity was calculated using the ABSOLUTEmethod [26] across the co-
hort. The median tumor purity was 0.71 (71%), with a range of 0.1-1.0
(Figure 3B). To better understand the cellular composition of the tumors,
xCell cell-type enrichment analysis was also performed using RNAseq data
[27]. Cell-types enriched in primary tumors were considered as potential cor-
relates with the apparent downregulation of miRNA upon metastasis. The
largest differences identified were sebocytes, keratinocytes, and epithelial
cell signatures (P<.001). Interestingly, a decrease inmelanocyte-specific ex-
pression signatures was also observed between primary and metastatic tu-
mors. This suggests that the metastatic tumors may have a greater
proportion of infiltrating stromal cells, and supports the notion that metasta-
sis is accompanied by a loss of melanocyte differentiation (Figure 3C) [40].
Visualizing the enrichment scores for the primary tumor-enriched cutaneous
epithelial cell-types across all samples, it was noted that these signatureswere
not present in all primary tumors (Figure 3D). However, the proportion of pri-
mary tumors with enrichments was likely sufficient to influence differential
and classification-based analyses of miRNA expression.

Candidate Metastasis-Suppressor miRNAs Are Associated with Enrichment of
Stromal Cell-Type-Specific Gene Expression Signatures in SKCM Tumors

To examine the potential influence of stromal cell types on the identifi-
cation of metastasis-suppressor miRNA in the SKCM tumors, Spearman cor-
relations between expression of candidate metastasis-suppressor miRNA
and cell-type enrichment scores were computed (File S1). Hierarchical clus-
tering of rho values revealed subsets of miRNA correlated with enrichment
of stromal cell and melanocyte signatures (Figure 4A). The miRNA most
positively correlated with melanocyte signatures were miR-211 and mem-
bers of the miR-506/514 miRNA cluster, which were significantly down-
regulated in metastatic tumors. However, miR-205, miR-203, and the
miR-200 family were most positively correlated with the cutaneous epithe-
lial cell-types enriched in the primary tumors (Figure 4A, Table 5).

To further confirm these associations, we selected specific markers
of keratinocytes (KRT1, KRT5, KRT14, IVL, CASP14, LOR [42]), and
melanocytes (DCT, GPNMB, TYRP1, TYR, MLANA, and MITF [43]),
and their expression validated in both the SKCM tumors and in the
Ludwig Melbourne melanoma (LM-MEL) cell line panel comprised of
57 melanoma cell lines with a range of invasive phenotypes
(Table S2, Figures S2-S4) [16]. Expression of the keratinocyte markers
were undetectable in any melanoma cell lines, and all had significantly
higher expression in primary SKCM tumors compared to metastatic (P
< .001) (Figures S4). Next, we computed Spearman correlations be-
tween expression of the cell-specific markers and the cutaneous epi-
thelial cell-enriched miRNA (miR-205, miR-203, and the miR-200
family [44–48]), melanocyte-enriched miR-211 [49], and ubiqui-
tously expressed miR-21 in the SKCM tumors. The melanocyte markers
a tumors. (A) Scatter plot visualizing expression of hsa-miR-205 in primary (blue),
s for the SKCM tumors. (C) Average xCell cell enrichment scores for primary and
t enrichments in primary tumors are: sebocytes, keratinocytes, and epithelial cells
epithelial cells, and melanocytes across all SKCM tumors.
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Figure 4. Expression of candidate metastasis-suppressor miRNA is associated with enrichment of stromal cell-type-specific gene expression signatures. (A)
Hierarchical clustering of the Spearman’s rank correlation coefficient between miRNA significantly downregulated between primary and metastatic SKCM tumors, and
xCell cell enrichment scores. Euclidean distance and average linkage used. Correlations between all miRNA and xCell scores provided in Supplemental File 1 (B) Heatmap
of Spearman’s rank correlation coefficients between miRNA and mRNA expressed in the SKCM tumors. Purple: genes expressed in keratinocytes; grey: melanocytes; yellow:
ubiquitous. (C) Heatmap of Spearman’s rank correlation coefficients between epithelial-enriched and melanocyte-enriched miRNA, MITF, and EMT transcription factors
expressed in the SKCM tumors. Corresponding P-values for all correlations provided in Supplemental File 2.
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were most positively correlated with expression of miR-211, while
miR-205, miR-203, and the miR-200 family were most positively cor-
related with the keratinocyte markers, with no clear association to
Table 5
miRNA positively correlated with the cell-types most enriched in primary SKCM tumor

Melanocytes Sebocytes

miRNA rho FDRpval miRNA rho FDRpval
hsa-mir-211 0.81 1.91E-102 hsa-mir-205 0.50 1.51E-26
hsa-mir-514-3 0.51 1.18E-28 hsa-mir-200c 0.49 8.39E-26
hsa-mir-514-2 0.51 1.18E-28 hsa-mir-200a 0.47 1.80E-23
hsa-mir-514-1 0.51 1.18E-28 hsa-mir-200b 0.46 1.02E-22
hsa-mir-508 0.51 1.63E-28 hsa-mir-203 0.46 1.04E-22
hsa-mir-509-3 0.49 3.15E-26 hsa-mir-141 0.46 2.01E-22
hsa-mir-509-2 0.48 8.01E-26 hsa-mir-224 0.34 1.67E-11
hsa-mir-509-1 0.48 8.80E-26 hsa-mir-452 0.32 3.66E-10
hsa-mir-506 0.45 5.14E-22
hsa-mir-513c 0.42 1.40E-18
hsa-mir-187 0.40 2.22E-17
hsa-mir-514b 0.38 1.20E-15
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the melanocyte-specific genes. The ubiquitously expressed miR-21
was not appreciably correlated with markers for either cell type
(Figure 4B).
s

Keratinocytes Epithelial cells

miRNA rho FDRpval miRNA rho FDRpval
hsa-mir-205 0.49 1.82E-25 hsa-mir-200c 0.48 2.37E-24
hsa-mir-200c 0.48 1.80E-24 hsa-mir-141 0.41 3.15E-17
hsa-mir-200a 0.48 1.80E-24 hsa-mir-200a 0.41 4.17E-17
hsa-mir-200b 0.47 1.63E-23 hsa-mir-200b 0.40 9.62E-17
hsa-mir-203 0.44 9.61E-21 hsa-mir-203 0.36 1.37E-12
hsa-mir-141 0.43 4.43E-20 hsa-mir-183 0.35 6.96E-12
hsa-mir-224 0.35 1.50E-12 hsa-mir-452 0.34 9.10E-12
hsa-mir-452 0.33 1.02E-10 hsa-mir-205 0.33 1.33E-10
hsa-mir-31 0.31 1.34E-09 hsa-mir-224 0.31 1.17E-09
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The candidate metastasis-suppressor miRNAs miR-205, miR-203, and
the miR-200 family are known to regulate epithelial-to-mesenchymal tran-
sition (EMT) and epithelial differentiation [44–48]. However, melanocytes
are derived from the neural crest, andmicrophthalmia-associated transcrip-
tion factor (MITF) is critical for driving lineage-specific transcriptional pro-
grams in melanocytes [50,51] that includes expression of miR-211 [49]. In
normal melanocytes, EMT transcription factors SNAI2 and ZEB2 drive
MITF-dependent melanocyte differentiation. Upon oncogenic transforma-
tion, a switch occurs whereby TWIST1 and ZEB1 are activated, resulting
in a loss of E-cadherin and repression of differentiation [40]. In the SKCM
tumors, expression of SNAI2 and CDH1 were elevated in primary tumors,
while ZEB1 and CDH2 were elevated in metastatic tumors. Expression of
TWIST1 and ZEB2 were more variable (Figure S5A-F). Expression of miR-
211 and MITF were positively correlated with CDH1, ZEB2, and SNAI2,
and negatively correlated with CDH2, TWIST1, and ZEB1 (Figure 4C). Fur-
thermore, miR-205, miR-203, and the miR-200 family had weaker, and in-
consistent associations with expression of the EMT transcription factors.
However, all were negatively correlated with expression of ZEB2 [40]. To-
gether, these findings suggest that expression of miRNAs that are enriched
in populations of cutaneous epithelial cells, including keratinocytes and
sebocytes, contribute to the identification of miRNA as putative
metastasis-suppressors from tissue-level miRNA expression profiles.
Figure 5. Tumor-identifiedmetastasis-suppressormiRNA enriched in keratinocyte
200 family, miR-205, and miR-203, and melanocyte-enriched miR-211 in a panel of 57
hsa-miR-205, hsa-miR-203, and the hsa-miR-200 family expression inmelanoma cell line
tissue samples included in themicroRNAome project [19]. (C) Heatmap of Spearman’s ra
and EMT transcription factors expressed in the LM-MEL cell line panel. Corresponding p

