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A B S T R A C T   

Background: Bipolar disorder is a chronic and highly recurrent mental disorder that can be classified as bipolar 
type I (BD I) and bipolar type II (BD II). BD II is sometimes taken as a milder form of BD I or even doubted as an 
independent subtype. However, the fact that symptoms and severity differ in patients with BD I and BD II 
suggests different pathophysiologies and underlying neurobiological mechanisms. In this study, we aimed to 
explore the shared and unique functional abnormalities between subtypes. 
Methods: The dynamic amplitude of low-frequency fluctuation (dALFF) was performed to compare 31 patients 
with BD I, 32 with BD II, and 79 healthy controls (HCs). Global dALFF was calculated using sliding-window 
analysis. Group differences in dALFF among the 3 groups were compared using analysis of covariance 
(ANCOVA), with covariates of age, sex, years of education, and mean FD, and Bonferroni correction was applied 
for post hoc analysis. Pearson and Spearman’s correlations were conducted between clusters with significant 
differences and clinical features in the BD I and BD II groups, after which false error rate (FDR) was used for 
correction. 
Results: We found a significant decrease in dALFF values in BD patients compared with HCs in the following brain 
regions: the bilateral-side inferior frontal gyrus (including the triangular, orbital, and opercular parts), inferior 
temporal gyrus, the medial part of the superior frontal gyrus, middle frontal gyrus, anterior cingulum, insula 
gyrus, lingual gyrus, calcarine gyrus, precuneus gyrus, cuneus gyrus, left-side precentral gyrus, postcentral gyrus, 
inferior parietal gyrus, superior temporal pole gyrus, middle temporal gyrus, middle occipital gyrus, superior 
occipital gyrus and right-side fusiform gyrus, parahippocampal gyrus, hippocampus, middle cingulum, orbital 
part of the medial frontal gyrus and superior frontal gyrus. Unique alterations in BD I were observed in the right- 
side supramarginal gyrus and postcentral gyrus. In addition, dALFF values in BD II were significantly higher than 
those in BD I in the right superior temporal gyrus and middle temporal gyrus. The variables of dALFF correlated 
with clinical characteristics differently according to the subtypes, but no correlations survived after FDR 
correction. 
Limitations: Our study was cross-sectional. Most of our patients were on medication, and the sample was limited. 
Conclusions: Our findings demonstrated neurobiological characteristics of BD subtypes, providing evidence for 
BD II as an independent existence, which could be the underlying explanation for the specific symptoms and/or 
severity and point to potential biomarkers for the differential diagnosis of bipolar subtypes.   

1. Introduction 

Bipolar disorder is a chronic and highly recurrent mental disorder 

characterized by episodes of depressed, manic, or hypomanic and mixed 
mood states (American Psychiatric Association, 2013), which affects 
0.4–1.1 % of the population worldwide (Alonso et al., 2011). The two 
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main subtypes are bipolar type I (BD I) and bipolar type II (BD II), which 
are hinged on the classification of mania or hypomania (American 
Psychiatric Association, 2013). However, BD II is sometimes taken as a 
milder form of BD I because it never experiences a full-blown mania 
episode and there is a general observation of less cognitive impairment 
compared to BD I (Bora et al., 2011). Separating BD II as an independent 
subtype of disease entity is arguable to some researchers due to a lack of 
solid evidence to support its validity and specificity as a distinct subtype 
(Malhi et al., 2016; Malhi et al., 2019a; Malhi et al., 2019b). However, 
the fact that symptomatic and biological alterations differ in patients 
with BD I and BD II suggests different pathophysiologies and underlying 
neurobiological mechanisms. Goldberg proposed a different position of 
antidepressant monotherapy in BD I and BD II (Goldberg, 2012), which 
was in accordance with different hierarchical rankings of treatment 
recommended by the 2018 guidelines for BD (Yatham et al., 2018), 
indicating the significance of differential diagnosis for precise 
treatment. 

