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Abstract: Familial hypercholesterolemia (FH) is the most common genetic disorder of lipid metabolism,
characterized by increased levels of total and LDL plasma cholesterol, which leads to premature
atherosclerosis and coronary heart disease. FH phenotype has considerable genetic heterogeneity
and phenotypic variability, depending on LDL receptor activity and lifestyle. To improve diagnosis
and patient management, here, we characterized two single nucleotide missense substitutions at
Methionine 1 of the human LDLR gene (c.1A>T/p.(Met1Leu) and c.1A>C/p.(Met1Leu)). We used a
combination of Western blot, flow cytometry, and luciferase assays to determine the effects of both
variants on the expression, activity, and synthesis of LDLR. Our data show that both variants can
mediate translation initiation, although the expression of variant c.1A>T is very low. Both variants
are in the translation initiation codon and codify for the same amino acid p.(Met1Leu), yet they lead
to different levels of impairment on LDLR expression and activity, corroborating different efficiencies
of the translation initiation at these non-canonical initiation codons. The functional data of these
variants allowed for an improved American College of Medical Genetics (ACMG) classification
for both variants, which can allow a more personalized choice of the lipid-lowering treatment and
dyslipidemia management, ultimately improving patients’ prognosis.

Keywords: initiation codon; familial hypercholesterolemia; LDLR; functional characterization;
ACMG classification

1. Introduction

Familial hypercholesterolemia (FH) (OMIM 143890) is an autosomal disorder of lipid
metabolism characterized by increased plasma cholesterol levels and lipid accumulation
in arteries and tendons, promoting premature atherosclerosis and coronary heart disease
(CHD) [1]. FH is one of the most common genetic disorders with a frequency of around
1:250 in most populations, according to a recent meta-analysis [2]. The FH phenotype can
be caused by pathogenic variants in the three FH-associated genes (APOB, LDLR, and
PCSK9) or by pathogenic variants in several phenocopies or alternative molecular etiologies
(ABCG5/8, APOE, LDLRAP1, and LIPA), or it can even be due to a polygenic cause [3–6].
Although the underlying genetics of the FH phenotype is complex, more than 90% of
FH cases result from LDLR defects associated with an autosomal dominant inheritance
pattern [3,4]. Up to date, there are more than 2300 LDLR variants exclusively identified
in FH patients [7]. Another key feature of FH genetics is the phenotypic variability [3,8];
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there is a diversity of phenotypes between groups sorted by causative gene and mutation
type, and it is not uncommon to observe a wide range of lipid levels among carriers of
an identical FH-causing mutation [3,8]. Moreover, the mutation type and the percentage
of activity of LDLR variants can modulate the patients’ phenotype and response to lipid
therapy [4,8]. LDLR variants can be primarily divided into null variants and defective
variants, with complete or partial loss of function, respectively. Several studies showed
an association between higher levels of LDL cholesterol and null variants compared with
defective variants [9–11]. Additionally, the type of mutation can modulate response to statin
therapy, as shown in Brazilian and Spanish cohorts, where null variants were associated
with the lowest decrease of LDL levels upon treatment [12,13]. LDLR mutations can be
functionally classified into five groups: class I—no protein synthesis (null variants); class
II—partial or complete retention of the protein at the endoplasmic reticulum; class III—
defective binding; class IV—defective internalization or endocytosis; class V—defective
recycling [14]. Although the functional characterization is important for a correct patient
diagnosis and management, less than 10% of all variants described in the LDLR gene have
been functionally characterized. To improve diagnosis and patient management, here, we
report two different missense variants (c.1A>T, p.(Met1Leu) and c.1A>C, p.(Met1Leu)) in
the LDLR initiation codon, exhibiting distinct functional phenotypes.

