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Abstract
In an era of unprecedented ecological upheaval, monitoring ecosystem change at 
large spatial scales and over long-time frames is an essential endeavor of effective 
environmental management and conservation. However, economic limitations often 
preclude revisiting entire monitoring networks at high frequency. We aimed here 
to develop a prioritization strategy for monitoring networks to select a subset of 
existing sites that meets the principles of complementarity and representativeness 
of the whole ecological reality, and maximizes ecological complementarity (species 
accumulation) and the spatial and environmental representativeness. We applied two 
well-known approaches for conservation design, the “minimum set” and the “maximal 
coverage” problems, using a suite of alpha and beta biodiversity metrics. We created 
a novel function for the R environment that performs biodiversity metric compari-
sons and site prioritization on a plot-by-plot basis. We tested our procedures using 
plot data provided by the Terrestrial Ecosystem Research Network (TERN) AusPlots, 
an Australian long-term monitoring network of 774 vegetation and soil monitoring 
plots. We selected 250 plots and 80% of the total species recorded as targets for the 
maximal coverage and minimum set problems, respectively. We compared the sub-
sets selected by the different biodiversity metrics in terms of complementarity and 
spatial and environmental representativeness. We found that prioritization based 
on species turnover (i.e., iterative selection of the most dissimilar plot to a cumula-
tive sample in terms of species replacement) maximized ecological complementarity 
and spatial representativeness, while also providing high environmental coverage. 
Species richness was an unreliable metric for spatial representation. Selection based 
on range-rarity-richness was balanced in terms of complementarity and representa-
tiveness, whereas its richness-corrected implementation failed to capture ecologi-
cal and environmental variation. Prioritization based on species turnover is desirable 
to cover the maximum variability of the whole network. Synthesis and applications: 
Our results inform monitoring design and conservation priorities, which can benefit 
by considering the turnover component of beta diversity in addition to univariate 
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1  | INTRODUC TION

Ecological monitoring is a prerequisite for successful environmen-
tal policy and decision-making, and the development of effective 
management and conservation programs (Haase et al., 2018; Jeffers, 
1989; Jones, 2011; Lovett et al., 2007; Parr et al., 2003; Sparrow, 
Edwards, et al., 2020; Spellerberg, 2005; Vos et al., 2000; Wolfe 
et al., 1987). Over the past two decades, monitoring programs have 
been developed at large scales to incorporate broader landscape 
processes (Parr et al., 2003; Sparrow, Edwards, et al., 2020; Yoccoz 
et al., 2001). There are now several examples of these comprehensive 
ecosystem observation networks established at continental scale, 
including the pan-European Integrated Carbon Observation System 
(ICOS), the National Ecological Observatory Network (NEON; USA), 
the Global Ecosystems Monitoring (GEM) network across the tropics 
(Malhi et al., 2021), and the Terrestrial Ecosystem Research Network 
(TERN) in Australia (Cleverly et al., 2019).

Such monitoring programs require large financial investments 
to provide standardized surveying training, fieldwork organization, 
sample preservation and storage, as well as data curation, access, 
and promotion (Kang et al., 2016). Therefore, the sampling breadth 
and frequency of ecosystem monitoring programs are limited by re-
source constraints (Lovett et al., 2007). Consequently, monitoring 
resources need to be carefully prioritized, including in the determi-
nation of efficient site revisit schedules (James et al., 1999; Kang 
et al., 2016).

Here, we aimed to design a straightforward prioritization strat-
egy for large-scale monitoring networks by comparing a suite of 
commonly used alpha and beta biodiversity metrics and identifying 
which one best optimizes the selection of a subset of plots that max-
imizes the number of species accumulated, while ensuring environ-
mental and spatial representativeness. To do so, we developed a free 
and user-friendly tool for the R environment to perform an optimiza-
tion process applying the maximal coverage problem, optim_species 
function (included in the ausplotsR package; Guerin, Saleeba, et al., 
2020; see Appendix S1 for R code details).

