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Introduction

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculo-

sis. It is estimated that about one-third of the world’s population is latently infected 

with M. tuberculosis and that TB causes the death of 1.5 million people per year [1,2]. 

Unfortunately, the efficacy of the current TB vaccine is limited, thus development of 

an effective vaccine against TB is urgently required.

  The M. bovis bacillus Calmette-Guérin (BCG) strain is used in the current TB vac-

cine, which has been used since 1921 [3,4]. Whereas BCG is effective for the preven-

tion of severe forms of TB in children, such as miliary TB and TB meningitis [5,6], re-

ports of its efficacy for the prevention of adult pulmonary TB are inconsistent [7,8]. In 

fact, the efficacy varies from 0% to 80% between studies, and it is the lowest in develop-
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Purpose: T cell-mediated immune responses, and particularly activation of polyfunctional T 
cells that simultaneously produce multiple cytokines, are necessary for the control of Myco­
bacterium tuberculosis. In the present study, we examined if DNA immunization of Mycobacte­
rium tuberculosis resuscitation-promoting factor B (RpfB) elicits polyfunctional T cell respons-
es in mice.
Materials and Methods: C57BL/6 mice were immunized intramuscularly three times, at 3-week 
intervals, with RpfB-expressing plasmid DNA. For comparison, protein immunization was per-
formed with recombinant RpfB in control mice. After immunization, RpfB-specific T cell re-
sponses were assessed by interferon-γ (IFN-γ) enzyme-linked immunosorbent spot assay and 
intracellular cytokine staining (ICS), and T cell polyfunctionality was assessed from the ICS data.
Results: RpfB DNA immunization induced not only humoral immune responses, but also CD8+ 
and CD4+ T cell responses. Immunodominant T-cell epitopes were identified within RpfB by 
assays with overlapping peptides. RpfB DNA immunization elicited a polyfunctional CD8+ T cell 
response that was dominated by a functional phenotype of IFN-γ+/TNF-α+/IL-2-/CD107a+.
Conclusion: RpfB DNA immunization elicits polyfunctional CD8+ T cell responses, suggesting 
that RpfB DNA immunization might induce protective immunity against tuberculosis.

Keywords: Tuberculosis, Resuscitation-promoting factor B, Polyfunctional T cells, DNA vac-
cines
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ing countries where protection against TB is the most needed 

[7,8]. 

  For effective control of M. tuberculosis infection, T cell-me-

diated immune responses are essential [9,10] and thus, T cell 

activation following vaccination is considered to be a key re-

quirement for generating protective immunity against TB. In 

particular, CD4+ T helper 1 (Th1) cells play a major role in im-

mune responses against TB by secreting cytokines such as 

interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) [11-

14], which activate macrophages. In addition, CD8+ T cells al-

so make important contributions to the protective immune 

responses against TB, as they not only secrete IFN-γ and TNF-α, 

but also lyse infected macrophages and epithelial cells [15-17].

  Recently, the importance of activating polyfunctional T 

cells, which simultaneously produce multiple cytokines, has 

been emphasized in vaccine development. Initially, the sig-

nificance of polyfunctional T cells was proven by a study that 

showed that the degree of vaccine protection against Leish-

mania major was predicted by the frequency of polyfunc-

tional Th1 cells simultaneously secreting IFN-γ, TNF-α, and 

interleukin-2 (IL-2) [18]. In TB, the presence of polyfunction-

al CD4+ Th1 cells correlates with protection against M. tuber-

culosis challenge in mice [19,20]. In addition, the presence of 

polyfunctional CD8+ T cells simultaneously secreting IFN-γ 

and IL-2 was found to be associated with natural protection 

against TB and protection following anti-mycobacterial ther-

apy in TB patients [21,22]. In view of these facts, it is expected 

that effective TB vaccines will also elicit polyfunctional T cell 

responses.