Previous research revealed some divergences between BD I and BD II, 
with respect to clinical features, course of illness, comorbidity, treat-
ment, and gender distribution (Arnold, 2003; Baek et al., 2011; Karanti 
et al., 2020). Moreover, patients with BD II were found to endure more 
prodromal symptoms (Zhao et al., 2021) and higher mood instability for 
depression (Faurholt-Jepsen et al., 2019) compared to BD I. Dervic et al. 
reported more trait-impulsivity and lifetime aggression in BD I 
compared with BD II, whereas the latter had more hostility (Dervic et al., 
2015). Gene research revealed that BD I is associated with schizophrenia 
in genetics, while BD II is more strongly associated with major depres-
sive disorder (Mullins et al., 2021; Stahl et al., 2019). Research on 
mitochondrial DNA copy number also reported a significantly lower 
copy number in BD I than in BD II (Chung et al., 2020). A decrease in 
serotonin transporter binding in BD I compared with BD II was also 
observed in a previous study (Chou et al., 2010). 

Functional magnetic resonance imaging (fMRI), as a noninvasive 
technique, is the mainstay of neuroimaging in the study of the brain and 
has been extensively applied in various studies to reveal the potential 
differences between BD I and BD II. Research on cortical thickness and 
cognitive function reported different correlations between groups (Abé 
et al., 2018). Fractional anisotropy (FA) differs between BD I and BD II 
(Foley et al., 2018), and fiber impairments appear in different regions 
according to subtypes, in which fiber alteration is related to cognitive 
dysfunction in BD I, whereas that in BD II is associated with both 
cognitive and emotional processing (Liu et al., 2010). Maller et al. re-
ported volumetric, thickness, and white matter integrity differences 
between subtypes and indicated that volumetric reduction may underlie 
the pathophysiology of BD I, while alteration of white matter integrity is 
more associated with BD II (Maller et al., 2014). Decreased cortical 
thickness and volume in temporal and medial prefrontal areas as unique 
alterations of BD I were also observed (Abé et al., 2016). However, other 
studies have indicated that structural alterations are more severe in BD II 
(Ambrosi et al., 2016; Woo et al., 2021). 

Most direct comparisons of previous studies between BD I and BD II 
are mainly based on structural analysis, and functional methods are 
conducted for different subtypes individually or combined indiscrim-
inately. BD I was observed with abnormal functional connectivity (FC) 
within and between networks, and the FC value is correlated with 
symptoms and executive function (Zhu et al., 2021). Significant cere-
bellar dysconnectivity in BD II was reported in previous research. A 
topological study disclosed an alteration in functional connectivity 
strength (Wang et al., 2018) and regional connectivity (Wang et al., 
2017) in BD II. Many studies reported functional abnormalities in the 
frontal, temporal, occipital, and subcortical (insular, striatum, caudate, 
putamen, and anterior cingulum) regions in BD (Gong et al., 2020b; Xu 
et al., 2014; Zhang et al., 2021b) but failed to specifically discriminate 
subtypes. 

These conventional indicators are temporally stationary, of which 
linear dependence measures are computed over the entire scan. 

However, unlike sleeping, the participants enduring resting-state fMRI 
scanning are on stand-by, in which the patterns of brain activity are 
distinguishable from those in sleep or during goal-directed activity 
(Deco et al., 2014; Mennes et al., 2011). The sliding-window technique 
is constantly sensitive to functional activation changes during the entire 
scan (Gembris et al., 2000), so it can precisely depict the dynamic fea-
tures of brain activity according to time. Recently, this method has been 
widely applied to research on BD (Du et al., 2021; Shunkai et al., 2022; 
Tian et al., 2021; Wang et al., 2022), but is not used to distinguish BD I 
from BD II, and most methods are based on dynamic functional con-
nectivity. Unlike FC, the amplitude of low-frequency fluctuation (ALFF) 
is an indicator of regional spontaneous neuronal activity, which can be 
implicated in underlying pathophysiology in a specific region (Zang 
et al., 2007). 

Considering clinical distinguishing of the subtypes is confusing and 
subjective while in the depressive state, and it can be beneficial for the 
patients to be diagnosed more precisely under this state, we, therefore, 
aimed to investigate shared and unique diagnosis-related functional 
abnormalities between BD I and BD II using dynamic ALFF (dALFF) in 
the depressive state. We hypothesized that BD II is an independent 
subtype and can be explicitly distinguished from BD I. 

