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Abstract: In this paper, we present a simple yet efficient method for determination of the relative
permittivity of thin dielectric materials. An analysis that led to definition of the proper size and
placement of a sample under test (SUT) on the surface of a microstrip ring resonator (MRR) was
presented based on the full-wave simulations and measurements on benchmark materials. For
completeness, the paper includes short descriptions of the design of an MRR and the variational
method-based algorithm that processes the measured values. The efficiency of the proposed method
is demonstrated on 12 SUT materials of different thicknesses and permittivity values, and the accuracy
between 0% and 10% of the relative error was achieved for all SUTs thinner than 2 mm.

Keywords: measurement of relative permittivity; full-wave analysis; microstrip ring resonator;
optimal material-under-test size; material characterization; variational method

1. Introduction

Relative permittivity of a material, εr, is an important parameter for the design of
antennas and microwave circuits because it strongly affects the dimensions of the circuit and
the resonant frequency. When industry-standard dielectrics are used in the circuit design,
their characteristics, including the relative permittivity, are known from the manufacturers’
data sheets. Nowadays, however, modern designs can also include some nonstandard
materials, such as various fabrics (to be used in wearable applications, for example),
whose permittivity is typically not included in the manufacturer’s specification because
that parameter historically had no significance for the textile industry. Not knowing the
permittivity introduces a significant uncertainty to the circuit designer, and it is necessary
to determine it for a successful circuit design.

Various methods with very distinct features have evolved in that sense [1–4]—those
that can characterize the materials under test in a wide frequency range, as opposed to
those that do it in a narrow frequency band, practically at a single frequency; those that
are invasive for the sample under test, to those that are noninvasive for the sample; those
that are more suitable for low-frequency range, as opposed to those that are more suitable
for high frequencies; those that are suitable for low-loss dielectric and thin samples vs.
those that are suitable for liquid materials more than for solid materials; those with a more
complicated measurement apparatus vs. those with a relatively simple one; those that
measure the unknown material in a way that the test circuit is built using that unknown
material as the substrate layer of the microstrip circuit, as opposed to those methods that
use the known substrate layer and test the unknown material by laying it over, or inserting
it in, the measurement fixture. There is no universal or best method to cling to, but the
choice of a method really depends on one’s particular needs and case.
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Commercial test kits are quite expensive, some even being compatible only with
vector network analyzers (VNA) of the test kit vendor [5] or merely with some particular
models of VNA and accompanying test fixtures (possibly of another vendor [6]), whereas
some other vendors offer compatibility of their test kit with a broader range of VNAs [7],
yet either of them offering only a conditional accuracy and prospect of getting accurate
and trustworthy results due to the sensitivity of the measurement procedure to various
tolerances. Facing these facts, a researcher with a limited budget may realize in a fairly
short time that, for most practical purposes, it may be a sound option to build his own test
circuit that will enable characterization of unknown dielectric materials.

In this work, it was desired to have a circuit that is simple to design and manufacture
and, thus, cost-effective, while appropriate for characterization of thin, solid, and low-loss
dielectrics. The frequency range of interest was below 6 GHz. More specifically, we aimed
to use it at about 2.4 GHz. It is a single-frequency method, but that is not a penalizing
factor due to the fact that permittivity changes little within a relatively wide frequency
range and the test circuit can be designed and manufactured at a low cost for various
single frequencies of interest. The particular circuit of our choosing was a microstrip ring
resonator (MRR).

Amongst prior publications that were using an MRR structure, we found that in [8],
a sample under test (SUT) was placed only over one gap, which is different from the
majority of other works, and no permittivity-evaluation algorithm was enclosed. In [9],
the algorithm was satisfactorily explained, but the SUT size and placement have not been
unambiguously specified, nor were the SUTs measured therein clearly specified, except
for one. In [10], a reflection-based approach was utilized (via S11 parameter) instead of
the transmission-based approach (via S21 parameter), and the SUT was not characterized
in the way we seek it here for characterizations of external SUTs. In [11], an MRR was
built on the material that was meant to be characterized, rather than having an externally
placed SUT, and the measurement procedure itself was not described. Likewise in [12], the
relative permittivity of the substrate itself was characterized, which does not align with
the objective in this work. In [13], a similar multi-layer structure for the characterization
of permittivity was used, but only with simulations of the sample response and without
the enclosed algorithm for the computation of the permittivity and measurements of real
samples. In [14], only simulations were conducted, while the computation of εr was
proposed in an indirect way, by setting a proportionality coefficient for the similar SUT,
which is of limited applicability and reliability. Lastly, a comprehensive discussion on the
permittivity evaluation was presented in [15], but the solution was based on a suspended
ring structure, i.e., where the MRR is raised above the SUT, which does not enable a simple
fabrication of the MRR.