  In the development of new TB vaccines, resuscitation-pro-

moting factor (Rpf) is considered a promising target antigen 

[23,24]. Rpfs, first identified in Micrococcus luteus, are bacte-

rial proteins that promote the recovery of bacteria from laten-

cy to a replicating phase [25]. M. tuberculosis expresses five 

different Rpf proteins, RpfA, B, C, D, and E [26], and they have 

resuscitation activity [27,28]. Indeed, deletion of rpf genes re-

sults in delayed reactivation of M. tuberculosis in a murine 

dormancy model [29]. Given that Rpf proteins are expressed 

during growth of M. tuberculosis, Rpfs-specific T cell immu-

nity was expected to be effective in the control of M. tubercu-

losis growth [23,24]. Moreover, Rpfs were shown to be immu-

nogenic in protein [23] or DNA [24] vaccination of mice.

  In the present study, we examined if polyfunctional T cell 

responses are elicited by DNA immunization of M. tuberculo-

sis RpfB. Specifically, we immunized mice with RpfB-encod-

ing plasmid DNA and analyzed the polyfunctionality of T cells. 

Materials and Methods

RpfB DNA plasmid
The rpfB gene of M. tuberculosis H37Rv (NCBI Gene ID: 886048) 

was codon-optimized for mammalian expression and syn-

thesized by GenScript (Piscataway, NJ, USA). The synthesized 

rpfB gene was cloned into the pcDNA3.1(+) mammalian ex-

pression vector (Invitrogen, Carlsbad, CA, USA), where the 

cloned gene is expressed under the control of the cytomega-

lovirus IE-1 promoter. The sequence of the cloned rpfB gene 

was confirmed by sequencing. Large-scale production of plas-

mid DNA was performed using the Plasmid Giga Kit (Qiagen, 

Valencia, CA, USA).

Recombinant RpfB protein
The rpfB gene was amplified by polymerase chain reaction 

from genomic DNA of M. tuberculosis H37Rv and cloned into 

the pET-28a bacterial expression vector (Novagen, Darmstadt, 

Germany), which carries an N-terminal His-tag for protein 

purification. The sequence of the cloned rpfB gene was con-

firmed by sequencing. The RpfB protein was overexpressed 

in BL21 (DE3) Escherichia coli and purified using nickel-nitri-

lotriacetic acid agarose resin. Protein size and purity were con-

firmed by sodium dodecyl sulfate polyacrylamide gel electro-

phoresis. The purity was >90%.

Mouse immunization
Female C57BL/6 mice were housed in a specific pathogen-

free facility in accordance with our institutional guidelines 

and used for immunization at the age of 5-6 weeks. For RpfB 

DNA vaccination, mice were immunized three separate times, 

at 3-week intervals, intramuscularly in both quadriceps mus-

cles with 100 μg of RpfB plasmid DNA. For RpfB protein vac-

cination, mice were immunized three separate times, at 3-week 

intervals, subcutaneously with 50 μg of recombinant RpfB 

(rRpfB) protein. In protein immunization, incomplete Freund’s 

adjuvant (Sigma, St. Louis, MO, USA) was used. For compari-

son, control mice were vaccinated subcutaneously with 2×105 

colony-forming unit of BCG (Pasteur 1173). 

Synthetic peptides
Seventy one pentadecamer peptides (Mimotopes, Clayton, 

Australia), overlapping by 10 amino acids each and spanning 

the complete M. tuberculosis (H37Rv) RpfB protein sequence 

(NCBI Gene ID: 886048) were used. The overlapping peptides 

(OLPs) were resuspended at 20 mg/mL in dimethyl sulfoxide 
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and further diluted to 1 mg/mL with phosphate-buffered sa-

line (PBS). RpfB OLPs were mixed into two separate aliquots. 

The first aliquot included peptides from OLP-1 to OLP-35 

and was designated as OLP mix 1. The other aliquot included 

peptides from OLP-36 to OLP-71 and was designated as OLP 

mix 2. In T-cell assays, either each single OLP or OLP mixes 

were used for T-cell stimulation. 