2. Methods and materials 

2.1. Subjects 

The regional alteration across the diagnosis is the primary variable 
for sample calculation. The effect size of resting state fMRI on BD I and 
BD II was seldom reported, according to a meta-analysis on structural 
imaging of BD, the effect size was 0.39(Kempton et al., 2008). As such, a 
total sample of 69 was calculated to detect the group differences with α 
= 0.05 and a power of 0.8 (β = 0.2). 

We recruited a total sample of 163 participants, and 21 were 
excluded for quality control, of which 1 was due to pituitary tumor, and 
the other 20 were out of head motion or artifact. Thus, 142 participants 
(BD I: 31; BD II: 32; and HC: 79) were included in the final analysis. All 
BD patients were recruited from the Department of Psychiatry of the 
First Hospital of China Medical University and Shenyang Mental Health 
Center. All the patients were previously diagnosed by experienced 
psychiatrists working for at least 10 years with standard clinical in-
terviews and were in a depressive episode at the scan. Healthy controls 
were recruited via advertisements from the local area, with no personal 
or family history of mental illness. For diagnosis and suitability for in-
clusion, well-trained researchers further interviewed participants ≥ 18 
years with the Structured Clinical Interview for DSM-V (SCID) (Phillips, 
2020) and participants < 18 years with the Schedule for Affective Dis-
orders and Schizophrenia for School-Age Children. For all participants, 
the Young Mania Rating Scale (YMRS) (Young et al., 1978), 17-item 
Hamilton Depression Rating Scale (HAMD-17) (Hamilton, 1960), 
Hamilton Anxiety Rating Scale (HAMA) (Hamilton, 1959), and Wis-
consin Card Sorting Test (WCST) (Grant and Berg, 1948) were per-
formed at the time of scanning. However, not all participants finished 
the WCST coordinately; only 26 BD I, 28 BD II, and 57 HCs completed 
the full test. 

The inclusion criteria were as follows: (a) aged between 13 and 55 
years old; (b) with no neurological diseases and no history of head 
trauma with consciousness disturbances; (c) with no major medical 
conditions or medications that may affect mental health; and (d) with no 
contraindications for MRI scanning. 

Written informed consent was obtained from all participants. The 
study was approved by the Ethics Committee of the First Hospital of 
China Medical University. 

2.2. MRI data acquisition 

MRI scans for all participants were performed on the same GE Signa 
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HD 3.0 T MRI scanner with a standard 8-channel head coil at the First 
Hospital of China Medical University, Shenyang, China. Resting state 
fMRI scanning was with a spin echo-planar imaging (EPI) sequence 
(repetition time (TR) / echo time (TE) = 2000 / 40 ms, flip angle 90◦, 
field of view (FOV) = 24 cm × 24 cm, acquisition matrix = 64 × 64, slice 
thickness = 3 mm, spacing between slices = 3 mm, slices = 35, and scan 
time = 400 s). Participants were provided with foam pads and earplugs 
to minimize noise and were required to close their eyes and stay awake 
during the scan. 

2.3. MRI data preprocessing 

DPABI (Yan et al., 2016) was used for imaging data preprocessing. 
The first 10 images of scanned data were removed due to the instability 
of the initial signal. The remaining images were then adjusted using 
slice-timing correction and realignment for head movement correction. 
Participants with head motion ≥ 3 mm or rotation ≥ 3◦ in each direction 
were excluded. We calculated the mean framewise displacement (FD) 
according to Power (Power et al., 2012). In addition, the mean FD was 
analyzed as a covariate to minimize the effect of head motion. The 
functional image was normalized into a standard EPI template of Mon-
treal Neurological Institute (MNI) space, resampled to 3 × 3 × 3 mm3, 
and smoothed with a 4-mm full width at half-maximum (FWHM) 
Gaussian kernel. Regression out of the nuisance covariates from the 
functional signal was performed, including 24 head motion parameters 
(Friston et al., 1996), white matter signal, cerebrospinal fluid signal, and 
linear trend. The global signal was not regressed to avoid the intro-
duction of anticorrelations (Murphy et al., 2009) in our main results, 
while the regressed results were reported in Supplementary (Table 4, 
and Fig. 1). 