2. Materials and Methods
2.1. Clinical Study

The Portuguese FH Study is a research project continuously running since 1999 with
the aim of identifying the genetic cause of hypercholesterolemia in individuals with a
clinical diagnosis of FH [15–17]. The study protocol and database have been approved
by the National Institute of Health Ethics Committee and the National Data Protection
Commission, respectively. Written informed consent was obtained from all participants
before their inclusion in the study. Fasting blood samples were collected from all indi-
viduals at the time of their inclusion in the study. The biochemical characterization of
lipids and lipoproteins was performed in a Cobas Integra 400 plus (Roche, Risch-Rotkreuz,
Switzerland) by enzymatic colorimetric and immunoturbidimetric methods. All healthy
individuals from whom the LDL used in the experiments was extracted followed the same
exact procedure as any participant of the Portuguese FH Study.

2.2. Plasmid Constructs

For Western blot and cytometry assays, the two missense variants under study,
NM_000527.5:c.1A>T and NM_000527.5:c.1A>C, were individually introduced into the
human LDLR cDNA (NM_000527.5) in the mammalian expression vector pcDNA3 under
control of an SV40 promoter and enhancer. For luminometry assays, the promoter and
the 5′ untranslated region (5′UTR) of LDLR (−319 bp upstream from ATG) were cloned
upstream the Firefly Luciferase (FLuc) coding region in the pGL4.10 reporter plasmid
(Promega, Madison, WI, USA), obtaining the LDLR_pGL4-WT construct. Both plasmids
were subjected to oligonucleotide site-directed mutagenesis using the NZYMutagenesis
kit (NZYTech, Lisbon, Portugal), according to the manufacturer’s instructions. For every
variant, the presence of the correct variant and the integrity of the region was confirmed by
direct Sanger sequencing.

2.3. Cell Culture and Transfection

LDLR-deficient CHO-ldlA7 cells (Chinese hamster ovary cell line ldlA7), kindly pro-
vided by Dr. Monty Krieger, Massachusetts Institute of Technology, Cambridge, MA, were
cultured in F-12 Nut Mix medium supplemented with 10% (v/v) fetal bovine serum (FBS,
Invitrogen, Waltham, MA, USA), 100 units/mL penicillin, and 100 µg/mL streptomycin,
and cells were grown at 37 ◦C in a humidified incubator containing 5% CO2.

For Western blot and cytometry assays, cells were seeded in 6- or 24-well culture
plates at 80% confluence (48 h) and were transfected with plasmids containing wild-type or
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mutant LDLR variants using Lipofectamine 2000 Transfection reagent (Invitrogen, Waltham,
MA, USA) following manufacturer’s instructions. LDLR expression and LDL binding and
internalization were assessed 24 h after transfection.

For luminometry assays, transient transfections were performed using Lipofectamine
2000 Transfection Reagent (Invitrogen, Waltham, MA, USA) following the manufacturer’s
instructions in 35-mm plates. Cells were co-transfected with 750 ng of the test DNA
construct corresponding to the LDLR_pGL4-WT or its derivative plasmids and 500 ng
of the pRL-TK plasmid (Promega, Madison, WI, USA), which encodes Renilla luciferase
(RLuc) as an internal control, and then harvested after 24 h.

2.4. Western Blot Analysis

Protein expression was determined for whole-cell extracts and fractionated by elec-
trophoresis using NuPAGE™ 4%–12% Bis-Tris gel (Invitrogen, Waltham, MA, USA) and Nu-
PAGE™ MOPS SDS Running Buffer (Invitrogen, Waltham, MA, USA) for semi-quantitative
immunoblotting. PVDF membranes were immunostained overnight at 4 ◦C with a specific
rabbit polyclonal antibody to the human LDL receptor (Progen Biotechnik, Heidelberg, Ger-
many) and a monoclonal anti-α-tubulin antibody (Boster Biological Technology, Pleasanton,
CA, USA) for protein loading control. After incubation with appropriate secondary anti-
bodies, proteins were detected by chemiluminescence using Pierce™ ECL Plus Western
Blotting Substrate (Thermo Scientific, Waltham, MA, USA) on a ChemiDoc (BioRad, Her-
cules, CA, USA). Relative band intensities of mature (≈160 kDa) and precursor (≈120 kDa)
forms of LDLR protein were quantified by densitometric analysis using Image Lab Software
(BioRad, Hercules, CA, USA) and normalized to levels of α-tubulin.