Indirect enzyme-linked immunosorbent assay 
Serum was collected 4 weeks after the final immunization, 

and anti-RpfB antibody was assessed by indirect enzyme-

linked immunosorbent assay (ELISA). A Maxisorp microtiter 

plate (Nunc, Roskilde, Denmark) was coated with 10 μg/mL 

of rRpfB protein and blocked with 5% fetal bovine serum (FBS)-

0.05% Tween-phosphate buffered saline (PBST). Sera of the 

immunized mice were serially diluted and dispensed into 

each well. After 2 hours of incubation, horseradish peroxi-

dase-conjugated goat anti-mouse IgG (Millipore, Bedford, 

MA, USA) was added. One hour later, color reaction was per-

formed with 3,3´, 5,5´-tetramethylbenzidine (Sigma) for 15 

minutes. The reaction was stopped by 2 M H2SO4, and optical 

density was read at 450 nm.

IFN-γ enzyme-linked immunosorbent spot assay
A 96 well MultiScreen enzyme-linked immunosorbent spot 

(ELISpot) plate (Millipore) was coated with anti-mouse IFN-γ 

antibody (clone AN-18, eBioscience, San Diego, CA, USA). 

The antibody-coated plate was blocked with 1% bovine se-

rum albumin (Bovogen Biologicals, Essendon, Australia). 

Freshly-isolated splenocytes were dispensed into each well 

(500,000 cells/well), and 10 μg/mL of each single OLP was 

added. After 20 hours of incubation, the plate was washed 

with PBS and 0.05% PBST. Biotin-conjugated anti-mouse 

IFN-γ antibody (clone RA-6A2, eBioscience) and alkaline 

phosphatase-streptavidin (BD Pharmingen, San Diego, CA, 

USA) were sequentially added. A color reaction was then per-

formed using AP color reagent (Bio-Rad, Hercules, CA, USA). 

The number of IFN-γ spot forming units was counted using 

an ELISpot reader (Cellular Technology Ltd., Cleveland, OH, 

USA). To evaluate CD8+ and CD4+ T cell responses separately, 

T cells were isolated from splenocytes using CD8 or CD4 mi-

crobeads (Miltenyi Biotec, Auburn, CA, USA), and IFN-γ ELIS

pot assays were performed with isolated T cells and T cell-

depleted splenocytes [30].

Intracellular cytokine staining and polyfunctional T cell assay
Freshly-isolated splenocytes were resuspended in RPMI 1640 

containing 10% FBS and 2 mM L-glutamine and stimulated 

with a single immunodominant OLP (10 μg/mL), OLP mix (1 

μg/mL for each OLP) or rRpfB protein (5 μg/mL). To evaluate 

cytotoxic degranulation activity of T cells, anti-CD107a-PE-

Cy7 (BD Biosciences, San Jose, CA, USA) was added into the 

culture medium. Brefeldin A (GolgiPlug, BD Biosciences) and 

monensin (GolgiStop, BD Biosciences) were added 2 hours 

later. After another 10 hours of incubation, splenocytes were 

first stained with ethidium monoazide (Sigma) and then stained 

with anti-CD3-V500, anti-CD4-V450 and anti-CD8-APC-H7 

(all from BD Biosciences). The stained cells were permeabi-

lized using Cytofix/Cytoperm kit (BD Biosciences) and then 

stained with anti-IFN-γ-APC, anti-TNF-α-PE and anti-IL-2- 

FITC (all from BD Biosciences). Fluorescence-activated cell 

sorting (FACS) analysis was performed using an LSRII flow 

cytometer (BD Biosciences) and the data were analyzed us-

ing FlowJo software (Treestar, San Carlos, CA, USA). T cells 

positive for the various combinations of cytokines and de-

granulation were analyzed and quantified using a Boolean 

gating function in FlowJo software [31]. 

Results

Humoral immune responses induced by RpfB immunization
First, we assessed the RpfB-specific humoral immune respon

ses after RpfB immunization. RpfB-specific immunoglobulin 

(Ig) was quantified in serially-diluted sera by indirect ELISA, 

and both DNA and protein immunization of RpfB were found 

to significantly increase the anti-RpfB Ig titer, though protein 

immunization was more potent (Fig. 1). In contrast, anti-RpfB 

Ig was not induced by BCG immunization (Fig. 1). These data 

show that both RpfB DNA and protein are immunogenic and 

capable of eliciting humoral immune responses. 