2.4. Dynamic ALFF acquisition 

DPABI 4.1 was used to compute the dALFF values. For dynamic 
analysis, we selected a window length of 100 s (50TRs) for computation 
of temporal variability of ALFF according to Leonardi (Leonardi and Van 
De Ville, 2015), which should not be too long or too short to avoid 
spurious signals. Each time-course had 190 samples (time-points), and 
the window step size was set as 1 TR (2 s), which resulted in 141 
(190–50 + 1) (Sakoğlu et al., 2010) windows for each participant. We 
also calculated the ALFF values for each sliding window. The time series 
were transformed to a frequency domain with a fast Fourier transform 
(FFT) for each given voxel, and then we obtained the ALFF value by 
computing and summing the square root of the power spectrum across 
0.01–0.08 Hz (Zang et al., 2007). Then, the standard deviation (SD) of 
ALFF values (dALFF) at each voxel across all 141 windows was 
computed to quantify the temporal dynamic characteristics of ALFF. In 
addition, the corrected dALFF (dALFF / global mean dALFF) of each 
voxel within a group mask was used to reduce the global effects of 
temporal variability. 

2.5. Statistical analysis 

SPSS v 26.0 (SPSS, Chicago, IL, USA) was used for statistical ana-
lyses. Demographic and clinical variables as well as cognitive tests and 
head motion parameters were analyzed by analysis of variance 
(ANOVA) or χ2 tests. For all comparisons (Bonferroni corrected for post 
hoc analysis), p < 0.05 was set as significant. We employed DAPBI v 4.1 
to assess group differences in dALFF among the 3 groups with analysis of 
covariance (ANCOVA), with age, sex, years of education and mean FD as 
covariates. The statistical significance of the voxel-level threshold was 
set at p < 0.001 with Gaussian random field (GRF) theory for correction, 
and the cluster-level threshold was set to p < 0.05. We then performed 

Fig. 1. Significant differences in dALFF across BD I, BD II and HCs. The significance of the voxel-level threshold was set at p < 0.001 with Gaussian random field 
(GRF) theory for correction, and the cluster-level threshold was set to p < 0.05. 
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Bonferroni’s post-hoc test to compare dALFF values extracted from 
clusters of regions with significant differences, with a significance level 
set at p < 0.05. Independent sample t-tests were conducted to compare 
patients with and without medication to correct for the use of medica-
tion, with a significance level of p < 0.05 (2 tails). To avoid the con-
founding impact of clinical characteristics, ANCOVA (HAMD-17, 
HAMA, YMRS, and WCST score as covariates) was carried out to confirm 
the results. G*Power 3 (Faul et al., 2007) was applied for sample size 
calculation. We computed partial η2 for the effect size of dALFF values 
among the 3 groups (Lakens, 2013). Pearson and Spearman’s correla-
tions were conducted between clusters with significant differences and 
clinical characteristics (HAMD-17, HAMA, YMRS, WCST scores, and 
medications) in the BD I and BD II groups, after which false error rate 
(FDR) was used for correction. 

3. Results 

3.1. Clinical and demographic features 

There were no significant differences in age, sex, years of education, 
handedness, mean FD values, treatment status, WCST correct response 
score, hypnotics, or antidepressants taken across groups (p > 0.05), but a 
trend of HC > BD I > BD II in WCST correct response score was observed. 
However, the HAMD-17, HAMA, YMRS scores and medication, mood 
stabilizer, and antipsychotic treatment status were significantly 
different (p < 0.05, Table 1). No significant differences were observed 
between BD I and BD II in the HAMD-17, HAMA, and YMRS scores after 
post hoc analysis (Bonferroni correction). Regarding medication, par-
ticipants with BD I were more likely to take mood stabilizers and anti-
psychotics than those with BD II. 