The novelty and contribution of this paper are in the following:

1. A novel measurement configuration based on the MRR circuit and the variational
method is proposed and verified for determination of the relative permittivity of thin
and solid dielectrics than has been defined before;

2. It clearly presents the MRR design procedure with preparation of the proper SUT size
and placement on the MRR surface, including the accompanying algorithm that does
the ultimate evaluation of the SUT permittivity.

We declare this paper is a revised and extended version of our recent conference
papers [16,17], now comprising new discussions and results, references, figures and tables,
with a thorough discussion on the simplification to the previously defined measurement
configuration.

The paper is organized as follows: Section 2 discusses the key aspects of the MRR-
based approach. Section 3 presents the key expressions for the design of an MRR circuit.
Section 4 describes the original MRR configuration and the algorithm. Section 5 discusses
the proposed SUT dimensions to be used on the surface of the MRR. Section 6 is the
focal part of the paper and presents proposed simplified measurement configuration
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with measurements of 12 benchmark materials, as well as discussions on accuracy and
applicability. Lastly, Section 7 summarizes the most relevant contributions of the paper.

2. The Key Aspects of the MRR Method

Albeit the MRR circuit has been described in the literature, and the SUT measurement
step, it is indeed a rare case to find a paper with a clear, complete, and unambiguous
description of the SUT placement on the MRR surface and the SUT size (which matters!),
as the accompanied algorithm to compute the εr from the obtained measurement results
is often omitted with just the results presented. It is important to state that these three
elements—the sample under test (SUT), the measurement configuration, and the algorithm
to process the measured results—must be consistently and clearly defined for a successful
implementation of this sensitive measurement. Two aspects are identified as a critical
precondition for the success of this measurement principle:

1. The MRR-based permittivity evaluation is based on measurement of the unloaded (F0)-
and loaded (F1)-resonant frequency, where the former refers to an MRR without an
SUT placed on its surface, while the latter refers to an MRR having an SUT placed
on its surface. The ratio F0/F1 and the effective permittivity of the unloaded MRR
(εe f 0) then provide the value of the effective permittivity of the loaded MRR (εe f 1).
Yet, the effective permittivity is just the intermediate information being used, and the
relative permittivity of the unknown sample is computed using an adequate algorithm.
However, it turns out not to be such a straightforward task. In the open literature, it is
actually a rare case to find a clearly described method of computation of the relative
permittivity from the effective permittivity in this measurement configuration. So,
while there is a wide consensus on how to design the MRR circuit, the evaluation of
the relative permittivity of a material under test often remains hidden, while being
presented only by tabulated results that a reader is supposed to trust (without being
able to reproduce it from the enclosed description).

2. The second crucial part for a successful evaluation of the unknown permittivity is
getting a proper value of F1, and that strongly depends on the size and placement of the
SUT on the MRR surface. That aspect has been quite ambiguously covered in previous
publications. Namely, the SUT size and its placement on the MRR surface greatly
affect the measured value of F1, which is then instrumental in the key equations
to compute the εr of the SUT. Having SUTs of different sizes placed over the MRR
surface, while not disclosing the accompanying equations to compute εr, as has been
the case in various earlier publications, does not really enable us reproduce the results
and apply the approach with confidence. In particular, in ([8] Figure 2), the SUT
was placed in the small area around one ring gap (the significance of the gap will be
explained in more detail here in Section 3), with no expressions that served to evaluate
the relative permittivity value based on measurements therein. In ([9] Figure 2), it
seems that the SUT is placed over the entire surface of the substrate, yet it was not
explicitly stated in the paper but remains open for a reader’s speculation. On the
other hand, it is one of the rare papers, using MRR, where the computational model to
evaluate εr was defined. In [13], measurements were neither conducted (even though
the word “measurement” is declared in the paper title) nor the expressions for the
computation of εr presented. In [14], the evaluation of the relative permittivity of
several standard laminates was tested by full-wave simulations and establishing a
characteristic MRR factor (see D in Equation (8), therein) that is pertinent to respective
measurements. That approach can be helpful in situations with high-loss and/or thick
SUTs (such as some food samples), where some other established algorithm does
not produce good enough results, but it is essentially not a realiable method because
we always first need a sample of a known permittivity value in order to determine
that MRR factor for other samples, and the measured sample then generally must fall
within similar values as the material sample used for the calibration. An interested
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reader can see from ([14] Tables 3–8) how the computed results for the same laminate
depend from one calibration sample to another.

We experienced over the course of this work how F1 strongly depends on the SUT size
and placement. This issue, as well as the measurement and calculation procedure, has been
inadequately covered—we emphasize this matter in Section 5.

3. Design of a Microstrip Ring Resonator

Although the design procedure of an MRR (Figure 1) is adequately described in the
literature [13,15,18], we briefly include it for self-sufficiency of the paper.

Figure 1. The layout of the microstrip ring resonator (MRR) circuit for characterization of an unknown
material permittivity.