9

Therefore, any functional role of these miRNA in regulating EMT in mela-
noma may differ from what is understood for epithelial cells.

Tumor-Identified Metastasis-Suppressor miRNA Enriched in Cutaneous Epithe-
lial Cells are Poorly Expressed in Melanoma Cell Lines

In light of the strong associations between a number of the candidate
metastasis-suppressor miRNA and enrichments in stromal cell gene expres-
sion signatures in the SKCM tumors, further investigation into the sources
of miRNA expression was warranted. To examine this, expression of the cu-
taneous epithelial cell-enriched miRNA (miR-205, miR-203, and the miR-
200 family), along with melanocyte-associated miR-211 was surveyed in
small RNAseq miRNA expression data from the LM-MEL cell line panel
[15]. Only miR-200b exceeded 0.2% of total miRNA in three of 57 cell
lines. Sparse expression of the other cutaneous epithelial cell-enriched
miRNA, when detected, reached only 0.01-0.2% of the total miRNA
reads. Conversely, miR-211 was expressed at level beyond 1% of total
reads in many of the cell lines, consistent with having a functional role in
melanoma (Figure 5A). To investigate these expression patterns, two addi-
tional melanoma cell line panels were examined. In a panel of 51 cell lines
derived from both primary and metastatic tumors, expression of the miR-
200 family was found to be very low or absent in all samples, while miR-
s are poorly expressed inmelanoma cell lines. (A) Relative expression of themiR-
patient-derived melanoma cell lines (LM-MEL, [15]). (B) Hierarchical clustering of
s (A375 andA2058), normalmelanocytes, keratinocytes, sebocytes, and normal skin
nk correlation coefficients betweenmiRNA expressed inmelanoma cell lines, MITF,
-values for all correlations provided in Supplemental File 2.



Table 6
Expression of candidate metastasis-suppressor miRNA in melanoma and cutaneous stromal cell-types (% total miRNA reads)

miRNA Keratinocytesa (n=3) Keratinocytesb (n=5) Sebocytesb (n=3) Melanoma cellsc (n=57) Melanoma cellsb (n=2) Melanocytesb (n=5)

mir-141 2.79 ± 1.75 0.52 ± 0.04 0.31 ± 0.13 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.00
mir-200a 0.21 ± 0.20 0.08 ± 0.08 0.04 ± 0.02 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00
mir-200b 1.45 ± 0.20 0.93 ± 0.19 0.36 ± 0.06 0.04 ± 0.13 0.00 ± 0.00 0.00 ± 0.00
mir-200c 3.27 ± 0.35 0.43 ± 0.10 0.29 ± 0.12 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00
mir-203 3.64 ± 1.42 0.43 ± 0.44 0.76 ± 0.41 0.02 ± 0.04 0.00 ± 0.00 0.00 ± 0.00
mir-205 0.78 ± 0.53 8.97 ± 1.82 7.29 ± 4.00 0.01 ± 0.02 0.00 ± 0.00 0.00 ± 0.00
miR-211 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.61 ± 0.63 0.00 ± 0.00 1.55 ± 0.88

References: a [20], b [19], c [15],
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205 and miR-203 did not meet minimal detection thresholds (Figure S6).
An additional panel of 21 patient-derived melanoma cell lines followed
the same pattern, with only miR-141/miR-200c exhibiting expression in
one sample (Figure S7). Furthermore, none of the cutaneous epithelial
cell-enriched miRNA were detected in the five normal melanocyte samples
included in these datasets. Small RNAseq data harmonized by the
microRNAome project [19] also revealed high levels of miR-205, miR-
203, and the miR-200 family expressed in keratinocytes, sebocytes, and
normal skin tissue samples, but absent in normal melanocytes and mela-
noma cell lines (A375, A2058) (Figure 5B). Interestingly, skin samples
from the dermis had lower expression of the cutaneous epithelial cell-
enriched miRNA as compared to the epidermis, which may account for re-
ports of downregulation with increased thickness of primary tumors.

Finally, expression of miR-211 in the LM-MEL cell line panel was found
to be highly positively correlated with MITF, SNAI2, CDH1, and ZEB2, and
negatively correlated with CDH2 and ZEB1 (Figure 5C, Figure S5G), consis-
tent with its known functional role in maintaining melanocyte differentia-
tion and suppressing EMT-like processes driving phenotypic plasticity
[17,40,49]. Together, these findings suggest that the highly altered expres-
sion patterns of miR-205, miR-203, and the miR-200 family detected in the
TCGA SKCM cohort are likely not derived from tumor cell-intrinsic changes
in miRNA expression.

miRNA-Based Classification of Primary and Metastatic Melanoma Tumors De-
pends Largely on miRNA Highly Expressed in the Primary Tumor Stroma

In light of the expression patterns observed in cell lines, feature selec-
tion and classification analyses were repeated to examine the influence of
the cutaneous epithelial cell-enriched miRNA on discrimination of primary
and metastatic tumors. After filtering of cutaneous stromal-enriched
miRNA (Table 6), 16 miRNA were among the top 20% with the highest se-
lection frequency (Figure 6A). Nine were differentially expressed between
primary and metastatic tumors, while an additional seven were not
(Table 7). Only three miRNA (miR-215, miR-218-2, and miR-29c) over-
lapped with the first feature selection, suggesting that most others were
identified due to interaction with one or more of the cutaneous stromal-
enriched miRNAs removed. Classification analysis was repeated using the
16 features, and a Medium Gaussian Support Vector Machine (SVM)
model predicted primary andmetastatic classes with the highest overall ac-
curacy of 85.7%. The specificity and sensitivity of thismodel were 98% and
42%, respectively. The overall precision was 84% (Figure 6B) and AUC =
0.83 (Figure 6C). However, 58% of primary tumors were misclassified,
compared to 20% when the cutaneous stromal-enriched miRNAs were
Figure 6.miRNA-based classification of primary andmetastaticmelanoma tumors
Top 20% of miRNA features selected with the highest frequency after removal of putat
miRNA appeared in, out of a possible 50. (B) Confusion matrices for the Medium Ga
feature selection. (C) ROC curve for the same SVM classification model. (D) Hierarchic
in the top 20% of selected features. All parameters the same as previously stated. (E)
and metastatic tissue sites are reflected in tissue-level miRNA expression. Difference
tumor cell-intrinsic changes, as well as changes in cell-type enriched miRNA that are d
the property of all being situated in the skin, while metastatic tumors can have a di
miRNA with large apparent negative fold changes between primary and metastatic sites
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included in feature selection. Most apparent positive performance of the
classifier was due to the skewing of the dataset towards metastatic tumors,
such that a model that predicts all tumors as metastatic could still achieve
more than 75% accuracy. As expected, based on the poor classification of
primary tumors, hierarchical clustering using the 16 selected features re-
sulted in no separation of primary and metastatic groups (Figure 6D). Fur-
ther optimizing feature selection would improve classification; however,
these findings demonstrate that the strongest discriminating features in
the SKCM tumor miRNA expression profiles were those derived from epi-
thelial stromal cells enriched at the cutaneous tissue site. Overall, this
work highlights the challenges of interpreting tissue-level miRNA expres-
sion patterns between primary andmetastatic tumors, where it is necessary
to decode tumor-intrinsic changes in miRNA expression from those arising
due to diversity in stromal cell populations (Figure 6E).