3.2. Dynamic ALFF variability differences among BD I, BD II and HCs 

Seven clusters with significant differences across the 3 groups were 
found using ANCOVA. Post hoc analyses revealed that both the BD I and 
BD II groups exhibited a significant decrease in dALFF values compared 
with HCs in the following brain regions: the bilateral-side inferior 
frontal gyrus (including triangular, orbital, and opercular part), inferior 
temporal gyrus, the medial part of superior frontal gyrus, middle frontal 
gyrus, anterior cingulum, insula gyrus, lingual gyrus, calcarine gyrus, 
precuneus gyrus, cuneus gyrus, and the left-side precentral gyrus, 
postcentral gyrus, inferior parietal gyrus, superior temporal pole gyrus, 
middle temporal gyrus, middle occipital gyrus, superior occipital gyrus, 
and the right-side fusiform gyrus, parahippocampal gyrus, hippocam-
pus, middle cingulum, orbital part of medial frontal gyrus and superior 
frontal gyrus. The dALFF variables were also found to be significantly 
higher in HCs than in BD I in the right supramarginal gyrus and post-
central gyrus, but no significant differences were found between BD II 
and HCs. Dynamic ALFF values in BD II were significantly higher than 
those in BD I in the right superior temporal gyrus and middle temporal 
gyrus, which revealed a graded change as HC > BD II > BD I (Figs. 1, 2, 
Table 2). To correct for the use of medication, dALFF values between 
medication users and nonusers in 7 clusters were compared, and no 
significant difference was found (Supplementary Table 1–3). 

To avoid the confounding impact of clinical characteristics, ANCOVA 
(HAMD-17, HAMA, YMRS, WCST scores as covariates) was carried out, 
and the results were consistent. 

3.3. Correlations between dALFF and clinical characteristics 

Group-based differences in correlations of clinical characteristics and 
dALFF were observed in our research. However, no significant correla-
tions survived after FDR correction (Supplementary Table 4). 

4. Discussion 

To the best of our knowledge, this is the first study using dALFF to 
distinguish BD I from BD II. Through this study, we revealed some 
shared temporal variables of ALFF in both BD I and BD II compared with 
HCs, but BD II was found to be closer to HCs than to BD I. Additionally, 
we also found unique changes in dALFF in BD I and some specific 
modifications to distinguish BD I from BD II. Correlations between 
dALFF values and clinical variables in different subtypes were observed 
as well, but failed to survive after FDR correlation. 

In our study, both BD I and BD II showed a significant decrease in 
dALFF values encompassing the frontal, parietal, occipital, and temporal 
cortices and limbic system, which underlies the shared alterations of BD. 
Similarly, functional and structural abnormalities in BD were also re-
ported in previous studies (Nabulsi et al., 2020; Strakowski et al., 2005; 
Zhong et al., 2019). Intrinsic alterations of ALFF in BD were proposed in 
a meta-analysis in the bilateral inferior frontal gyrus (involving the 
orbital part), bilateral insula, right superior frontal gyrus (including the 

Table 1 
Demographic and clinical characteristics of patients with BD I, BD II and HCs.   

BD I (n =
31) 

BD II (n =
32) 

HC (n =
79) 

F / χ2 p 

Demographic 
features      

Age at scan, years 25.90 
(8.91) 

23.91 
(5.63) 

27.18 
(6.97) 

2.40a  0.095 

Education, years 13.74 
(3.01) 

13.28 
(3.29) 

14.35 
(2.24) 

1.98a  0.142 

Male 7 (22.58 
%) 

14 (43.75 
%) 

37 
(46.83 
%) 

5.57a  0.062 

Right handedness 28 (90.3 
%) 

32 (100 
%) 

74 (93.7) 2.99a  0.560  

Clinical features      
First episode, yes 12 

(38.71 %) 
15 (46.88 
%) 

N/A 0.43b  0.513 

Medication, yes 27 
(87.10 %) 

17 (53.13 
%) 

N/A 8.62b  0.003 

Mood Stabilizer 19 
(61.29 %) 

8 (25.00 
%) 

N/A 8.46b  0.004 

Antidepressants 18 
(58.06 %) 

14 (43.75 
%) 

N/A 1.29b  0.256 

Antipsychotics 18 
(58.06 %) 

5 (15.63 
%) 

N/A 12.24b  <0.001 

Hypnotics 2 (6.45 
%) 

4 (12.5) N/A 0.67b  0.414 

HAMD-17 17.13 
(7.73) 

15.72 
(6.48) 

1.49 
(2.66) 

149.48a  <0.001 

HAMA 14.55 
(8.77) 