2.5. LDL Isolation and Labeling

Plasma used for lipoprotein purification was collected from healthy individuals’ blood
after 30 min centrifugation at 2465× g at room temperature (5810R, Eppendorf, Hamburg,
Germany). For all samples, plasma density was adjusted to 1.21 g/mL with potassium
bromide (KBr), and PBS buffer was added to obtain a clear separation between lipid
fractions. LDL was isolated through ultracentrifugation carried out in a TST 41–14 rotor
at 225,000× g for 19 h at 4 ◦C (Centrikon T-21X0, Kronton, Munich, Germany). The
intermediate orange band corresponding to LDL was collected and stored at 4 ◦C.

LDL was fluorescently labeled with fluorescein isothiocyanate (FITC). LDL was loaded
in a 0.1 M NaHCO3 (pH 9.0) pre-equilibrated Sephadex G-25 column and then mixed under
constant agitation with 10 µL FITC (2 mg/mL in DMSO) per lipoprotein milliliter at room
temperature for 2 h. After incubation, free FITC was removed by gel filtration on a
Sephadex G-25 column equilibrated with PBS EDTA-free buffer. Lipoprotein quantification
was determined by the Pierce BCA protein assay.

2.6. LDLR Expression and Activity (Lipoprotein Binding and Internalization) by FACS

LDLR cell surface expression was measured by FACS using mouse anti-human-LDLR
(1:100; Progen Biotechnik, Heidelberg, Germany) as primary antibody and Alexa Fluor
488-conjugated goat anti-mouse IgG (1:200; Molecular Probes, Eugene, OR, USA) as the
secondary antibody. Briefly, cells were incubated at 4 ◦C, overnight with the primary
antibody after fixing (10 min in 4% paraformaldehyde) and blocking (1 h with PBS-5%
FBS) steps. Next, cells were incubated for 1 h at room temperature with the secondary
antibody. For each sample, the fluorescence of 15,000 events was acquired for data analysis,
and measurements were performed in triplicate. All washes were done with PBS-1% BSA.

For quantification of LDLR activity, cells were seeded in 24-well culture plates and
transfected, as previously described. Briefly, 24 h after transfection, cells were incubated
for 3 h at 37 ◦C or 4 ◦C with 20 µg/mL FITC-LDL to determine LDL internalization
or LDL-LDLR binding, respectively. After incubation, cells were washed three times,
fixed for 10 min in 4% paraformaldehyde, and washed again three times. The amount
of internalized LDL was determined by adding Trypan blue solution to a 0.2% final
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concentration (Sigma-Aldrich, Steinheim, Germany) to the samples. This dye quenches
external fluorescence, eliminating the signal of non-internalized LDLR-LDL complexes,
allowing the determination of the intensity of the remaining fluorescent particles inside
the cells. Fluorescence intensities were measured by flow cytometry in a Facscalibur
Flow cytometer. For each sample, the fluorescence of 15,000 events was acquired for data
analysis, and measurements were performed in triplicate. All washes were done with
PBS-1% BSA.

2.7. Luminometry Assay

Cell lysis was performed with Passive Lysis Buffer (Promega). The cell lysates were
used to determine relative FLuc and RLuc activities using the Dual-Luciferase® Reporter
Assay System (Promega), according to the manufacturer’s instructions, on a GloMax® 96
Microplate Luminometer (Promega). The collected data was expressed in arbitrary light
units. Luciferase activity was obtained by normalizing FLuc to RLuc luminescence for each
sample, and each value was derived from three independent experiments.

2.8. American College of Medical Genetics (ACMG) Classification and In Silico Analysis

Both variants were classified according to the Clinical Genome resource FH variant
curation expert panel specifications for the ACMG/AMP Variant Interpretation Guide-
lines [18]. Additionally, the potential effects of the two variants were evaluated by 5 soft-
ware tools: PROVEAN [19], SIFT [20], PolyPhen2 [21], MutationTaster [22], and REVEL [23].

2.9. Statistical Analysis

Results are expressed as mean ± standard deviation. The Student’s t-test was used
for the estimation of statistical significance. Significance for statistical analysis was defined
as a p < 0.001.

3. Results
3.1. In Silico and ACMG Classification

The bioinformatics prediction for the pathogenicity of the two variants displays con-
flicting classification between the different software but not among themselves (Table 1).