Discussion

Despite recent advancements in targeted therapies to treat cutaneous
melanoma, resistance is common, and survival is remains poor for patients
with metastatic disease [4,5]. In the current study, differential expression
analysis and sequential feature selection using classification algorithms
identified candidate metastasis-suppressor miRNA in the TCGA-SKCM co-
hort. However, expression of the most highly downregulated miRNA be-
tween primary and metastatic tumors (miR-205, miR-203, and the miR-
200 family) were found to be specifically associated with enrichments of
cutaneous epithelial cell signatures, including keratinocytes and sebocytes,
in the primary tumors. Subsequent comparisons in cell lines revealed that
the presence of cutaneous epithelial cell-types likely accounted for the
large apparent differences in a number of candidate metastasis-suppressor
miRNA downregulated between primary and metastatic tumor tissues. Fil-
tering of cutaneous stromal-enriched miRNA greatly reduced the perfor-
mance of classification models, suggesting a major role for stromal-
derived, rather than tumor cell-intrinsic miRNA expression in discriminat-
ing primary from metastatic melanoma tumors. This study demonstrates
the importance of considering tissue source and compositionwhen identify-
ing putative metastasis-suppressor miRNA in tissue samples, and supports
validation of cell-type-specific miRNA expression patterns to ensure that
physiologically relevant models of melanoma progression will be created
and studied in the future.

Some of the most highly studied metastasis-suppressor miRNA in mela-
noma includemiR-205,miR-203, and themiR-200 family (made up ofmiR-
200a/miR-200b andmiR-200c/miR-141), with numerous reports of down-
regulation in metastatic tumors, and tumor and metastasis-suppressive
depends largely onmiRNA highly expressed in the primary tumor stroma. (A)
ive keratinocyte-derived miRNA. The y-axis shows the number of feature subsets a
ussian SVM classifier constructed using the miRNA identified in the top 20% of
al clustering of all primary and metastatic samples using the 16 miRNA identified
Schematic showing how differences in stromal cell composition between primary
s in miRNA expression between primary and metastatic tumors will reflect both
ependent on stromal cell populations. Primary cutaneous melanoma tumors share
verse set of stromal contexts. For this reason, candidate “metastasis-suppressor”
should be investigated for cell-type enriched expression patterns.
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functions [10,11,32,34,36,39,52]. These studies have relied on both con-
ventional differential expression, as well as supervisedmachine learning al-
gorithms to identify miRNA of interest from tumor tissue expression
11
profiles [11,32,34,36,39,52]. However, studies that have incorporated
miRNA expression profiling of melanoma cell lines have consistently iden-
tified a different subset of miRNAs associated with tumor- and invasion/



Table 7
The top 20% of miRNA identified during feature selection to classify primary and
metastatic tumors after filtering of cutaneous stromal-enriched miRNA

Identified by differential expression
and feature selection

Identified by feature selection

miRNA Log2 fold-change miRNA Log2 fold-change

mir-202 -1.34 mir-520h 0.80
mir-218-2 0.60 miR-525 0.46
mir-29c 0.79 let-7a-1 0.07
mir-452 -0.76 mir-197 0.27
mir-215 1.15 mir-498 0.58
mir-223 -0.69 mir-146b 0.13
mir-505 0.43 mir-518a-1 0.84
mir-378c 0.59
mir-675 1.53
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metastasis-suppressive functions, including miR-211, and miR-204
[17,49,53]. This disconnect suggests that melanoma cell models may be
poorly representative of tumor miRNA expression patterns, or that identifi-
cation of candidate metastasis-suppressor miRNA from tissue-level data is
influenced by cellular composition. After finding miRNA highly downregu-
lated between primary andmetastaticmelanoma tumors to be undetectable
in nearly all 131 melanoma cell lines examined here, we propose that stro-
mal cell composition differences between primary and metastatic tumors
dominate the tissue-levelmiRNA expression profiles, and is under reported.

When heterogeneous tissue samples are homogenized to extract RNA,
critical spatial information is lost. Without prior knowledge of miRNA ex-
pression patterns at a cellular level, it becomes exceedingly difficult to de-
termine the source of miRNA signals. For example, miR-143/145 are
highly studied as tumor suppressors in colorectal cancer due to differential
expression in tumor tissues, but were eventually shown to be highly
expressed in tumor-adjacent fibroblasts and smooth muscle cells, and not
in cancer cells [54]. In addition, tumors possess many properties that can
further confound this issue. Due to altered vasculature, miRNAs that are
highly expressed in endothelial cells and erythrocytes (miR-126, miR-
144, miR-451a, and miR-486) are often identified as differentially
expressed in solid tumors, and assigned tumor-intrinsic functions
[55–58]. Similarly, changes in tissue composition can occur with the re-
cruitment of immune cells to tumors, leading to enrichment of immune
cell miRNA signatures [58]. Keratinocytes make up approximately 90% of
the cells in the epidermal layer [59]. Considering that all primary cutane-
ous melanoma tumors are situated in the skin, while metastatic tumors
are derived from a diverse set of organs and tissues, it is logical that the
most highly and consistently downregulated miRNA between primary
andmetastatic tumor tissue samples could arise from differences in stromal
tissue composition.

The roles ofmiR-205,miR-203, and themiR-200 family have beenwell-
documented in epithelial cells. The miR-200 family and miR-205 are
known to suppress EMT by enhancing expression of E-cadherin through
targeting of transcription factors ZEB1 and ZEB2, maintaining epithelial
differentiation [47,60,61]. In addition, miR-203 and miR-200 members
play a critical role in the terminal differentiation of keratinocytes [44,61].
Indeed, both miR-205 and miR-203 are prognostic markers in cutaneous
squamous cell carcinomas [45], arising from keratinocytes [20]. Inmelano-
cytes, derived from the neural crest, the transcription factor MITF drives
differentiation [50,51]. In the context of melanoma, low MITF expression
is associated with invasion, loss of expression of epithelial genes, and in-
creased phenotypic plasticity [13]. Melanoma cells are known to undergo
an EMT-like process where epithelial markers and cell contacts are lost
[76]. However, this process has been found to differ from the classical
EMT paradigm established in epithelial cancers, whereby loss of MITF
and miR-211 expression occurs with a switch from ZEB2 and SNAI2, to
ZEB1 and TWIST1 [62]. Here, we found that miR-211 was downregulated
in metastatic tumors, and was highly positively correlated with MITF,
ZEB2, and SNAI2 in tumors and melanoma cell lines, providing further
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confirmation of its established role as a tumor and metastasis-suppressor
[11,17,49,53]. However, given the lack of expression in cell lines, and lim-
ited association with markers of EMT and melanocyte differentiation, the
role of epithelial-enriched miRNA like miR-205, miR-203, and the miR-
200 family in melanoma requires further clarification.