3.1. Calculation of the Feed Line Width, Length, and the Ring Parameters

For the PCB substrate height h, we take that w/h > 1 holds, which is typically the
case, for which the line width w can be found [19] by iteratively solving the two coupled
Equations (1) and (2)

εe f f =
εr + 1

2
+

εr − 1
2

(
1 + 12

H
w

)−1/2
(1)

Z0 =
120 π

√
εe f f

[
w
H

+ 1.393 +
2
3

ln
(w

H
+ 1.444

)] (2)

Alternatively, instead of utilizing the two equations given by (1) and (2), w can also be
found by a single equation only, as defined in ([20] p. 145).

As for the ring, the essential idea is that its mean circumference (2πr) be equal to an
integer multiple of the guided wavelength λg, that is

2πr = nλg (3)

Typically, the dominant mode of the operation is chosen, for which n = 1. The guided
wavelength λg is computed as

λg =
c

fr
√

εe f f
(4)
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where c is the velocity of light, fr is the resonant frequency of the MRR structure, and εe f f
is the effective permittivity of the structure.

The feed line that is placed to the left and right of the ring is set to have its length L f
equal to

L f = λg/4 (5)

Now, combining (3) and (4), the mean radius of the ring follows as

r =
c

2π fr
√

εe f f
(6)

while the values of the inner and the outer ring radii are

r1 = r− w
2

(7)

r2 = r +
w
2

(8)

where w is the microstrip line width (both for the feed line and the ring), as calculated by (1)
and (2).

3.2. Calculating the Coupling Gap Width

In Figure 1, a small gap g between the feed line and the ring, on either side of the ring,
can be observed. Together with the ring inductance, this capacitive gap creates a resonance
at a certain frequency. As a rule of thumb for the optimal value of the gap width, some
references recommend g ≤ 1 mm, and in ([15] p. 14), g ∈ [0.1w . . . w] is recommended. We
determined its value by a CAD simulation (Figure 2) and making a compromise between
the highest power transfer between the two ports and the value that will not be too small
for the manufacturing of the circuit.

Figure 2. Optimization of the gap value by a full-wave simulation.

3.3. Manufactured MRR

Since the manufacturer’s PCB substrate was based on FR4 and we wanted to design
our MRR at 2.45 GHz, it resulted in the design values listed in Table 1. The MRR shown
in Figure 3 was manufactured at a professional facility [21]. Due to rounding the values
of the line width, as well as the inner and the outer radii, to values that are more practical
for manufacturing, the ultimate resonant frequency of the unloaded MRR, F0, is slightly
higher than the designed one, but that is irrelevant for the measurements because the result
depends on the F0/F1 ratio (see (18) for details).
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Table 1. Design parameters of our MRR.

Parameter Value

Design resonant frequency, F0 2.45 GHz
MRR substrate height (FR4), H 1.55 mm

MRR substrate permittivity (FR4), ε1 4.6

Design parameters adjusted for manufacturing

Feed line width, w 2.9 mm
Inner ring radius, r1 8.6 mm
Outer ring radius, r2 11.5 mm
Feed line length, L f 16.5 mm

Mean ring radius, r = (r1 + r2)/2 10.05 mm
Coupling gap, g 0.3 mm

PCB length, Lg = 2 (L f + r2 + g) 56.6 mm
PCB width, Wg 46.0 mm

Figure 3. The MRR manufactured at JLCPCB factory.

4. The Original MRR Configuration and the Algorithm

To evaluate relative permittivity of a SUT, a variational method-based algorithm
was employed [9], as a seldom one that had a sufficiently described measurement and
computation procedure, when it comes to the MRR method, but still without a clear
reference to the size and placement of the SUT over the MRR surface, as we discussed in
Section 2, nor having a clear reference to the SUTs that were tested.

4.1. The Original MRR-Based Measurement Structure

The variational method-based algorithm supports the MRR structure shown in Figure 4.
It is structured as follows: on top of a ground plane, there is a substrate layer of permittivity
ε1 and thickness H, as a typical microstrip-based configuration. On top of it is a conducting
ring (of a negligible thickness t). In the next layer comes a sample under test (SUT) of an
unknown permittivity ε2 and thickness S. The SUT is then covered by another dielectric
of known permittivity ε3 and thickness D, which has its top surface covered by another
ground plane.
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Figure 4. The original MRR configuration as used in [9].

Such a configuration [9] is adapted from ([22] Figure 1) in a way that the top and
bottom dielectric layers of the configuration in [22] are swapped, which required the
respective substitutions in the original algorithm such that ε1 ↔ ε3 and H ↔ D.