13.38 
(7.34) 

1.05 
(2.37) 

91.16a  <0.001 

YMRS 1.29 
(1.64) 

1.16 
(1.82) 

0.20 
(0.98) 

9.92a  <0.001  

Cognitive function      
WCST corrected 

response 
29.85 
(10.87) 

31.64 
(10.88) 

34.30 
(9.87) 

1.80a  0.170 

Head motion 
parameters      

Mean FD 0.12 
(0.07) 

0.11 
(0.04) 

0.11 
(0.05) 

0.35a  0.705 

Note: Data are presented as either numbers (%) or means (standard deviations). 
ANOVA was conducted for continuous variables and chi-square test was con-
ducted for categorical variables. 
Abbreviations: BD I: bipolar disorder type I; BD II: bipolar disorder type II; HCs: 
healthy control; N/A: not applicable; FD: framewise displacement; YMRS: Young 
Mania Rating Scale, HAMD-17: 17-item Hamilton Depression Rating Scale, 
HAMA: Hamilton Anxiety Rating Scale, WCST: Wisconsin Card Sorting Test. 
a: Examinations among BD I, BD II and HCs. 
b: Examinations between BD I and BD II. 
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prefrontal part), occipital cortex, right fusiform and bilateral precuneus 
(Gong et al., 2020b). Multiscale entropy (MSE) was introduced to 
quantify the complexity of physiologic time series (Costa et al., 2002), 
which was applied in analysis across different time scales in BD, and 
found that BD patients exhibited variations of complexity in the cal-
carine, precuneus, lingual gyrus, hippocampus, middle temporal and 
middle frontal gyrus (Zhang et al., 2021a). Thompson et al. also indi-
cated that BD was related to decreased cortical thickness in the bilateral 
temporal, parietal and frontal regions, especially in the left fusiform 
gyrus and rostral middle frontal cortex (Thompson et al., 2020). 
Spatiotemporal consistency alterations were also observed in pediatric 
BD patients in the left triangular inferior frontal gyrus, left precentral 
gyrus, right postcentral gyrus, and right postcentral gyrus (Gao et al., 
2021). Modifications of brain function and structure were also discov-
ered in various studies (Lv et al., 2016; Malhi et al., 2007; Qiu et al., 
2018; Wang et al., 2008; Yang et al., 2021; Zuliani et al., 2009), 
including the left opercular and triangular parts of the inferior frontal 
gyrus, left temporal pole, left postcentral gyrus, left inferior parietal 
gyrus, bilateral anterior cingulum, bilateral inferior temporal gyrus, and 
right parahippocampal gyrus. Together with our study, the extensive 
shared alterations suggested a congruously abnormal pattern of activity 
in both BD I and BD II. 

Decreased temporal variations in the right postcentral and supra-
marginal gyrus were specific to BD I in our research. Among the limited 
direct comparison of BD I and BD II, we failed to find similar results in 
resting-state fMRI studies, which implies our results as a novel finding to 
the distinctive alterations in BD I. Unique modifications in BD I were 
reported in the bilateral uncinate fasciculus in task-state fMRI research 
(Foley et al., 2018). In addition, research on offspring of the subtypes 
and neuroinflammation also confirmed our findings. Offspring of BD I 
were reported to have a thinner cortex in the right supramarginal gyrus 
(Hanford et al., 2016), and a higher level of neuroinflammation was 
observed to be related to a lower volume in the right supramarginal 

gyrus in BD I (Tsai et al., 2021). Simonetti et al. proposed reduced 
thickness in the right supramarginal gyrus and a correlation with the 
subscales (anger and hostility) of aggression questionnaire in pediatric 
BD (Simonetti et al., 2021), the type of which was not divided, although 
majorities were BD I. Therefore, this may explain why BD I has a higher 
impulsivity rate than BD II (Izci et al., 2016). Diminished functional 
connectivity between the postcentral gyrus and other brain regions in 
BD I have been repeatedly reported in previous research (Liu et al., 
2021; Zhang et al., 2020). The primary somatosensory cortex is located 
on the postcentral gyrus (Kaas et al., 1979), which is essential to motor 
function, empathy, and emotion regulation (Kropf et al., 2019; Morrison 
et al., 2013). Cognitive empathy deficits appear in both manic and 
depressive patients. However, indices of affective empathy are much 
higher in manic episodes and positively correlated with manic symp-
toms, which may be related to disturbances in emotion inhibition and 
extreme bouts of expansive and persistent positive feelings (Bodnar and 
Rybakowski, 2017; Gruber, 2011). As a result, we think the functional 
alterations of the postcentral gyrus may be the underlying interpretation 
for affective dysregulation and misbehaviors in BD I, especially in mania 
episodes. 