Table 1. In silico results obtained by the different bioinformatics tools.

Variant PROVEAN SIFT Polyphen-2 Mutation
Tester 2 REVEL

c.1A>T,
p.(Met1Leu) Neutral Damaging Benign disease

causing 0.638

c.1A>C,
p.(Met1Leu) Neutral Damaging Benign disease

causing 0.638

Initially, variants c.1A>T, p.(Met1Leu), and c.1A>C, p.(Met1Leu) were classified as
VUS (variant of uncertain significance) and Likely Pathogenic, respectively. Once the
functional data were integrated into the algorithm, the classification has improved to Likely
Pathogenic and Pathogenic (Table 2).

3.2. Functional Profiling of Variants c.1A>T and c.1A>C

Aiming to understand the functional consequences of both variants, protein levels
from each variant were analyzed by Western blot (Figure 1A), and relative levels of LDLR
expression were determined by quantitative densitometry, using α-tubulin protein ex-
pression as an internal control (Figure 1B). This analysis revealed different mature and
precursor LDLR expression levels between the two variants (Figure 1A). LDLR variant
c.1A>T produces almost no protein, showing a similar protein profile to the mock control.
Whereas in LDLR variant c.1A>C, both mature and precursor forms of LDLR were detected,
being the expression lower compared to the wild-type (WT) receptor (Figure 1B).
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Table 2. ACMG/AMP classification with and without the functional data.

Variant ACMG Classification
without FS Points without FS ACMG Classification after FS *

c.1A>T, p.(Met1Leu) VUS PM2, PVS1_Moderate and
PP4 Likely pathogenic

c.1A>C, p.(Met1Leu) Likely pathogenic
PM2, PVS1_Moderate
PP1_Moderate, PP4,

PS4_Supporting
Pathogenic

FS—Functional study; VUS—variant of uncertain significance; * Classification with additional PS3 point.

Biomedicines 2021, 9, x FOR PEER REVIEW 5 of 11 
 

Table 2. ACMG/AMP classification with and without the functional data. 

Variant  ACMG Classifica-
tion Without FS Points Without FS ACMG Classification 

After FS * 
c.1A>T, 

p.(Met1Leu) 
VUS 

PM2, PVS1_Moderate 
and PP4 

Likely pathogenic 

c.1A>C, 
p.(Met1Leu)  

Likely pathogenic  
PM2, PVS1_Moderate 
PP1_Moderate, PP4, 

PS4_Supporting 
Pathogenic  

FS—Functional study; VUS—variant of uncertain significance; * Classification with additional PS3 
point. 

3.2. Functional Profiling of Variants c.1A>T and c.1A>C 
Aiming to understand the functional consequences of both variants, protein levels 

from each variant were analyzed by Western blot (Figure 1A), and relative levels of LDLR 
expression were determined by quantitative densitometry, using α-tubulin protein ex-
pression as an internal control (Figure 1B). This analysis revealed different mature and 
precursor LDLR expression levels between the two variants (Figure 1A). LDLR variant 
c.1A>T produces almost no protein, showing a similar protein profile to the mock control. 
Whereas in LDLR variant c.1A>C, both mature and precursor forms of LDLR were de-
tected, being the expression lower compared to the wild-type (WT) receptor (Figure 1B). 

 
Figure 1. Expression and activity of LDLR in CHO-ldlA7 cells transfected with wild-type (WT), c.1A>T, p.(Met1Leu), or 
c.1A>C, p.(Met1Leu) variants. After 24 h of overexpression, cells were lysed, and protein extracts were analyzed (A) by 
Figure 1. Expression and activity of LDLR in CHO-ldlA7 cells transfected with wild-type (WT), c.1A>T, p.(Met1Leu), or
c.1A>C, p.(Met1Leu) variants. After 24 h of overexpression, cells were lysed, and protein extracts were analyzed (A) by
Western blot, as previously described in Methods. (B) The relative band intensities of both mature (black bars) and precursor
(grey bars) LDLR forms were calculated, respectively, as the ratio of 160 kDa or 120 kDa LDLR band intensity to that of
α-tubulin. (C) Black bars—LDLR expression; Dark grey bars—LDL(FITC)-LDLR binding after 3 h incubation at 4 ◦C; Light
grey bars—LDL(FITC) internalization after 3 h incubation at 37 ◦C. Geometric fluorescence intensity of 15,000 events was
acquired in a Facscalibur Flow cytometer, as mentioned above. All values represent the mean of triplicate independent
determinations (n = 3); error bars represent ± SD. * p < 0.001 compared to LDLR WT using a two-tailed Student’s t-test.