In light of the poor of expression of miR-205,miR-203, and themiR-200
family in melanoma cell lines and normal melanocytes reported here,many
of the models used to functionally characterize these miRNA in melanoma
cell linesmay represent systems of ectopic, rather than rescue of expression.
In cases where there is a “down” phenotypic readout, for example, a de-
crease in cell invasion or reduced viability, results should be interpreted
carefully. Such “down” readouts are vulnerable to off-target or non-
specific effects on cellular fitness, as there are typically more ways to dis-
rupt a complex phenotype than there are to enhance it [63]. Further to
this, phenotypic and molecular changes documented with the use of
miRNA inhibitors against miRNA not expressed in melanoma cell lines
should be revisited by verifying endogenous expression levels and potential
off target effects.

Although the miRNA expression patterns we report here for a large
number of melanoma cell lines strongly implicates stromal composition as
the major source of differential miRNA expression between primary and
metastatic tumor tissues, a biological role for stromal-enriched miRNA in
melanoma metastasis should not be immediately discounted. Melanocytes
and keratinocytes are known to interact, and changes in these interactions
have been linked to melanoma tumorigenesis and metastasis [64,65]. Fur-
thermore, exosomes released from keratinocytes can modulate melanocyte
function, and containmiRNA such as miR-200a andmiR-203 [66]. It is also
well established that cell lines do not always reflect the tumor biology [67],
allowing the possibility that expression of miRNA such as miR-205, miR-
203, and the miR-200 family are acquired in tumor progression through a
mechanism that is not recapitulated in cultured cell models. However, the
likelihood of this scenario must be weighed against one where expression
of miRNA detected in homogenized tissue samples arises from other cell
types that could be present in that tissue. Further investigation using
miRNA fluorescent in situ hybridization (FISH) to assess the spatial expres-
sion patterns within fixed melanoma tumor sections can help define the
source of miRNA expression [68]. Finally, recent advances in single-cell
RNA-seq methods can allow population studies of cell types and miRNAs
within melanoma tumors at different stages, and collected from different
tissue sites with less confounding effects [69].

Ourfindings show that identification of metastasis-associatedmiRNA in
melanoma tumors may bemore challenging than currently appreciated. Al-
though 80% of primary tumors were correctly classified before filtering of
cutaneous stromal-enriched miRNA, this was reduced to 42% when these
miRNAs were removed from the feature set, suggesting that changes in
tumor-intrinsic miRNA expression upon metastasis are likely subtle and
variable. This difficulty in separating classes was in part due to primary tu-
mors being underrepresented in the cohort, making up only 21% of sam-
ples. Melanoma has often metastasized prior to diagnosis [70], and when
primary tumors are resected, they are often too small to contribute mate-
rials to molecular analyses beyond diagnosis [71]. For these reasons, the
primary samples included in the TCGA SKCM cohort may be advanced tu-
mors with little differences tometastatic samples. As such, analyses focused
on comparing primary and metastatic tumors may not provide the insights
expected from a dataset of this size. In the future, survival-based compari-
sons could produce clinically relevant findings, and efforts to study longitu-
dinal samples for individual patients should be prioritized to define
metastasis-associated miRNAs.

Apart from stromal-enriched miRNA, dysregulation of large miRNA
gene clusters may be a hallmark of the melanoma miRNA landscape. Ex-
pression of the miR-506/514 cluster has been reported in melanoma
[31]. However, our identification of C19MC activation in melanoma is
novel. Aberrant C19MC expression has been reported in several cancers,
and these miRNA have immune-modulatory effects potentially relevant to
melanoma [30,72]. However, little is known about how C19MC expression
is acquired, or the functional consequence this has in tumors. Given the
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growing number of reports in other cancer types [73–75], further investiga-
tion into the role of C19MC in melanoma is highly warranted.

In conclusion, this work has demonstrated that many of the most highly
studiedmetastasis-suppressor miRNAs in melanoma are derived from cuta-
neous stromal sources that differ between primary and metastatic tumor
samples. Thesefindings draw attention to the vulnerability of both differen-
tial expression analyses and supervised classification algorithms to spurious
identification of metastasis-suppressor miRNA when consideration is not
given to the cellular composition of tissue samples. We recommend that ex-
pression of candidatemetastasis-suppressormiRNA be verified in appropri-
ate cell lines to confirm tumor cell-intrinsic expression patterns, or that
studies of relevant stromal mechanisms during tumor progression be in-
cluded in experimental models. Currently, these expression validations
can be labor-intensive, limited by data availability, and involve heuristic
methods. Going forward, coordinated efforts to aggregate cell- and tissue-
level miRNA sequencing, and the development of software tools to make
this information widely accessible will be invaluable to improve the rele-
vance and reproducibility of miRNA studies.

Funding

This research was funded by grants from Cancer Research Society
(20142) and Canadian Institutes of Health Research (MOP 119562) to
AWBC.

Acknowledgments

This research was funded by grants from Cancer Research Society
(20142) and Canadian Institutes of Health Research (MOP 119562) to
AWBC.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.tranon.2020.100802.

References

[1] Statistics, C. C. S. s. A. C. O. C, Canadian Cancer Statistics; A 2018 Special Report on can-
cer incidence by stage, Canadian Cancer Society, Toronto, ON, 2018.

[2] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer sta-
tistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers
in 185 countries, CA Cancer J Clin 68 (2018) 394–424.

[3] Cancer, A. J. C. o., AJCC Cancer Staging Handbook 7th Edition, 7th ed. Springer, Chi-
cago, 2010.

[4] J.S. O'Donnell, G.V. Long, R.A. Scolyer, M.W. Teng, M.J. Smyth, Resistance to PD1/
PDL1 checkpoint inhibition, Cancer Treat Rev 52 (2017) 71–81.

[5] I. Arozarena, C. Wellbrock, Overcoming resistance to BRAF inhibitors, Ann Transl Med
5 (2017) 387.

[6] N. Pencheva, S.F. Tavazoie, Control of metastatic progression by microRNA regulatory
networks, Nat Cell Biol 15 (2013) 546–554.

[7] T.A. Farazi, J.I. Hoell, P. Morozov, T. Tuschl, MicroRNAs in human cancer, Adv Exp
Med Biol 774 (2013) 1–20.

[8] P. Landgraf, M. Rusu, R. Sheridan, A. Sewer, N. Iovino, A. Aravin, S. Pfeffer, A. Rice,
A.O. Kamphorst, M. Landthaler, C. Lin, N.D. Socci, L. Hermida, V. Fulci, S. Chiaretti,
R. Foa, J. Schliwka, U. Fuchs, A. Novosel, R.U. Muller, B. Schermer, U. Bissels, J.
Inman, Q. Phan, M. Chien, D.B. Weir, R. Choksi, G. De Vita, D. Frezzetti, H.I.
Trompeter, V. Hornung, G. Teng, G. Hartmann, M. Palkovits, R. Di Lauro, P. Wernet,
G. Macino, C.E. Rogler, J.W. Nagle, J. Ju, F.N. Papavasiliou, T. Benzing, P. Lichter, W.
Tam, M.J. Brownstein, A. Bosio, A. Borkhardt, J.J. Russo, C. Sander, M. Zavolan, T.
Tuschl, A mammalian microRNA expression atlas based on small RNA library sequenc-
ing, Cell 129 (2007) 1401–1414.

[9] S.F. Tavazoie, C. Alarcon, T. Oskarsson, D. Padua, Q. Wang, P.D. Bos, W.L. Gerald, J.
Massague, Endogenous human microRNAs that suppress breast cancer metastasis, Na-
ture 451 (2008) 147–152.

[10] Y. Xu, T. Brenn, E.R.S. Brown, V. Doherty, D.W. Melton, Differential expression of
microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are down-
regulated in melanoma and act as tumour suppressors, Br J Cancer 106 (2012)
553–561.