4.2. The Variational Method-Based Algorithm

The algorithm explained to a greater detail can be found in [17], while here, we include
only the key expression for easier reading of this text. To evaluate an SUT permittivity ε2,
the effective permittivity ε f of an MRR is to be computed by

ε f =
C(ε1, ε2, ε3, H, S, D)

C0
(9)

where C is the capacitance of an MRR with some specific non-air substrate, and C0 is the
capacitance of the MRR with air as substrate. The capacitance C [22,23] has to be computed
a few times by

1
C

=
1

π Q2 ε0

∫ ∞

0

[ f̃ (β)]2 g̃(β) h̃(β) dβ (10)

with the following substitutions

f̃ (β)

Q
=

8
5

{
sin(βw/2)

βw/2

}
+

12
5 (βw/2)2

·
{

cos(βw/2)− 2 sin(βw/2)
βw/2

+
sin2(βw/4)
(βw/4)2

}
(11)

g̃(β) =
ε3 d + ε2 s

|β| { ε3 d [ ε1 h + ε2 s] + ε2 [ ε2 + ε1 h s]} (12)

d = coth(|β|D) (13)

s = coth(|β| S) (14)

h = coth(|β|H) (15)

h̃(β) =
1
2

{
1 +

sin H(|β|d− |β|t)
sin H(|β|d)

}
(16)

where t is the line thickness, ε0 = 8.854× 10−12 F
m is the free-space permittivity, and w is

the width of the ring and the feed line. Taking that t→ 0, h̃(β)→ 1 and (10) is computed
by a numerical integration to successively obtain the capacitance of an air-filled line, C0,
capacitance of the unloaded MRR, C1, and MRR structure capacitance C for various possible
SUT permittivities ε2. That is obtained by

ε f 0 =
C1

C0
(17)
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and

ε f 1 = ε f 0

(
F0

F1

)2
(18)

where F0 and F1 are the measured resonant frequency of the unloaded and loaded MRR,
respectively. Then, by using (9) for ε f ≡ ε f 1, ε2 is evaluated.

4.3. Initial Validation of the Algorithm

Initially, the algorithm was tested using various SUTs by a few approaches, as found
in some earlier publications:

1. Placing an SUT only over one ring gap (e.g., as in ([8] Figure 2));
2. Placing an SUT over the whole ring and gaps (e.g., as in ([14] Figure 1b), varying the

SUT sizes;
3. Placing the SUTs over the entire area of the MRR, as it may be inferred from ([9]

Figure 2).

The obtained results turned out to be inaccurate and unpredictable with respect to
known SUT permittivities. Clearly, the results were quite sensitive to the size and placement
of the SUT on the MRR surface, which required a more systematic analysis to find the optimal
size and placement of the SUTs to achieve dependable measurement results. Apparently, the
resonant frequencies F0 and F1 and the effective permittivity εe f 0 are the three factors that
determine the ultimate result. Among them, εe f 0 is determined by analytical computation
(without measurements) and F0 has a repeatable value and a good agreement with the
simulation. The key factor that affects the final result is F1, which directly depends on the
SUT size and placement on the MRR surface. More specifically, it was experienced that
F1 greatly depended on the sample width and length and whether we covered the entire
surface of the resonator, or just the ring and the two gaps, or merely a fraction of the ring
around one gap.

5. In Search of a Proper SUT Size

We therefore conducted full-wave analyses using some known laminate materials
(whose data are available from data sheets) and evaluated the relative permittivity for
every simulation, as was described in Section 4.2 [17]. In every simulation, the resulting
resonant frequency F1 was read off the S21 curve. From the initial measurement of F0 and
the computed εe f 0, the effective permittivity of the loaded MRR was readily obtained by (9)
from which the SUT permittivity, ε2, was computed. The simulated results were then
verified by measurements using a VNA and the prepared SUTs.

5.1. Initial Examinations of the Proper SUT Size and Placement by Full-Wave Simulations

For the simulations, models of a TLX8 laminate [24] and a FR4 laminate were used,
with the respective parameters values given in Table 2.

Table 2. Sample under test (SUT) values used in simulations.

SUT Material SUT Thickness, S Nominal SUT Permittivity, ε2

TLX8 0.82 mm 2.55
FR4 1.53 mm 4.3 . . . 4.6 *

* The actual value of FR4 depends on the manufacturer.

The simulations were performed using Altair Feko CAD solver [25], wherein we
obtained F0 = 2503 MHz. Initially, several variants of the SUT sizes were tested (Figure 5)
to be concluded that the SUT should be of the approximate size to cover the ring including
both gaps. It was also observed that more accurate results occurred when the SUT width
was SUTW ≥ 2r2 and more detailed analyses were needed to establish a more dependable
condition on the SUT size.
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(a) (b)

(c) (d)

Figure 5. Various SUT variants of the early examinations. (a) TLX8 SUT: full width. (b) TLX8 SUT:
medium width. (c) TLX8 SUT: short width. (d) FR4 SUT: full width.

5.2. Detailed SUT Size Examinations by Full-Wave Simulations

In the following simulations, either the SUT length (SUTL) or width (SUTW) were
varied one at a time, with the specific settings that are presented in Tables 3–5.