To quantify the expression and activity of both LDLR variants, CHO-ldlA7 cells
were transiently transfected with WT LDLR, c.1A>T, p.(Met1Leu), or c.1A>C, p.(Met1Leu)
constructs to determine the ability of the receptor to bind and internalize labeled LDL.
Results for cell surface LDLR expression, LDL (FITC)-LDLR binding, and internalization
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are illustrated in Figure 1C. WT transfection was used for normalization of results, and it
represents 100% of expression and activity. Both variants exhibit expression and activity
levels below 70% of the WT LDLR; therefore, they are considered to affect LDLR function.
Cut-offs for this limit were used from Chora et al. (2021) [18]. The two variants exhibit cell
surface expression lower than WT LDLR, and consequently, binding and internalization
levels are also diminished. Variant c.1A>T shows expression and activity levels below 10%,
whereas variant c.1A>C has expression and activity levels around 60%.

Additionally, luminometry assays were performed to check the effect of the two
variants in protein synthesis (Figure 2). Relative luciferase activity of constructs pGL4-
c.1A>T and pGL4-c.1A>C is 0.5% and 5% of the normal control, respectively. Thus, both
c.1A>T and c.1A>C LDLR variants repress protein expression of the downstream reporter
gene, although with different intensities.
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Figure 2. Relative luciferase activity of LDLR_pGL4 constructs with c.1A>T, p.(Met1Leu) or
c.1A>C, p.(Met1Leu) variants. CHO-ldlA7 cells were transiently co-transfected with each one
of the LDLR_pGL4 constructs (containing Firefly Luciferase—FLuc) and with the pRL-TK plasmid
encoding the Renilla Luciferase (RLuc). Cells were lysed 24 h later, and the luciferase activity was
measured by luminometry assays. FLuc activity values were normalized to RLuc activity to control
for transfection efficiency. Relative luciferase activity of the LDLR_pGL4-WT (WT) construct was
defined as one. All values represent the mean of triplicate independent determinations (n = 3); error
bars represent ± SD. * p < 0.001 compared to LDLR WT using a two-tailed Student’s t-test.

3.3. Phenotype of Patients with Variant c.1A>C, p(Met1Leu)

Only the variant c.1A>C is identified in the Portuguese FH Study in four different
families exhibiting an autosomal dominant inheritance pattern. A total of eight individuals
carries this variant—four index cases and four relatives (Table 3). The eight carriers present
untreated values of total and LDL cholesterol (LDL-C) ranging from 288 to 491 mg/dL and
from 222 to 392 mg/dL, respectively, in adults. In children, total cholesterol and LDL-C
range from 174 to 284 mg/dL and from 108 to 226 mg/dL, respectively.
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Table 3. Carriers of variant c.1A>C, p.(Met1Leu) found in the Portuguese FH Study.

Family Age at
Referral Sex Total-C *

[mg/dL]
LDL-C *
[mg/dL]

HDL-C *
[mg/dL]

TG *
[mg/dL]

BMI
(Kg/m2) LLT

1—Index 22 F 439 297 115 135 NK No
2—Index 38 M 288 222 48 90 NK No

2 9 F 174 108 52 53 NK No
3—Index 2 M 281 226 47 93 16.8 No

3 3 M 284 220 51 95 NK No
3 32 F 491 392 77 110 NK No

4—Index 12 M 257 174 68 32 22.6 Atorvastatin
4 41 F 227 149 63 50 NK Atorvastatin

* Values at referral for a genetic test. TG—triglycerides; BMI—body mass index; LLT—lipid-lowering therapy; NK—not known.