Identification of the immunodominant T-cell epitopes in RpfB
Next, we identified the immunodominant T-cell epitopes in 

RpfB. Splenocytes were isolated from RpfB DNA-immunized 

mice and stimulated with each of 71 OLPs spanning RpfB fol-

lowed by assessment using an IFN-γ ELISpot assay. IFN-γ 

production was observed by direct ex vivo stimulation fol-

lowing stimulation with OLPs including OLP-14, OLP-30, and 

OLP-51 (Fig. 2A). To identify which T cell subset is responsi-

ble for IFN-γ production following stimulation with each epi-

tope, CD8+ or CD4+ T cells were isolated from splenocytes, 
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Fig. 1. Resuscitation-promoting factor B (RpfB)-specific antibody 
response induced by RpfB immunization. Mice were immunized as 
described in Materials and Methods, and serum collected. The sera 
were serially diluted (1:5,000), and RpfB-specific Ig was measured by 
indirect enzyme-linked immunosorbent assay. BCG, bacillus Calmette-
Guérin. The graph represents mean ± SEM (n = 6). Mann-Whitney U 
test was performed (**p < 0.01). 

Fig. 2. Identification of immunodominant epitope overlapping peptides 
(OLPs) recognized by T cells. Mice were immunized with resuscita-
tion-promoting factor B (RpfB) plasmid DNA as described in Materi-
als and Methods. Splenocytes were obtained from immunized mice, 
and CD8+ and CD4+ T cells were further isolated. Interferon-γ (IFN-γ) 
enzyme-linked immunosorbent spot (ELISpot) assays were performed 
with 500,000 total splenocytes per well (n = 6) (A), 50,000 CD8+ T cells 
per well (n = 3) (B), and 50,000 CD4+ T cells per well (n = 3) (C). In IFN-γ 
ELISpot assays, cells were stimulated with each of 71 OLPs. SFU, spot 
forming units. Each bar graph represents mean ± SEM.
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and isolated T cells and T cell-depleted splenocytes were sub-

jected to IFN-γ ELISpot assays. OLP-14-stimulated IFN-γ pro-

duction was observed in isolated CD8+ T cells (Fig. 2B), while 

OLP-30- and OLP-51-stimulated IFN-γ production was ob-

served in CD4+ T cells (Fig. 2C). Taken together, OLP-14 (AGV

QVHDADTIVLRR) is a dominant epitope for CD8+ T cells, 

and OLP-30 (GGLVRTVHLPAPNVA) and OLP-51 (LPVANV-

VVTPAHEAV) are dominant epitopes for CD4+ T cells; how-

ever, it should be noted that the minimal epitope within each 

peptide was not determined. Thus, we used these OLPs for T 

cell stimulation in further analyses.

T cell immune responses elicited by RpfB DNA immunization
We evaluated T cell responses after RpfB immunization by 

intracellular cytokine staining (ICS). In ICS, splenocytes were 

stimulated with OLP mixes or dominant-epitope OLPs, and 

CD4+ and CD8+ T cell responses were separately analyzed by 

gating each subset during FACS analysis. CD4+ T cell respons-

es to OLP mix 1 and OLP mix 2 were potently induced by RpfB 

DNA immunization as shown by IFN-γ ICS whereas they were 

scarcely induced by BCG or RpfB protein immunization (Fig. 

3A). Similar results were observed when cells were stimulat-

ed with the CD4+ T-cell epitopes, OLP-30 and OLP-51 (Fig. 

3A). RpfB DNA immunization also strongly induced RpfB-

specific TNF-α production by CD4+ T cells (Fig. 3B). More-

over, cytotoxic degranulation activity (represented by CD107a) 

of CD4+ T cells was increased following RpfB DNA immuni-

zation (Fig. 3C). However, an IL-2 response was not elicited 

(Fig. 3D).