Table 3. Analyzing resonant frequencies for full sample width (SUTW = Wg) and variable sample
length, SUTL.

Sample Length *, SUTL Lg 0.65 Lg 0.60 Lg 0.55 Lg
2 (r2 + g +

1)

F1 (MHz) 2405 2405 2401 2407 2409

εe f 1 3.743 3.743 3.755 3.736 3.73

ε2 2.65 2.65 2.72 2.6 2.57
* with: εn = 2.55 mm and S = 0.82 mm for a TLX8 SUT, and F0 = 2503 MHz.

In Table 3, where the sample length, SUTL, was varied from SUTL = Lg down
to SUTL = 2(r2 + g + 1), while keeping the sample width constant at the full width
(SUTW = Wg), we see that the closest result to the expected permittivity value of TLX8
(ε2 = 2.55) is in the last column (i.e., where the length of the SUT is just slightly wider than
the ring width plus the gap width) and equals ε2 = 2.57.

The next series of simulations, shown by Table 4, was characterized by also varying the
sample length, analogously to the Table 3, but now with a reduced sample width (SUTW = 2 r2).

Table 4. Analyzing resonant frequencies for reduced sample width (SUTW = 2 r2) and variable
sample length, SUTL.

Sample Length *, SUTL Lg 0.65 Lg 0.60 Lg 0.55 Lg
2 (r2 + g +

1)

F1 (MHz) 2402 2404 2397 2403 2408

εe f 1 3.75 3.746 3.77 3.749 3.733

ε2 2.72 2.68 2.83 2.69 2.6
* with: εn = 2.55 mm and S = 0.82 mm for a TLX8 SUT, and F0 = 2503 MHz.
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We can observe similar, yet slightly worse, results in this case, with the relatively
most accurate result in the last column, just as in Table 3. It is noticeable that the results
are less accurate when the sample length is larger (e.g., as in columns 2, 3, and 4). It can
be interpreted by the notion that having a sample covering a longer fraction of the feed
line alters the effective permittivity, which consequently affects the computed relative
permittivity of the unknown sample ε2.

In the next analysis, summarized in Table 5, the sample length was kept constant at
SUTL = 2 (r2 + g + 1), while varying the sample width, SUTW .

Table 5. Analyzing resonant frequencies for constant sample length (SUTL = 2 (r2 + g + 1)) and
variable sample width, SUTW .

Sample Width *, SUTW Wg 0.8 Wg 0.7 Wg 0.65 Wg 0.6 Wg 0.55 Wg 2 r2 r1

F1 (MHz) 2409 2409 2409 2409 2411 2408 2408 2451
εe f 1 3.729 3.279 3.279 3.279 3.724 3.733 3.733 3.604
ε2 2.57 2.57 2.57 2.57 2.53 2.6 2.6 1.8

* with: εn = 2.55 mm, and S = 0.82 mm for a TLX8 SUT, and F0 = 2503 mm.

What can be observed from the respective tabulated results is that the most accurate
result occurs for the full width of the SUT, (i.e., SUTW = Wg), which is ε2 = 2.57 (in
column 2), but the result remains quite steady down to SUTW = 2 r2, with some fluctuation
around SUTW = 0.6 Wg, and becomes inaccurate but for SUTW < 2 r2 (see the rightmost
column where SUTW = r1), which means that the outer edge of the ring must be included
in the SUT size. The best result was ε2 = 2.57, which is only 0.78% or relative error with
respect to the nominal value for this TLX8 laminate, which is εn = 2.55, and that is an
excellent result for such a simple measurement apparatus. If we question why the results
are less sensitive to varying the SUT width as opposed to varying the SUT length, the likely
reason lies in the fact that varying the SUT width does not cross the feed line and hence
does not affect the structure’s effective permittivity and line impedance as much.

Ultimately, the following SUT dimensions were found to be proper:

SUTL = 2 (r2 + g + 1) (19)

SUTW = Wg (20)

6. The Proposed Simplified MRR Configuration for Measurement of SUT Permittivity

In our earlier work ([17] Table 1), it was experienced that the results obtained by the
original MRR configuration (as in Figure 4) were not desirably close to the reference values
of SUT permittivity (ε2). In addition, working with a PTFE block, as the cover layer for the
SUT, is tricky because of its very slippery surface. (We also tried to use a different dielectric
as the cover layer, but it brought no benefit in terms of the results.)

In light of that experience, the idea was contemplated if a simplified MRR structure
could support the SUT measurements as well. The essence of that simplification was to
remove the layers above the SUT, as illustrated in Figure 6. Removal of the cover layer is
then adequately reflected in the variational method-based algorithm by having ε3 = 1 and
D → ∞.