When resources are limited, “conservation prioritization”-style 
strategies can be implemented to select an optimal subset of sites for 
monitoring. This includes ensuring high information content (i.e., the 
largest possible set of species), and meeting the principles of com-
plementarity and representativeness (Bennett et al., 2014; Guerin 
et al., 2020; Guerin et al., 2020; Justus & Sarkar, 2002; Kirkpatrick, 
1983; Margules & Pressey, 2000). Indeed, several analyses have 
sought to find optimal subsets of larger ecological samples for ef-
ficiency of sampling effort (Bennett et al., 2014; Dowd et al., 2014). 

For example, Pesch et al. (2008) reported that over 300 sites could 
be removed from an existing monitoring network for moss while re-
maining ecologically, environmentally, and spatially representative 
across many ecoregions.

Monitored sites should also constitute a spatially and environ-
mentally representative subset of locations to ensure ecological and 
statistical validity (Cullen, 1990; Sparrow, Foulkes, et al., 2020; Vos 
et al., 2000). A cost-effective resampling strategy needs to define 
a subset of priority sites to be revisited and overcome the existing 
resource-limited trade-offs between effective spatial and tempo-
ral monitoring (Hewitt & Thrush, 2007). While species richness has 
commonly been used to prioritize sites for monitoring or conserva-
tion, it may not be efficient for this purpose, nor ensure comple-
mentarity (Gotelli & Colwell, 2001; Hillebrand et al., 2018; Justus & 
Sarkar, 2002; Kirkpatrick, 1983).

The “minimum set” problem and the “maximal coverage” problem 
are two common approaches to prioritize conservation reserves aim-
ing to maximize conservation benefits at minimum costs (McIntosh 
et al., 2017). The minimum set problem is based on ecological con-
straints; it identifies a set of plots that meets certain conservation 
targets (typically species) within the fewest possible number of sites 
(Margules & Pressey, 2000). In contrast, the maximal coverage prob-
lem is based on economic constrains and consists of maximizing the 
number of species in a given number of sites (Alagador & Cerdeira, 
2020).

While heuristic algorithms (e.g., Marxan, Zonation or prioritizr) 
are effective as optimizers for both minimum set and maximal cov-
erage problems, they are often based on species distribution mod-
els (Amorim et al., 2014; Carvalho, 2016) and can require complex 
analytical decisions or be computationally expensive (Ball et al., 
2009; Pressey et al., 1996). Alternative approaches based on simpler 
optimization strategies have been employed; for example based on 
range-rarity richness (RRR; i.e., richness weighted by the inverse of 
the number of sites in which each species is present; Albuquerque 
& Beier, 2015; Guerin & Lowe, 2015; Veach et al., 2017) or on en-
demism and threatened species (Smith et al., 2008) for nature re-
serve design in California and a trans-frontier conservation area in 
Southern Africa, respectively.

The species turnover component (i.e., species replacement) of 
beta diversity (Baselga, 2010) has been proposed as one of the most 
robust biodiversity metrics to detect ecological changes over time, 
as it reflects compositional change within plant communities and is a 
strong indicator of how those communities respond to global change 
(Hillebrand et al., 2018). Yet, the use of species turnover to define 
conservation priorities and complementarity is still scarce (but see 

metrics. Our tool is computationally efficient, free, and can be readily applied to any 
species versus sites dataset, facilitating rapid decision-making.
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Socolar et al., 2016). No studies have compared its performance to 
other biodiversity metrics with regards not only to ecological com-
plementarity but also to spatial and environmental representative-
ness. Given the different approaches employed in the literature, it is 
worth investigating how the different biodiversity metrics perform 
when applying to site prioritization in a continental ecological mon-
itoring program.

Monitoring optimization approaches have been previously 
developed; however, their complexity often precludes them from 
considering more than one dimension; thus, either they are focused 
on ensuring species targeting (e.g., Morán-Ordóñez et al., 2018), 
or on maximizing environmental representativeness (e.g., O’Hare 
et al., 2020).