  In CD8+ T cells, IFN-γ was potently induced in response to 

OLP mix 1 and the CD8+ T-cell epitope OLP-14 following RpfB 

DNA immunization, but not after BCG or RpfB protein im-

munization (Fig. 3E). RpfB DNA immunization also strongly 

induced TNF-α production (Fig. 3F) and cytotoxic degranula-

tion activity (Fig. 3G) of CD8+ T cells whereas an IL-2 response 

was not elicited (Fig. 3H). Cytokine production in response to 

OLP mix 2 was not detected in CD8+ T cells and thus, it is not 

presented.

  Taken together, RpfB DNA immunization induced vigor-

ous responses in both CD4+ and CD8+ T cells, in particular 

IFN-γ and TNF-α production and cytotoxic degranulation ac-

tivity. 
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Fig. 3. Resuscitation-promoting factor B (RpfB)-specific T cell responses induced by RpfB immunization. Mice were immunized as described in 
Materials and Methods, and splenocytes were obtained from immunized mice. Intracellular cytokine staining was performed for interferon-γ 
(IFN-γ) (A, B), tumor necrosis factor-α (TNF-α) (C, D), CD107a (E, F), and interleukin-2 (IL-2) (G, H) after stimulation with the indicated overlap-
ping peptide (OLP) mix or epitope OLP. CD4+ (A, C, E, G) and CD8+ (B, D, F, H) T cell subsets were separately analyzed by gating on each subset 
during luorescence-activated cell sorting analysis. BCG, bacillus Calmette-Guérin. Each bar graph represents mean ± SEM (n = 6). Mann-Whitney 
U test was performed (*p < 0.05, **p < 0.01, ***p < 0.001). 
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Polyfunctionality of RpfB-specific T cells
Finally, we assessed the polyfunctionality of RpfB-specific T 

cells by Boolean gating analysis of the ICS data presented in 

Fig. 3. To assess the polyfunctionality of T cells, we analyzed 

four different functions: production of IFN-γ, TNF-α, IL-2 and 

expression of a marker of cytotoxic degranulation activity, 
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Fig. 4. Analysis of the polyfunctionality of resuscitation-promoting factor B (RpfB)-specific T cells induced by RpfB DNA immunization. Rep-
resentative examples of the analysis of polyfunctionality of CD8+ T cells (A, B) and CD4+ T cells (C, D) from an RpfB DNA-immunized mouse 
are presented. Cells were stimulated with overlapping peptide (OLP) mix 1 for the analysis of CD8+ T cells (A, B), and with OLP mix 2 for the 
analysis of CD4+ T cells (C, D). Polyfunctionality for interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), and CD107a was 
assessed. The data are represented by the pie graphs showing the fraction of T cells positive for a given number of functions (A, C). Detailed 
analysis of polyfunctionality is presented with every possible combination of functions (B, D).
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CD107a. First, the OLP mix 1-stimulated CD8+ T cell response 

was analyzed after RpfB DNA vaccination, and these CD8+ T 

cells were determined to be polyfunctional as more than half 

of the cells exerted three functions simultaneously (represen-

tative data from a single mouse are presented in Fig. 4A and 

B). The most predominant functional phenotype was that of 

IFN-γ+/TNF-α+/IL-2-/CD107a+ (Fig. 4B), and this polyfunc-

tional T cell response was observed only following RpfB DNA 

immunization, and not following BCG or RpfB protein im-

munization (data not shown). A similar pattern of polyfunc-

tionality was observed against the CD8+ T cell epitope, OLP-

14 (data not shown).

  In CD4+ T cells, the response to the OLP mix 2 was assessed 

for polyfunctionality. Compared to CD8+ T cells, CD4+ T cells 

were less polyfunctional (Fig. 4C). In fact, the most predomi-

nant functional phenotype was that of IFN-γ+/TNF-α+/IL-2-/

CD107a- (Fig. 4D), and more than half of OLP mix 2-specific 

CD4+ T cells were monofunctional (Fig. 4C). However, RpfB 

DNA immunization induced more triple-positive and dou-

ble-positive CD4+ T cells than did BCG or RpfB protein im-

munization (data not shown). A similar pattern of polyfunc-

tionality was observed against OLP mix 1 and the CD4+ T cell 

epitopes, OLP-30 and OLP-51 (data not shown). 