Figure 6. The cross-section of a simplified MRR configuration—without the “cover” layer on top of
an SUT.
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Without the cover layer, it is now easier to align the SUT with the MRR board, but
care has to be taken to make a firm contact between the SUT and the MRR surface. The
sensitivity of the measured results, with respect to the pressure applied on the SUT surface,
was also initially tested in [17] by three ways:

1. Placing an SUT over the MRR surface without applying any pressure;
2. Pressing the SUT using a pair of plastic clamps (Figure 7a);
3. Pressing the SUT using just fingers (Figure 7b).

(a) (b)

Figure 7. Measurements on FR4 with clamps and TLX8 with fingers. (a) measurement of FR4.
(b) measurement of TLX8.

The accuracy of the results showed improvement (see ([17] Table 2)), wherein the best
results were actually achieved when the SUT surface was pressed with fingers (Figure 7b).
For TLX8, the relative error was only −3.9%, while for the jeans sample, the exact permit-
tivity value was achieved. (In the open literature, permittivity value of jeans varies from
1.6 to 1.8 [26–29], with the prevailing value of 1.7.) However, the above findings called for
additional verification.

6.1. Detailed Evaluation of the Impact of Finger-Pressing on the SUT Surface

We understand that applying direct finger-pressing on the surface of an SUT may
raise a doubt, for the reason that the SUT is no longer covered by an even layer that is
bounded by the upper ground plane, as in the original configuration, and that touching
the SUT surface with fingers introduces some uncertainty to the measurement. Additional
verification is also important to achieve confidence in the repeatability of the measurement
results and that is especially important because we are dealing with an open structure
without a strict enclosure for the SUT placement, plus we propose it to be possible to
remove the cover layer. As the fingers can be placed across the MRR surface in various
ways, it is important to check whether some finger-pressure configurations are better than
the others with respect to the accuracy of the results.

To provide more insights into that question, we performed more detailed measure-
ments using four configurations of fingers placed on the SUT surface, as illustrated by
Figure 8, to determine the one that is realistic and practical enough to perform the measure-
ments and provide the most accurate and consistent results.



Sensors 2022, 22, 928 12 of 18

(a) (b)

(c) (d)

Figure 8. The four finger-press configurations with respective finger spots for the surface of an
SUT. (a) 2-finger configuration. (b) 3-finger configuration. (c) 4-finger configuration. (d) 5-finger
configuration.

The measurements were performed on multiple samples (Figure 9) of various SUT
thicknesses (S), ranging from 0.1 mm up to over 7 mm, and permittivity values (εn),
ranging from 1.7 to over 6. The measurement results are presented in Table 6 in terms of
the measured F1 and the computed relative permittivity value of each SUT (εx).

Figure 9. Dielectric materials that were tested.
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Table 6. Measurements of the impact of the four finger configurations.

SUT S, mm εn

2 Fingers 3 Fingers 4 Fingers 5 Fingers

F1,
MHz εx

F1,
MHz εx

F1,
MHz εx

F1,
MHz εx

paper: 1 layer 0.1 3 2469 4.27 2429 9.17 2490 2.17 2463 4.92
paper 2 layers 0.2 3 2449 3.75 2366 9.84 2462 2.99 2334 n/a
TLX8 0.8 2.55 2407 2.7 2392 3.01 2405 2.74 2361 3.74
TLX8–060 1.57 2.55 2375 2.65 - - 2380 2.57 - -
RF60A–0300 0.83 6.15 2277 5.94 - - 2268 6.2 - -
RF60A–0620 1.59 6.15 2210 5.73 - - 2205 5.84 - -
jeans 0.9 1.7 2456 1.73 2435 2.07 2447 1.86 2436 2.05
FR4 1.48 4.3–4.6 2287 4.23 - - 2276 4.44 - -
glass 1.93 4–7 2174 6.09 - - 2166 6.28 - -
plexiglass 1 2.95 3.45 2371 2.4 - - 2375 2.34 - -
plexiglass 2 4.13 3.45 2350 2.55 - - 2349 2.57 - -
plexiglass 3 6 3.45 2351 2.47 - - 2349 2.49 - -
PTFE 7.37 2 2428 1.67 - - 2428 1.67 - -

With F0 = 2506 MHz, D �, ε3 = 1.

During these measurements, it became clear that 3-finger and 5-finger configurations
did not secure accurate enough results and. due to that, only several SUTs were measured
by those two configurations (i.e., the dashes in the table mean that the measurement in that
case was not performed). We interpret such an outcome by the presence of a finger within
the radius of the ring, possibly near the strongest field lines. As for the comparison between
the 2-finger and 4-finger configurations, the results are almost equal for the thicker SUTs
(e.g., the last four rows of Table 6), while their proximity to the nominal value of the SUT
permittivity (εn in column 3) varies for thinner SUTs. Still, both results are satisfactorily
close to the reference value of the respective permittivities.