[11] V. Valentini, V. Zelli, E. Gaggiano, V. Silvestri, P. Rizzolo, A. Bucalo, S. Calvieri, S.
Grassi, P. Frascione, P. Donati, G. Soda, L. Ottini, A.G. Richetta, MiRNAs as potential
prognostic biomarkers for metastasis in thin and thick primary cutaneous melanomas,
Anticancer Res 39 (2019) 4085–4093.
13
[12] L.C. van Kempen, K. van den Hurk, V. Lazar, S. Michiels, V.Winnepenninckx, M. Stas, A.
Spatz, J.J. van den Oord, Loss of microRNA-200a and c, and microRNA-203 expression
at the invasive front of primary cutaneous melanoma is associated with increased thick-
ness and disease progression, Virchows Arch 461 (2012) 441–448.

[13] Akbani, R., Kadir, B, Albert, M., Ally, A., Samirkumar, Arachchi, H., Arora, A., J, Ayala,
B., Baboud, J., Balasundaram, M., Balu, S., Barnabas, N., Bartlett, J., Bartlett, P., Boris,
Stephen, Behera, M., Belyaev, D., Benz, C., Bernard, B., Beroukhim, R., Bir, N., Aaron,
Bodenheimer, T., Boice, L., Genevieve, Bono, R., Moiz, Bosenberg, M., Bowen, J.,
Bowlby, R., Christopher, Brockway-Lunardi, L., Brooks, D., Brzezinski, J., Bshara, W.,
Buda, E., William, Yaron, Button, M., Calderone, T., Giancarlo, Carter, C., Scott,
Cherney, L., Andrew, Chevalier, A., Chin, L., Cho, J., Raymond, Choi, Y.-L., Chu, A.,
Chudamani, S., Cibulskis, K., Ciriello, G., Clarke, A., Coons, S., Cope, L., Crain, D., Cur-
ley, E., Danilova, L., D’Atri, S., Davidsen, T., Michael, Keith, John, Qixia, Yonathan,
Dhalla, N., Dhir, R., Dicara, D., Dinikin, M., Dubina, M., J, Egea, S., Eley, G., Engel, J.,
Jennifer, Konstantin, Felau, I., Fennell, T., Martin, Fisher, S., Keith, Frazer, S., Frick,
J., Fulidou, V., Stacey, Gao, J., Gardner, J., Levi, Julie, Gaudioso, C., Gehlenborg, N.,
Genovese, G., Gerken, M., Jeffrey, Getz, G., Gomez-Fernandez, C., Gribbin, T., Grimsby,
J., Gross, B., Guin, R., Gutschner, T., Hadjipanayis, A., Halaban, R., Hanf, B., Haussler,
D., Lauren, D, Nicholas, David, Herbert, L., James, Hersey, P., Katherine, Hodis, E.,
Robert, Dave, Hoppough, S., Alan, Franklin, Huang, M., Huang, S., Carolyn, Ibbs, M.,
Iype, L., Jacobsen, A., Jakrot, V., Janning, A., William, Stuart, Mark, Corbin, Steven,
Ju, Z., Kakavand, H., Kang, H., Richard, Fadlo, Kim, J., John, Klode, J., Korkut, A.,
Korski, K., Krauthammer, M., Kucherlapati, R., Lawrence, Kycler, W., Ladanyi, M.,
Phillip, Peter, Lander, E., Michael, Alexander, Łaźniak, R., Lee, D., Jeffrey, Lee, J.,
Lee, K., Lee, S., Lee, W., Leporowska, E., Kristen, Haiyan, Tara, Lichtenstein, L., Lin,
P., Ling, S., Liu, J., Liu, O., Liu, W., Georgina, Lu, Y., Ma, S., Ma, Y., Mackiewicz, A.,
Harshad, Malke, J., Mallery, D., Georgy, Graham, Marco, Matejka, B., Mayo, M.,
Mehrabi, S., Meng, S., Meyerson, M., Piotr, John, Martin, Gordon, Moiseenko, F., Rich-
ard, Morris, S., Morrison, C., Morton, D., Moschos, S., Lisle, Florian, Andrew, Murawa,
D., Murawa, P., Bradley, Nezi, L., Ng, S., Nicholson, D., Michael, Osunkoya, A., Taofeek,
Bradley, Pagani, E., Oxana, Pantazi, A., Parfenov, M., Parfitt, J., Peter, Park, W.-Y., Joel,
Passarelli, F., Penny, R., Charles, Todd, Potapova, O., Victor, Protopopov, A., Michael,
Radenbaugh, A., Rai, K., Suresh, Ayush, Nilsa, Ramirez, R., Rao, U., W, Ren, X., Sheila,
Roach, J., A, Merrick, Roszik, J., Russo, G., Saksena, G., Saller, C., Samuels, Y., Sander,
C., Sander, C., Sandusky, G., Santoso, N., Saul, M., Robyn, Schadendorf, D., Jacqueline,
Schultz, N., Steven, Schwallier, C., Richard, Seidman, J., Pedamallu, Harmanjatinder,
Senbabaoglu, Y., Seth, S., Kerwin, Sharpe, S., Norman, Kenna, Shelton, C., Shelton, T.,
Shen, R., Sheth, M., Shi, Y., Carolyn, Shmulevich, I., Gabriel, Janae, Sinha, R.,
Sipahimalani, P., Heidi, Matthew, Song, X., Sougnez, C., Andrew, Spychała, A., Jona-
than, Stuart, J., Wiktoria, Sucker, A., S, Sun, Y., Synott, M., Tabak, B., Teresa, Tam,
A., Tan, D., Tang, J., Tarnuzzer, R., Tarvin, K., Tatka, H., Barry, Teresiak, M., Thiessen,
N., John, Thorne, L., Thorsson, V., Jeffrey, Timothy, Kenneth, Tsou, P., David, Eliezer,
Veluvolu, U., Roeland, Voet, D., Voronina, O., Walter, V., Jessica, Wan, Y., Wang, Y.,
Wang, Z., Waring, S., Ian, Weinhold, N., John, Daniel, White, P., Matthew, James,
Wise, L., Wiznerowicz, M., Scott, Wu, C.-J., Wu, C.-C., Wu, J., Wu, Y., Xi, R., Andrew,
Yang, D., Yang, L., Yang, L., Travis, Jean, Zhang, H., Zhang, J., Zhang, W., Zhao, X.,
Zhu, J., Zhu, K., Zimmer, L., Zmuda, E., and Zou, L. (2015) Genomic classification of cu-
taneous melanoma. Cell 161, 1681-1696

[14] K.A. Hoadley, C. Yau, T. Hinoue, D.M. Wolf, A.J. Lazar, E. Drill, R. Shen, A.M. Taylor,
A.D. Cherniack, V. Thorsson, R. Akbani, R. Bowlby, C.K. Wong, M. Wiznerowicz, F.
Sanchez-Vega, A.G. Robertson, B.G. Schneider, M.S. Lawrence, H. Noushmehr, T.M.
Malta, N. Cancer Genome Atlas, J.M. Stuart, C.C. Benz, P.W. Laird, Cell-of-origin pat-
terns dominate the molecular classification of 10,000 tumors from 33 types of cancer,
Cell 173 (2018) 291–304 e296.

[15] M.C. Andrews, J. Cursons, D.G. Hurley, M. Anaka, J.S. Cebon, A. Behren, E.J. Crampin,
Systems analysis identifies miR-29b regulation of invasiveness in melanoma, Mol Can-
cer 15 (2016) 72.

[16] A. Behren, M. Anaka, P.-H. Lo, L.J. Vella, I.D. Davis, J. Catimel, T. Cardwell, C. Gedye, C.
Hudson, R. Stan, J. Cebon, The Ludwig Institute for Cancer Research Melbourne Mela-
noma Cell Line Panel, Pigment Cell Melanoma Res 26 (2013) 597–600.