4. Discussion

Both LDLR variants (c.1A>T and c.1A>C) are predicted to change Methionine (AUG)
to Leucine [UUG or CUG, respectively; p.(Met1Leu)]. Here, we investigated the functional
consequences of these two LDLR variants. Our data show that both variants are able
to mediate translation initiation, although the expression of variant c.1A>T is very low.
Translation has been traditionally considered to initiate at the universal AUG start codon.
However, due to the advent of the ribosome profiling technique [24], it is now clear that
many non-AUG codons can function as non-canonical start codons [25]. Accordingly,
here we show that the UUG and CUG Leucine codons are able to function as translation
initiation codons for the LDLR protein. Our data also show that these two Leucine codons
mediate translation initiation with different efficiencies, being the UUG codon a much less
efficient initiator. Indeed, these results are in accordance with what has been described,
showing that, in eukaryotes, the substitution of the initiating codon CUG for an alternate
Leucine-encoding UUG codon drastically reduces protein expression [26]. Moreover, the
CUG codon is the most prevalent non-AUG start codon found in upstream open reading
frames [27]. Although the key eukaryotic initiation factor (eIF), eIF2, does not significantly
bind other tRNAs besides Met-tRNAi

Met [25], it is known that other eIFs can substitute eIF2
for initiation at non-AUG codons. eIF2A, for instance, can deliver Leu-tRNACUG and even
Met-tRNAi

Met to initiate translation at non-AUG start codons in a GTP-independent man-
ner [28,29]. Accordingly, depletion of eIF2A does not significantly impair global protein
synthesis, neither affects translation initiation at AUGs, but has a negative impact on initia-
tion at CUG or UUG codons [28,29]. These pieces of evidence well support the contrasting
in vitro phenotypes observed between the two variants regarding LDLR expression. As
shown, the construct with the variant c.1A>T has residual LDLR expression and conse-
quently very low LDL binding and internalization abilities. Nonetheless, the construct with
the variant c.1A>C partially expresses LDLR, and the binding and internalization activities
are coherently affected. Moreover, our results from the FLuc-based reporter constructs
also support these data. However, the expression of these constructs is significantly lower
than the one from the constructs with the LDLR open reading frame (ORF) (5% versus 60%
and 0.5% versus 10% for c.1A>C and c.1A>T, respectively; Figures 1C and 2). One possible
explanation for this discrepancy could be the existence of RNA secondary structures down-
stream the start codons that could favor recognition of the non-canonical, UUG and CUG,
codons on the pcDNA3 constructs (LDLR ORF) when compared to the pGL4 constructs
(Luciferase ORF). This idea is supported by previous reports showing that recognition
of non-canonical codons by the scanning ribosomes is favored by GC-rich downstream
regions that potentiate the formation of hairpin-like structures. These secondary structures
are thought to slow down the ribosomal scanning process, giving time for translation
initiation to occur on sub-optimal codons [30,31]. Accordingly, the mRNA secondary
structure obtained from mFOLD (http://www.unafold.org; accessed on 7 February 2021)
using the first 100 nucleotides of the LDLR coding sequence is more stable than the one
corresponding to the first 100 nucleotides of the Luciferase ORF.

http://www.unafold.org
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Considering the functional data gathered on the two variants, variant c.1A>T is
classified as an LDLR class I mutation, with no protein synthesis (null variant), whereas
variant c.1A>C phenotype is similar to LDLR class II mutations, with partial retention of the
immature protein at the endoplasmic reticulum [14]. These distinct phenotypes, a null and
a defective allele type variant, highlight the importance of functionally characterizing and
classifying LDLR variants. Carriers of a null allele variant present higher LDL values and
higher rates of premature CHD than a defective allele carrier [10,32]. As such, functional
characterization is important for cardiovascular risk stratification. Considering our in vitro
results, a distinctive severity of FH phenotype in carriers of these variants is expected, with
carriers of the variant c.1A>C exhibiting a milder phenotype compared to c.1A>T carriers.