We now extract the tabular values for the 2-finger and 4-finger configurations and
express the relative errors with respect to the nominal permittivity value for the given SUTs.
The results are shown in Table 7.

Table 7. The relative error comparison of the two best finger configurations.

SUT S, mm εn

2 Fingers 4 Fingers

F1, MHz εx ∆ε F1, MHz εx ∆ε

paper: 1 layer 0.1 3 [30] 2469 4.27 42% 2490 2.17 −28%
paper: 2 layers 0.2 3 [30] 2449 3.75 25% 2462 2.99 0%

TLX8 0.8 2.55 [24] 2407 2.7 6% 2405 2.74 7%
TLX8–060 1.57 2.55 [24] 2375 2.65 4% 2380 2.57 1%
RF60A–0300 0.83 6.15 [24] 2277 5.94 −3% 2268 6.2 1%
RF60A–0620 1.59 6.15 [24] 2210 5.73 −7% 2205 5.84 −5%
jeans 0.9 1.7 [26–29] 2456 1.73 2% 2447 1.86 9%
FR4 1.48 4.3–4.6 2287 4.23 - 2276 4.44 -
glass 1.93 4–7 [30] 2174 6.09 - 2166 6.28 -

plexiglass 1 2.95 2.6–3.5 [31] 2371 2.4 - 2375 2.34 -
plexiglass 2 4.13 2.6–3.5 [31] 2350 2.55 - 2349 2.57 -
plexiglass 3 6 2.6–3.5 [31] 2351 2.47 - 2349 2.49 -
PTFE 7.37 2 [32] 2428 1.67 −17% 2428 1.67 −17%

With F0 = 2506 MHz.

It can be observed through three groups of SUT thicknesses that are separated by
horizontal lines. The first group contains very thin samples like 0.1-mm thin paper. At
first, the accuracy was inadequate. However, when two layers of the sample were stacked
together to double the thickness, the 4-finger configuration achieved the accurate value of
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εr. In this case, four fingers helped stick the sample more evenly to the MRR surface and
reduce possible air bubbles as a result of an easily bendable surface of the paper.

The second group of SUTs comprises five industry-standard laminates (TLX’s, RF60A’s,
and FR4) and two non-standard SUTs (jeans and glass), all with moderate sample thick-
nesses from 0.8 mm to 1.93 mm and permittivities ranging from 1.7 to 7. For this group of
samples, we see that both 2-finger and 4-finger setup achieved close results and all with
relative errors below 10%, which is a great achievement for one such simple measurement
setup. We note that the declared nominal values εn were copied from the official datasheets
of the respective laminate manufacturers or from the sources available in the open literature.
Each item in Table 7 was added a reference to the source of information. For those SUTs
that are known to not have a unique value of εn, such as FR4 or glass, but can come within
a range of values, we did not calculate the relative error, but presented only the computed
permittivity value εx for each case. It can be observed that our results fall within the nomi-
nal range of values for both of these SUTs. It may also be a good practice to measure a given
SUT by both the 2-finger- and 4-finger- configurations and then average the result, which
will secure a modest distance from the exact values of the SUT permittivity, whichever of
the two measurements happened to be more accurate in the particular case.

The last group of SUTs are thicker samples, such as three available variants of plexiglass
material, with three different thicknesses, and a sample of PTFE. While PTFE has quite a
unanimous permittivity value about 2 [32], plexiglass SUTs are found to have εn within a
range from 2.6 to 3.5 [31]. For all the three types of plexiglass, the measured results were
close to the lower end of the nominal εn, while for the PTFE, the evaluated εx was 1.67,
which is 17% below the nominal value. In case of the last two SUTs, i.e., the plexiglass
and PTFE, the discrepancy is somewhat higher. The percentage value in this case looks
more concerning, though, than we feel looking at the absolute difference between εx and
εn. Nevertheless, it is generally understood that the resonant method is primarily good for
thin samples. For thicker samples, sensitivity of the MRR method decays, due to which the
frequency shift of F1 is not as accurate as in the case of thinner SUTs.

6.2. Why a Direct Contact of Fingers with the SUT Does Not Spoil the Measurement

The concern with this simplified measurement, by a direct finger touch with the
SUT surface, a direct touch with the SUT surface, may be that it prohibitively affects
the measurement. Although this concern is justified, our unbiased measurements and
computations of SUTs permittivity, which were conducted by both approaches (i.e., with-
and without- the cover layer) indicated no detrimental effect to the ultimate result when
the “simplifed” configuration from Figure 6 was used instead of the “original” MRR
configuration in Figure 4. In Table 8, we directly compare the results obtained by using the
simplified configuration vs. original configuration, as illustrated by Figure 10.