[17] G.M. Boyle, S.L. Woods, V.F. Bonazzi, M.S. Stark, E. Hacker, L.G. Aoude, K. Dutton-
Regester, A.L. Cook, R.A. Sturm, N.K. Hayward, Melanoma cell invasiveness is regulated
by miR-211 suppression of the BRN2 transcription factor, Pigment Cell Melanoma Res
24 (2011) 525–537.

[18] S. Caramuta, S. Egyhazi, M. Rodolfo, D. Witten, J. Hansson, C. Larsson, W.O. Lui,
MicroRNA expression profiles associated with mutational status and survival in malig-
nant melanoma, J Invest Dermatol 130 (2010) 2062–2070.

[19] M.N. McCall, M.S. Kim, M. Adil, A.H. Patil, Y. Lu, C.J. Mitchell, P. Leal-Rojas, J. Xu, M.
Kumar, V.L. Dawson, T.M. Dawson, A.S. Baras, A.Z. Rosenberg, D.E. Arking, K.H. Burns,
A. Pandey, M.K. Halushka, Toward the human cellular microRNAome, Genome Res 27
(2017) 1769–1781.

[20] A. Mizrahi, A. Barzilai, D. Gur-Wahnon, I.Z. Ben-Dov, S. Glassberg, T. Meningher, E.
Elharar, M. Masalha, J. Jacob-Hirsch, H. Tabibian-Keissar, I. Barshack, J. Roszik, R.
Leibowitz-Amit, Y. Sidi, D. Avni, Alterations of microRNAs throughout the malignant
evolution of cutaneous squamous cell carcinoma: the role of miR-497 in epithelial to
mesenchymal transition of keratinocytes, Oncogene 37 (2018) 218–230.

[21] N. Panarelli, K. Tyryshkin, J.J.M. Wong, A. Majewski, X. Yang, T. Scognamiglio, M.K.
Kim, K. Bogardus, T. Tuschl, Y.T. Chen, N. Renwick, Evaluating gastroenteropancreatic
neuroendocrine tumors through microRNA sequencing, Endocr Relat Cancer 26 (2019)
47–57.

[22] P. López-Romero, Pre-processing and differential expression analysis of Agilent
microRNA arrays using the AgiMicroRna Bioconductor library, BMC Genomics 12
(2011) 64.

[23] M.E. Ritchie, B. Phipson, D. Wu, Y. Hu, C.W. Law, W. Shi, G.K. Smyth, Limma powers
differential expression analyses for RNA-sequencing and microarray studies, Nucleic
Acids Res 43 (2015) e47.

https://doi.org/10.1016/j.tranon.2020.100802
https://doi.org/10.1016/j.tranon.2020.100802
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0005
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0005
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0010
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0010
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0010
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0015
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0015
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0020
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0020
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0025
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0025
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0030
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0030
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0035
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0035
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0040
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0040
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0040
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0040
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0040
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0040
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0040
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0040
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0040
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0045
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0045
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0045
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0050
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0050
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0050
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0050
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0055
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0055
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0055
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0055
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0060
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0060
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0060
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0060
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0065
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0065
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0065
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0065
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0065
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0065
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0070
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0070
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0070
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0075
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0075
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0075
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0080
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0080
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0080
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0080
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0085
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0085
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0085
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0090
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0090
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0090
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0090
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0095
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0095
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0095
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0095
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0095
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0100
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0100
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0100
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0100
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0105
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0105
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0105
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0110
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0110
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0110


K. Watt et al. Translational Oncology 13 (2020) 100802
[24] G.A. Morgan, T. F., IBM SPSS for Introductory Statistics: Use and Interpretation,
Routledge, New York, 2013.

[25] Mathworks. Statistics and Machine Learning Toolbox Documentation (R2018a).
[26] S.L. Carter, K. Cibulskis, E. Helman, A. McKenna, H. Shen, T. Zack, P.W. Laird, R.C.

Onofrio, W. Winckler, B.A. Weir, R. Beroukhim, D. Pellman, D.A. Levine, E.S. Lander,
M. Meyerson, G. Getz, Absolute quantification of somatic DNA alterations in human
cancer, Nature biotechnology 30 (2012) 413–421.

[27] D. Aran, Z. Hu, A.J. Butte, xCell: digitally portraying the tissue cellular heterogeneity
landscape, Genome Biol 18 (2017) 220.

[28] R.C. Team, R: A language and environment for statistical computing, R Foundation for
Statistical Computing, Vienna, Austria, 2020.

[29] M. Li, K.F. Lee, Y. Lu, I. Clarke, D. Shih, C. Eberhart, V.P. Collins, T. Van Meter, D.
Picard, L. Zhou, P.C. Boutros, P. Modena, M.L. Liang, S.W. Scherer, E. Bouffet, J.T.
Rutka, S.L. Pomeroy, C.C. Lau, M.D. Taylor, A. Gajjar, P.B. Dirks, C.E. Hawkins, A.
Huang, Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive
primitive neuroectodermal brain tumors, Cancer Cell 16 (2009) 533–546.

[30] J. Bullerdiek, I. Flor, Exosome-delivered microRNAs of "chromosome 19 microRNA
cluster" as immunomodulators in pregnancy and tumorigenesis, Mol Cytogenet 5
(2012) 27.

[31] K.L. Streicher, W. Zhu, K.P. Lehmann, R.W. Georgantas, C.A. Morehouse, P. Brohawn,
R.A. Carrasco, Z. Xiao, D.A. Tice, B.W. Higgs, L. Richman, B. Jallal, K. Ranade, Y.
Yao, A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte
transformation and promoting melanoma growth, Oncogene 31 (2011) 1558.

[32] B. Sanchez-Sendra, C. Martinez-Ciarpaglini, J.F. Gonzalez-Munoz, A. Murgui, L.
Terradez, C. Monteagudo, Downregulation of intratumoral expression of miR-205,
miR-200c and miR-125b in primary human cutaneous melanomas predicts shorter sur-
vival, Sci Rep 8 (2018) 17076.

[33] H. Mirzaei, S. Gholamin, S. Shahidsales, A. Sahebkar, M.R. Jaafari, H.R. Mirzaei, S.M.
Hassanian, A. Avan, MicroRNAs as potential diagnostic and prognostic biomarkers in
melanoma, Eur J Cancer 53 (2016) 25–32.

[34] S. Liu, M.T. Tetzlaff, A. Liu, B. Liegl-Atzwanger, J. Guo, X. Xu, Loss of microRNA-205
expression is associated with melanoma progression, Lab Invest 92 (2012) 1084–1096.

[35] S. Liu, M.T. Tetzlaff, R. Cui, X. Xu, miR-200c inhibits melanoma progression and drug
resistance through down-regulation of BMI-1, Am J Pathol 181 (2012) 1823–1835.

[36] J.A. Hanna, L. Hahn, S. Agarwal, D.L. Rimm, In situ measurement of miR-205 in malig-
nant melanoma tissue supports its role as a tumor suppressor microRNA, Lab Invest 92
(2012) 1390–1397.

[37] A.A. Dar, S. Majid, D. de Semir, M. Nosrati, V. Bezrookove, M. Kashani-Sabet, miRNA-
205 suppresses melanoma cell proliferation and induces senescence via regulation of
E2F1 protein, J Biol Chem 286 (2011) 16606–16614.

[38] P. Bu, P. Yang, MicroRNA-203 inhibits malignant melanoma cell migration by targeting
versican, Exp Ther Med 8 (2014) 309–315.

[39] S. Bhalla, H. Kaur, A. Dhall, G.P.S. Raghava, Prediction and analysis of skin cancer pro-
gression using genomics profiles of patients, Sci Rep 9 (2019) 15790.