We found a significant decrease in dALFF values in the right superior 
and middle temporal gyrus in BD I compared with BD II, which may 
indicate potential differential diagnostic neuroimaging biomarkers for 
BD subtyping. In accordance with our findings, dALFF abnormalities in 
the right superior temporal gyrus were also observed in the limited 
research on dALFF in BD (Gong et al., 2020a). Significantly lower 
metabolite levels (Atagün et al., 2018) and white matter abnormalities 
(Ha et al., 2011) in temporal cortices in BD I also infer a critical role of 
temporal cortices in distinguishing the subtypes. The right superior 
temporal area is mandatory for audiomotor and audiovisual speech 
integration (Komeilipoor et al., 2017). Our finding of dALFF alterations 
in this region may underlie BD I exhibiting decreased temporal activa-
tions than BD II in cerebral attentional function during external 

Fig. 2. Group differences in dALFF values across BD I, 
BD II and HCs. Significant differences were set at p <
0.05, Bonferroni for post hoc. Clu1: left inferior 
frontal gyrus (triangular part), left inferior frontal 
gyrus (opercular part), left postcentral gyrus, left 
inferior frontal gyrus (orbital part), left precentral 
gyrus, left inferior parietal gyrus, left insula, left su-
perior temporal pole gyrus; Clu2: right inferior tem-
poral gyrus, right fusiform gyrus, right 
parahippocampal gyrus, right hippocampus; Clu3: 
right inferior frontal gyrus (orbital part), right insula; 
Clu4: right superior temporal gyrus, right middle 
temporal gyrus; Clu5: bilateral superior frontal gyrus 
(medial part), bilateral middle frontal gyrus, bilateral 
anterior cingulum, right inferior frontal gyrus (trian-
gular part), right superior frontal gyrus, right middle 
cingulum, right inferior frontal gyrus (orbital part), 
right medial frontal gyrus (orbital part); Clu6: bilat-
eral lingual gyrus, bilateral calcarine gyrus, left mid-
dle temporal gyrus, left middle occipital gyrus, 
bilateral cuneus gyrus, left superior occipital gyrus, 
bilateral precuneus gyrus, left inferior temporal gyrus; 
Clu7: right postcentral gyrus and right supramarginal 
gyrus. Note: 0.01 < p < 0.05 (*), 0.001 < p < 0.01 
(**), p < 0.001 (***).   
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emotional stimuli (Zhang et al., 2019). Middle temporal cortices are 
involved in the neural circuitry in the escalation of anger and aggression 
(Potegal, 2012), and impulsivity scores were also found to be positively 
correlated with the local gyrification index (an index representing 
cortical folding) in the right temporal cortex (Hirjak et al., 2017). As a 
result, our observation of functional variations in this area may explain 
why BD I scores were higher on impulsivity than BD II (Xu et al., 2015), 
which is similar to previous research on juvenile violent offenders, 
where decreased functional connectivity in the right middle temporal 
was found compared with HCs (Sun et al., 2021). 

Diagnosis-based clinical characteristics were observed to correlate 
with dALFF in our research. However, no significant correlations sur-
vived after FDR correction, which may be due to our small sample size. 
Different associations between executive functions and structural al-
terations in BD I and BD II were reported previously (Abé et al., 2018). 
Therefore, larger-sample studies are expected to provide more reliable 
and replicable evidence in the future (Marek et al., 2022). 