  Thus, all mice immunized with Rpf DNA showed similar 

patterns of T cell polyfunctionality: a highly polyfunctional 

CD8+ T cell response and a less polyfunctional CD4+ T cell re-

sponse. 

 

Discussion

In the present study, we investigated the immunological re-

sponse to M. tuberculosis RpfB DNA immunization. RpfB DNA 

immunization induced not only an RpfB-specific antibody 

response, but also CD8+ and CD4+ T cell responses in mice. 

Further, the induced CD8+ T cell response was determined to 

be polyfunctional as the major population of RpfB-specific 

CD8+ T cells were triple-positive (IFN-γ+/TNF-α+/CD107a+). 

Previously, T cell immunogenicity of Rpf DNA immunization 

was reported [24]; however, T cell polyfunctionality has never 

been studied after Rpf DNA immunization.
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  Polyfunctional T cells simultaneously exert multiple func-

tions such as cytokine secretion and cytotoxic activity. Recent-

ly, T cell polyfunctionality has been investigated in several in-

fectious diseases of human and mice. It was reported that 

polyfunctional human immunodeficiency virus (HIV)-spe-

cific CD8+ T cells were maintained in HIV long-term nonpro-

gressors [32]. Furthermore, the degree of Th1 cell polyfunc-

tionality correlated with vaccine efficacy in a Leishmania 

vaccination study [18]. In addition, the efficacy of the small-

pox vaccine has been attributed to polyfunctionality of virus-

specific CD8+ T cells [33]. Further, in a recent primate study, 

polyfunctional hepatitis C virus (HCV)-specific T cells were 

associated with vaccine-induced control of HCV [34]. Taken 

together, the generation of polyfunctional T cells has been 

emphasized in vaccine development. 

  Polyfunctional T cells have been also studied in TB. The 

presence of polyfunctional CD8+ T cells was associated with 

natural protection against TB and protection following anti-

mycobacterial therapy in TB patients [21,22]. Furthermore, 

vaccine-induced polyfunctional CD4+ Th1 cells correlated 

with protection against TB in mice challenged by M. tubercu-

losis [19,20]. Induction of polyfunctional T cells was also prov-

en by experimental TB vaccines in human studies [35-37]. Al-

together, polyfunctional T cells are considered to provide vac-

cine-induced immunity and mediate protection against TB.

  In the present study, RpfB DNA immunization elicited a 

polyfunctional CD8+ T cell response; however, the CD4+ T cell 

response was somewhat less polyfunctional with more than 

half of RpfB-specific CD4+ T cells being monofunctional (Fig. 

4D) in RpfB DNA-immunized mice. Although RpfB DNA im-

munization induced more triple-positive or double-positive 

CD4+ T cells than did BCG or RpfB protein immunization 

(Fig. 4F), this level of polyfunctionality of CD4+ T cells might 

not be sufficient for protection against TB considering the 

importance of the CD4+ Th1 response during TB protection 

[11-14]. Thus in future studies, increasing the polyfunctional-

ity of CD4+ T cells will need to be addressed in order to im-

prove RpfB DNA vaccination. This might be achieved by in 

vivo electroporation during RpfB DNA vaccination as it is 

known that electroporation enhances DNA vaccine-induced 

immune responses [38-40].

  In summary, RpfB DNA immunization elicits polyfunction-

al T cell response, especially in the CD8+ T cell subset, and 

this polyfunctional CD8+ T cell response was dominated by 

the IFN-γ+/TNF-α+/IL-2-/CD107a+ phenotype. These results 

suggest that RpfB DNA immunization might induce protec-

tive immunity against TB, and M. tuberculosis-challenging 

studies are warranted in the future.
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