[40] J. Caramel, E. Papadogeorgakis, L. Hill, G.J. Browne, G. Richard, A. Wierinckx, G.
Saldanha, J. Osborne, P. Hutchinson, G. Tse, J. Lachuer, A. Puisieux, J.H. Pringle, S.
Ansieau, E. Tulchinsky, A switch in the expression of embryonic EMT-inducers drives
the development of malignant melanoma, Cancer Cell 24 (2013) 466–480.

[41] C. Seiffert, T.M. Khoshgoftaar, J.V. Hulse, A. Napolitano, RUSBoost: a hybrid approach
to alleviating class imbalance, IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans 40 (2010) 185–197.

[42] J.B. Cheng, A.J. Sedgewick, A.I. Finnegan, P. Harirchian, J. Lee, S. Kwon, M.S. Fassett, J.
Golovato, M. Gray, R. Ghadially, W. Liao, B.E. Perez White, T.M. Mauro, T. Mully, E.A.
Kim, H. Sbitany, I.M. Neuhaus, R.C. Grekin, S.S. Yu, J.W. Gray, E. Purdom, R. Paus, C.J.
Vaske, S.C. Benz, J.S. Song, R.J. Cho, Transcriptional programming of normal and in-
flamed human epidermis at single-cell resolution, Cell Rep 25 (2018) 871–883.

[43] K.D. Haltaufderhyde, E. Oancea, Genome-wide transcriptome analysis of human epider-
mal melanocytes, Genomics 104 (2014) 482–489.

[44] J. Hildebrand, M. Rutze, N. Walz, S. Gallinat, H. Wenck, W. Deppert, A. Grundhoff, A.
Knott, A comprehensive analysis of microRNA expression during human keratinocyte
differentiation in vitro and in vivo, J Invest Dermatol 131 (2011) 20–29.

[45] J. Canueto, E. Cardenoso-Alvarez, J.L. Garcia-Hernandez, P. Galindo-Villardon, P. Vicente-
Galindo, J.L. Vicente-Villardon, D. Alonso-Lopez, J. De Las Rivas, J. Valero, E. Moyano-
Sanz, E. Fernandez-Lopez, J.H. Mao, A. Castellanos-Martin, C. Roman-Curto, J. Perez-
Losada,MicroRNA (miR)-203 andmiR-205 expression patterns identify subgroups of prog-
nosis in cutaneous squamous cell carcinoma, Br J Dermatol 177 (2017) 168–178.

[46] S.M. Ahn, J.Y. Cha, J. Kim, D. Kim, H.T. Trang, Y.M. Kim, Y.H. Cho, D. Park, S.
Hong, Smad3 regulates E-cadherin via miRNA-200 pathway, Oncogene 31 (2012)
3051–3059.

[47] P.A. Gregory, A.G. Bert, E.L. Paterson, S.C. Barry, A. Tsykin, G. Farshid, M.A. Vadas,
Y. Khew-Goodall, G.J. Goodall, The miR-200 family and miR-205 regulate epithe-
lial to mesenchymal transition by targeting ZEB1 and SIP1, Nat Cell Biol 10
(2008) 593–601.

[48] S.M. Park, A.B. Gaur, E. Lengyel, M.E. Peter, The miR-200 family determines the epithe-
lial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2,
Genes Dev 22 (2008) 894–907.

[49] J. Mazar, K. DeYoung, D. Khaitan, E. Meister, A. Almodovar, J. Goydos, A. Ray, R.J.
Perera, The regulation of miRNA-211 expression and its role in melanoma cell invasive-
ness, PLoS One 5 (2010), e13779. .

[50] A. Mehrotra, G. Mehta, S. Aras, A. Trivedi, I.L. de la Serna, SWI/SNF chromatin remod-
eling enzymes in melanocyte differentiation and melanoma, Crit Rev Eukaryot Gene
Expr 24 (2014) 151–161.
14
[51] E. Steingrimsson, N.G. Copeland, N.A. Jenkins, Melanocytes and the microphthalmia
transcription factor network, Annu Rev Genet 38 (2004) 365–411.

[52] S. Babapoor, R. Wu, J. Kozubek, D. Auidi, J.M. Grant-Kels, S.S. Dadras, Identification of
microRNAs associated with invasive and aggressive phenotype in cutaneous melanoma
by next-generation sequencing, Lab Invest 97 (2017) 636–648.

[53] M. Galasso, C. Morrison, L. Minotti, F. Corrà, C. Zerbinati, C. Agnoletto, F. Baldassari, M.
Fassan, A. Bartolazzi, A. Vecchione, G.J. Nuovo, G. Di Leva, S. D’Atri, E. Alvino, M.
Previati, B.J. Nickoloff, C.M. Croce, S. Volinia, Loss of miR-204 expression is a key
event in melanoma, Molecular Cancer 17 (2018) 71.

[54] O.A. Kent, M.N. McCall, T.C. Cornish, M.K. Halushka, Lessons from miR-143/145: the
importance of cell-type localization of miRNAs, Nucleic Acids Res 42 (2014)
7528–7538.

[55] M.N. McCall, O.A. Kent, J. Yu, K. Fox-Talbot, A.L. Zaiman, M.K. Halushka, MicroRNA
profiling of diverse endothelial cell types, BMC Med Genomics 4 (2011) 78.

[56] S. Wang, A.B. Aurora, B.A. Johnson, X. Qi, J. McAnally, J.A. Hill, J.A. Richardson, R.
Bassel-Duby, E.N. Olson, The endothelial-specific microRNA miR-126 governs vascular
integrity and angiogenesis, Dev Cell 15 (2008) 261–271.

[57] R. Feng, X. Chen, Y. Yu, L. Su, B. Yu, J. Li, Q. Cai, M. Yan, B. Liu, Z. Zhu, miR-126 func-
tions as a tumour suppressor in human gastric cancer, Cancer Lett 298 (2010) 50–63.

[58] K.W. Witwer, M.K. Halushka, Toward the promise of microRNAs - Enhancing reproduc-
ibility and rigor in microRNA research, RNA Biol 13 (2016) 1103–1116.

[59] J.A. McGrath, R.A.J. Eady, F.M. Pope, Anatomy and Organization of Human Skin, 2008
Rook's Textbook of Dermatology.

[60] M. Korpal, E.S. Lee, G. Hu, Y. Kang, The miR-200 family inhibits epithelial-
mesenchymal transition and cancer cell migration by direct targeting of E-cadherin
transcriptional repressors ZEB1 and ZEB2, J Biol Chem 283 (2008) 14910–14914.

[61] R. Yi, E. Fuchs, MicroRNA-mediated control in the skin, Cell Death Differ 17 (2010)
229–235.

[62] F.Z. Li, A.S. Dhillon, R.L. Anderson, G. McArthur, P.T. Ferrao, Phenotype switching in
melanoma: implications for progression and therapy, Front Oncol 5 (2015) 31.

[63] W.G. Kaelin Jr., Common pitfalls in preclinical cancer target validation, Nat Rev Cancer
17 (2017) 425–440.

[64] T. Golan, A.R. Messer, A. Amitai-Lange, Z. Melamed, R. Ohana, R.E. Bell, O. Kapitansky,
G. Lerman, S. Greenberger, M. Khaled, N. Amar, J. Albrengues, C. Gaggioli, P. Gonen, Y.
Tabach, D. Sprinzak, R. Shalom-Feuerstein, C. Levy, Interactions of melanoma cells with
distal keratinocytes trigger metastasis via notch signaling inhibition of MITF, Mol Cell
59 (2015) 664–676.

[65] M. Mescher, P. Jeong, S.K. Knapp, M. Rubsam, M. Saynisch, M. Kranen, J. Landsberg,
M. Schlaak, C. Mauch, T. Tuting, C.M. Niessen, S. Iden, The epidermal polarity protein
Par3 is a non-cell autonomous suppressor of malignant melanoma, J Exp Med 214
(2017) 339–358.