Our findings demonstrated distinct neural mechanisms of BD I and 
BD II respectively, providing a neuroimaging foundation for both diag-
nosis and varying treatment of different subtypes. Only half of 
antidepressant-related mood elevation was observed in BD II than in BD 
I in both acute and maintenance stages (Bond et al., 2008), supporting 
the previous viewpoint of potential benefits of monotherapy of antide-
pressants to BD II (Goldberg, 2012). Considering the higher rate of 

depression and greater frequency of suicide in BD II (Karanti et al., 
2020), early diagnosis of the subtypes and prompt antidepressant 
treatment can be essential for the clinic. 

5. Limitation 

There are some limitations to be considered. First, it was a cross- 
sectional study, so it failed to determine the progressive abnormalities 
during the course of illness. All BD patients were in a depressive state, 
and whether our results are applicable to euthymic or even premorbid 
states remains to be explored in future research. A longitudinal study 
with repeated scans is necessary to answer this question. Second, most 
participants were on medication, although the medication usage was 
matched between BD I and BD II, and no meaningful effects of medi-
cation status on our findings (see Supplementary Table 1–3). It is still 
unclear whether dALFF variations are of different nature in unmedicated 
patients. Finally, even though the sample size was adequate, a larger 
sample replication of our results is necessary. A larger sample size study 
with no medication usage is expected in the future. 

6. Conclusion 

In conclusion, we demonstrated neurobiological characteristics of 
BD I and BD II in dynamic intrinsic brain activities, showing some shared 

Table 2 
Dynamic ALFF differences across BD I, BD II and HCs.  

Clusters Brain regions voxels) Hemisphere Peak MNI coordinates Post-hoc analysis (Bonforroni, p < 0.05) Fvalues p Partial η2    

X Y Z     
1 Inferior triangular frontal gyrus (150) L − 54 12 21 BD I < HC, BD II < HC 16.340 < 0.001 0.190 

Inferior opercular frontal gyrus (104) 
Postcentral gyrus (97) 
Inferior orbital frontal gyrus (82) 
Precentral gyrus (78) 
Inferior parietal gyrus (75) 
Insula (74) 
Superior temporal pole gyrus (56) 

2 Inferior temporal gyrus (55) R 27 − 39 − 6 BD I < HC, BD II < HC 13.466 < 0.001 0.162 
Fusiform gyrus (45) 
ParaHippocampal gyrus (43) 
Hippocampus (38) 

3 Inferior orbital frontal gyrus (69) R 30 18 − 21 BD I < HC, BD II < HC 14.580 < 0.001 0.173 
Insula (54) 

4 Superior temporal gyrus (209) R 60 − 24 12 BD I < HC, BD II < HC, BD I < BD II 15.063 < 0.001 0.178 
Middle temporal gyrus (101) 

5 Medial superior frontal gyrus (207) L 6 18 27 BD I < HC, BD II < HC 25.086 < 0.001 0.265 
Middle frontal gyrus (138) 
Anterior cingulum (93) 
Middle frontal gyrus (130) R 
Inferior triangular frontal gyrus (163) 
Medial superior frontal gyrus (80) 
Anterior cingulum (77) 
Superior frontal gyrus (73) 
Middle cingulum (66) 
Inferior opercular frontal gyrus (58) 
Medial orbital frontal gyrus (51) 

6 Lingual gyrus (207) L 21 − 93 21 BD I < HC, BD II < HC 15.468 < 0.001 0.182 
Calcarine gyrus (158) 
Middle temporal gyrus (149) 
Middle occipital gyrus (138) 
Cuneus gyrus (112) 
Superior occipital gyrus (107) 
Precuneus gyrus (95) 
Inferior temporal gyrus (76) 
Lingual gyrus (145) R 
Calcarine gyrus (101) 
Cuneus gyrus (95) 
Precuneus gyrus (62) 

7 Postcentral gyrus (90) R 60 − 12 7 BD I < HC 9.088 < 0.001 0.116 
SupraMarginal gyrus (36) 

Note: ALFF: amplitude of low-frequency fluctuations; BD I: bipolar disorder type I; BD II: bipolar disorder type II; HCs: healthy control; MNI: Montreal Neurological 
Institute; R: right; L: left. 
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and distinct alterations, and providing evidence for BD II as an inde-
pendent existence. Our findings could be the underlying explanation for 
the specific symptoms and/or severity and serve as potential biomarkers 
for the differential diagnosis of bipolar subtypes. 
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