From Table 8, it is evident that measurements performed by the simplified MRR
configuration actually achieved better results with all the measured SUTs. In the most
relevant group of moderately thin SUTs, the simplified method outperformed the original
even by the double digits in percentages of the relative error. Now, how can we explain
such an outcome? When we look at the surface current over the MRR surface, as shown
in Figure 11, we see that the spots where the fingers in the “2-finger” and “4-finger”
configurations are being placed have surface current levels many dBs below the strongest
surface current. Due to that, the finger placement on the SUT surface has an insignificant
effect on the measured result and is acceptable for the practical purposes.
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Table 8. Result comparison: a “simplified” vs. the “original” configuration.

SUT S, mm εn
with PTFE Cover and Clamps Simplified: 4 Fingers

F1, MHz εx ∆ε F1, MHz εx ∆ε

paper: 1 layer 0.1 3 2411 NaN - 2490 2.17 −28%
paper: 2 layers 0.2 3 - - - 2462 2.99 0%

TLX8 0.8 2.55 2389 1.84 −28% 2405 2.74 7%
TLX8–060 1.57 2.55 2369 2.15 −16% 2380 2.57 1%
RF60A–0300 0.83 6.15 2233 5.23 −15% 2268 6.2 1%
RF60A–0620 1.59 6.15 2195 5.04 −18% 2205 5.84 −5%
jeans 0.9 1.7 2421 1.42 −16% 2447 1.86 9%
FR4 1.48 4.3–4.6 2283 3.43 - 2276 4.44 -
glass 1.93 4–7 2189 4.92 - 2166 6.28 -

plexiglass 1 2.95 2.6–3.5 2371 2.13 - 2375 2.34 -
plexiglass 2 4.13 2.6–3.5 2358 2.28 - 2349 2.57 -
plexiglass 3 6 2.6–3.5 2361 2.26 - 2349 2.49 -
PTFE 7.37 2 2427 1.63 −19% 2428 1.67 −17%

With F0 = 2507 MHz.

(a)

(b)

Figure 10. Comparative measurements of SUTs by “simplified” MRR configuration vs. the “original”
MRR configuration with a PTFE cover layer and a ground plane on top. (a) “4-finger” simplified
configuration. (b) original configuration.
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Figure 11. The simulated surface current.

Alternatively, if we imagine the use of an infinitely thick cover layer, the ground plane
on it will not have an impact as it has with a finite thickness of the layer. We consider that a
model of an infinitely thick cover layer of air without the ground plane on it then has an
equivalent effect that is what was entered in the algorithm by setting D → ∞ and ε3 = 1.

Another aspect is measurement accuracy and reading precision in the VNA software,
as for the ultimate computation of ε2, every MHz counts when computing expression (18).
To illustrate it, Figure 12 shows how the results of ε f 1 and ε2 vary with respect to a possible
result of F1. For example, let us take F1 = 2346 MHz. In Figure 12, we show the values
of ε f 1 and ε2 if F1 were ±5 MHz around the reported value of 2346 MHz. Thus, F1 values
span from F1 − 5 MHz = 2341 MHz, for which ε2 = 2.66, to F1 + 5 MHz = 2351 MHz,
where ε2 = 2.53.

Figure 12. An example of change of the evaluated value of ε f 1 and ε2, with respect to F1, when F1

varies ±5 MHz around the central value at 2346 MHz for an SUT of 4.13 mm thick plexiglass.

The change in the results of ε f 1 and ε2 for the lowermost frequency point (2341 MHz)
with respect to the central point (2346 MHz) is the following: the relative discrepancy in F1
is −0.21%, for which the discrepancy in the value of ε f 1 is 0.43%, but the discrepancy in the
value of ε2 is 2.7%. It speaks something about the sensitivity of the result to the measured
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values because, for a small shift in the measured frequency value F1 of merely 0.21%, the
change in the resulting value of ε2 was almost 3%. Knowing that, it is fair to conclude
that the results achieved by this simple measurement apparatus are quite satisfactory for
ocassional measurements of unknown dielectric sheets that satisfy the characteristics of
this measurement method.

7. Conclusions

The focal part of this paper was the proposed simplified configuration for measure-
ment of thin dielectric materials in conjunction with a variation method-based algorithm.
We presented the modification in the measurement setup, showed the essence of the algo-
rithm that post-processes the measured values, and we verified it on 12 dielectric samples
of different thicknesses and permittivities, with accuracies below 10% of relative error for
all thin sheets and moderately higher errors (below 20%) for thick sheets that are generally
not considered suitable for measurement with this method.

For completeness of the presentation, the MRR design equations and the key expres-
sions of the variational algorithm were included to a degree that provides a self-sufficiency
of this text. Additionally, a discussion on proper SUT size and placement on the MRR sur-
face was included to emphasize the importance of it for overall success of the measurement
and evaluation of an unknown permittivity.

The novelty of this work is in the proposition of a measurement configuration that
is simpler than the one previously defined, while the contribution is that it includes the
circuit design, permittivity computation expressions, and a recommendation for the proper
sample size preparation, in addition to the proposed measurement approach.
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