[66] A.L. Cicero, C. Delevoye, F. Gilles-Marsens, D. Loew, F. Dingli, C. Guéré, N. André, K.
Vié, G. van Niel, G. Raposo, Exosomes released by keratinocytes modulate melanocyte
pigmentation, Nature Communications 6 (2015) 7506.

[67] S. Domcke, R. Sinha, D.A. Levine, C. Sander, N. Schultz, Evaluating cell lines as tumour
models by comparison of genomic profiles, Nat Commun 4 (2013) 2126.

[68] N. Renwick, P. Cekan, P.A. Masry, S.E. McGeary, J.B. Miller, M. Hafner, Z. Li, A.
Mihailovic, P. Morozov, M. Brown, T. Gogakos, M.B. Mobin, E.L. Snorrason, H.E.
Feilotter, X. Zhang, C.S. Perlis, H. Wu, M. Suarez-Farinas, H. Feng, M. Shuda, P.S.
Moore, V.A. Tron, Y. Chang, T. Tuschl, Multicolor microRNA FISH effectively differen-
tiates tumor types, J Clin Invest 123 (2013) 2694–2702.

[69] J. Cao, M. Spielmann, X. Qiu, X. Huang, D.M. Ibrahim, A.J. Hill, F. Zhang, S. Mundlos, L.
Christiansen, F.J. Steemers, C. Trapnell, J. Shendure, The single-cell transcriptional
landscape of mammalian organogenesis, Nature 566 (2019) 496–502.

[70] R.R. Braeuer, I.R. Watson, C.J. Wu, A.K. Mobley, T. Kamiya, E. Shoshan, M. Bar-Eli,
Why is melanoma so metastatic? Pigment Cell Melanoma Res 27 (2014) 19–36.

[71] N. Cancer Genome Atlas, Genomic classification of cutaneous melanoma, Cell 161
(2015) 1681–1696.

[72] I. Flor, J. Bullerdiek, The dark side of a success story: microRNAs of the C19MC cluster
in human tumours, J Pathol 227 (2012) 270–274.

[73] C. Augello, F. Colombo, A. Terrasi, E. Trombetta, M. Maggioni, L. Porretti, G. Rossi, S.
Guerneri, R. Silipigni, S. Bosari, V. Vaira, Expression of C19MC miRNAs in HCC associ-
ates with stem-cell features and the cancer-testis genes signature, Dig Liver Dis 50
(2018) 583–593.

[74] G.G. Jinesh, E.R. Flores, A.S. Brohl, Chromosome 19 miRNA cluster and CEBPB expres-
sion specifically mark and potentially drive triple negative breast cancers, PLoS One 13
(2018), e0206008. .

[75] P. Sin-Chan, I. Mumal, T. Suwal, B. Ho, X. Fan, I. Singh, Y. Du, M. Lu, N. Patel, J.
Torchia, D. Popovski, M. Fouladi, P. Guilhamon, J.R. Hansford, S. Leary, L.M.
Hoffman, J.M. Mulcahy Levy, A. Lassaletta, P. Solano-Paez, E. Rivas, A. Reddy, G.Y.
Gillespie, N. Gupta, T.E. Van Meter, H. Nakamura, T.T. Wong, Y.S. Ra, S.K. Kim, L.
Massimi, R.G. Grundy, J. Fangusaro, D. Johnston, J. Chan, L. Lafay-Cousin, E.I.
Hwang, Y. Wang, D. Catchpoole, J. Michaud, B. Ellezam, R. Ramanujachar, H.
Lindsay, M.D. Taylor, C.E. Hawkins, E. Bouffet, N. Jabado, S.K. Singh, C.L. Kleinman,
D. Barsyte-Lovejoy, X.N. Li, P.B. Dirks, C.Y. Lin, S.C. Mack, J.N. Rich, A. Huang, A
C19MC-LIN28A-MYCN oncogenic circuit driven by hijacked super-enhancers is a dis-
tinct therapeutic vulnerability in ETMRs: a lethal brain tumor, Cancer Cell 36 (2019)
51–67 e57.

[76] A. Jayachandran, M. Anaka, P. Prithviraj, C. Hudson, S.J. McKeown, P.H. Lo, L.J. Vella,
C.R. Goding, J. Cebon, A. Behren, Thrombospondin 1 promotes an aggressive pheno-
type through epithelial-to-mesenchymal transition in human melanoma, Oncotarget 5
(2014) 5782–5797.

http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0115
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0115
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0120
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0120
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0120
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0120
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0125
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0125
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0130
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0130
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0135
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0135
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0135
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0135
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0135
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0140
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0140
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0140
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0145
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0145
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0145
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0145
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0150
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0150
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0150
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0150
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0155
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0155
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0155
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0160
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0160
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0165
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0165
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0170
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0170
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0170
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0175
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0175
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0175
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0180
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0180
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0185
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0185
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0190
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0190
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0190
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0190
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0195
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0195
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0195
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0200
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0200
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0200
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0200
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0200
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0205
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0205
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0210
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0210
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0210
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0215
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0215
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0215
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0215
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0215
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0220
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0220
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0220
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0225
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0225
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0225
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0225
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0230
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0230
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0230
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0235
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0235
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0235
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0240
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0240
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0240
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0245
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0245
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0250
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0250
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0250
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0255
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0255
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0255
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0255
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0260
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0260
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0260
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0265
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0265
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0270
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0270
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0270
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0275
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0275
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0280
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0280
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0285
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0285
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0290
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0290
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0290
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0295
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0295
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0300
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0300
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0305
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0305
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0310
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0310
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0310
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0310
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0310
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0315
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0315
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0315
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0315
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0320
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0320
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0320
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0325
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0325
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0330
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0330
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0330
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0330
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0330
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0335
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0335
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0335
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0340
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0340
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0345
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0345
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0350
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0350
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0355
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0355
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0355
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0355
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0360
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0360
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0360
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0365
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0365
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0365
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0365
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0365
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0365
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0365
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0365
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0365
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0365
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0365
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0370
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0370
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0370
http://refhub.elsevier.com/S1936-5233(20)30095-4/rf0370

	Distinguishing Tumor and Stromal Sources of MicroRNAs Linked to Metastasis in Cutaneous Melanoma
	Introduction
	Methods
	Datasets
	Data Preprocessing and Normalization
	miRNA and RNA Sequencing
	miRNA and mRNA Microarrays
	Unsupervised Clustering
	Differential miRNA Expression Analysis
	Feature Selection and Classification Using Supervised Machine Learning Algorithms
	Survival Analysis and Associations to Clinical Data
	Cell-Type Enrichment Analysis
	Distinguishing Cutaneous Stromal-Enriched miRNA
	Statistical Analysis Software


	Results
	TCGA-SKCM Primary and Metastatic Melanoma Patient Characteristics
	Unsupervised Clustering Reveals Subsets of Patients with Unique miRNA Expression Profiles
	Differential Expression and Feature Selection Analyses Identify Metastasis-Associated miRNA in Melanoma Tumors
	Cutaneous Epithelial Cell-Types Are Enriched in Primary Melanoma Tumors
	Candidate Metastasis-Suppressor miRNAs Are Associated with Enrichment of Stromal Cell-Type-Specific Gene Expression Signatu...
	Tumor-Identified Metastasis-Suppressor miRNA Enriched in Cutaneous Epithelial Cells are Poorly Expressed in Melanoma Cell Lines
	miRNA-Based Classification of Primary and Metastatic Melanoma Tumors Depends Largely on miRNA Highly Expressed in the Prima...

	Discussion
	Funding
	Acknowledgments
	Appendix A. Supplementary data
	References