According to ACMG/AMP guidelines for the classification of genetic variants, c.1A>T
and c.1A>C are classified, respectively, as likely pathogenic and pathogenic variants,
taking into consideration the functional study results [18]. However, functionally, they
have different performances, as described above. ACMG classification classifies a variant
as likely pathogenic or pathogenic or likely benign or benign but does not characterize
the level to which the variant affects the protein, which can be determined only with
functional studies.

Whereas the variant c.1A>T was first described in 1996 in a compound heterozygous
(CH) patient from South Africa [33], variant c.1A>C was first identified in 2001 in a
heterozygous patient from Spain (no lipid information provided) [34]. As expected for
an FH homozygous or compound heterozygous individual, the CH patient carrying the
variant c.1A>T exhibits extremely high levels of total and LDL cholesterol (LDL-C), 719
mg/dL and 669 mg/dL, respectively. Additionally, the variant c.1A>T is also identified in
two first degree relatives of the CH patient with ages of 36 and 18 years old, presenting
values of total and LDL-C of 363 mg/dL and 305 mg/dL and 305 mg/dL and 232 mg/dL,
respectively. Unfortunately, no data on lipid-lowering treatment is provided for any of
these individuals. To date, only the variant c.1A>C is identified in the Portuguese FH
Study in four different families exhibiting an autosomal dominant inheritance pattern. As
reported in the results, the eight carriers present a wide range of untreated values of total
and LDL-C, showing the already mentioned heterogeneity in phenotypes presented by
carriers of the same variant. There are several cholesterol modulators from age, body mass
index, diet, physical exercise, and co-occurrence of other disorders and treatments that can
account for this phenotypical heterogeneity. In this case, since the variants under study
are in the LDLR translation initiation codon and originate a non-canonical initiator, we can
speculate that some factors involved in non-canonical translation initiation may also be
modulating it with different efficiencies among patients, leading to distinct phenotypes.

It is known that the type of mutation can modulate the response to statin therapy,
where null variants have the lowest decrease of LDL levels upon treatment [12,13]. In adults,
the lowest observed values of total and LDL-C (227 mg/dL and 149 mg/dL) correspond
to an individual undergoing statin therapy, who before treatment had 400 mg/dL of total
cholesterol (LDL-C values before treatment not known). The child of this individual also
undergoing statin therapy shows a reduction of 23% and 30% of total and LDL-C, i.e.,
from 335 mg/dL and 250 mg/dL to 257 mg/dL and 174 mg/dL, respectively. This good
response to treatment goes to the encounter of our results, to the extent that considering the
mechanism of action of statins, theoretically, carriers of putative null variants should not
greatly benefit from this therapy. However, from carriers of a variant with partial activity,
such as c.1A>C, a good response to statin treatment is expected, as observed in these
individuals. Both c.1A>C and c.1A>T variants exert their pathogenicity by means of low
expression of LDLR; the second one is close to null expression. Although the expression is
reduced, the activity of the synthesized receptors is normal, and so they play their role in
the clearance of LDL from circulation. This way, the effect of statin therapy, which blocks
cholesterol biosynthesis and promotes the hepatic expression of LDLR [35], should have a
more beneficial impact on carriers of variant c.1A>C compared to c.1A>T carriers.



Biomedicines 2021, 9, 1219 9 of 11

5. Conclusions

In conclusion, we have characterized 2 different LDLR missense variants in the transla-
tion initiation codon, which codify for the same amino acid p.(Met1Leu) but have a distinct
impact on LDLR expression and activity. The two variants exhibit different functional
behaviors: cytometry and luciferase assays show that variant c.1A>T/p.(Met1Leu) acts
like a null variant with extremely low levels of protein expression and consequent null
activity; conversely, variant c.1A>C/p.(Met1Leu) is able to initiate translation with a higher
efficiency, which renders a significant LDLR activity to this variant. Our data gives new
functional insight into these two variants, leading to an improved ACMG classification,
which can be used in the choice of the lipid-lowering treatment and dyslipidemia man-
agement for a more personalized approach, which, in the end, can lead to a better patient
prognosis. With this work, we have also contributed with evidence to the function of
non-canonical initiation codons in translation initiation. However, additional experiments
are required to fully unveil the underlying mechanism through which mRNA translation
initiation is affected.
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