We compared the utility of biodiversity metrics in selecting 
subsets of sites using a methodology applied to TERN AusPlots, an 
Australian long-term monitoring network of ecosystem surveillance 
and monitoring sites distributed at continental scale (sensu Eyre 
et al., 2011; Sparrow, Edwards, et al., 2020). We aimed to select a 
subset of sites that optimize the complementarity and representa-
tiveness of the whole network, and to compare the efficiency of 
various metrics to do this. We applied both the minimum set and 
maximal coverage approaches to design a revisiting strategy for the 
collection of AusPlots. Specifically, we aimed to identify which biodi-
versity metrics could be most efficiently used to achieve an optimal 
revisiting strategy that maximizes ecological complementarity (i.e., 
the number of species accumulated) when imposing (i) an ecological 
constraint (i.e., minimum set problem—consisting on covering 80% 
of the total number of species recorded in the dataset) and (ii) an 
economic constraint (i.e., maximal coverage problem—consisting on 
selecting a subset of 250 plots). For the results of the maximal cov-
erage problem approach (i.e., those obtained with the optim_species 
function), we subsequently compared the environmental and spatial 
representativeness of the subsets of sites selected by each of those 
biodiversity metrics as optimizers to determine, which is the pre-
ferred option to meet our complementarity and representativeness 
principles.

2  | METHODS

2.1 | Case study dataset

Our study uses AusPlots, a plot network originally designed via 
environmental stratification (Guerin, Williams, Leitch, et al., 2020; 
Guerin, Williams, Sparrow, et al., 2020) that has been systemically 
surveyed over 10 years by TERN's Ecosystem Surveillance Program, 
a component of Australia's land ecosystem observatory (Cleverly 
et al., 2019). We used species presence and cover data from 774 
one-hectare plots to compare biodiversity metrics and test our site 
prioritization approach. The plots are established in homogenous 
areas of terrestrial vegetation to take quantitative measurements 
of vegetation and soil characterization (Guerin et al., 2017). In each 
plot, vegetation structure and composition are recorded using the 

point-intercept module (Sparrow, Foulkes, et al., 2020). Parallel tran-
sects (10 × 100 m long) are laid out in a 5 × 5 grid pattern, spaced 
20 m apart. Species identity, cover and growth form are recorded at 
each 1 m point along each transect, resulting in 1010 survey points 
per plot. Data for each plot are available and freely accessible within 
the AusPlots database, and were extracted from the database using 
ausplotsR (v1.2; Guerin, Saleeba, et al., 2020; Munroe et al., 2021; 
TERN, 2020).

Some of the sites included in the dataset were revisited (i.e., 
99 sites had been revisited, 73 of them twice, and 26 three times) 
and different sets of species were recorded. Where repeat visits oc-
curred, each was treated as a sample (hereafter, we refer to each visit 
as a “plot” for simplicity).

2.2 | Biodiversity metrics

Using the function optim_species from the ausplotsR package, we 
compared a selection of often-used biodiversity metrics to be 
employed as optimizers to define monitoring priorities. The biodi-
versity metrics included univariate metrics: (i) species richness, (ii) 
range-rarity richness (RRR; Guerin & Lowe, 2015), (iii) corrected 
range-rarity richness (CRRR; Crisp et al., 2001; Guerin & Lowe, 
2015), (iv) Shannon-Wiener diversity index (Shannon; Shannon & 
Weaver, 1949), and (v) Simpson diversity index (Simpson; Simpson, 
1949). Species turnover-based metrics used included: i) pairwise 
Simpson dissimilarity (Simpson_Beta; Baselga, 2010) and ii) the 
most frequently selected plots after repeating pairwise Simpson 
dissimilarity selection over 1,000 iterations starting with different 
seed plots (“Frequent”). The optim_species function calculates the 
alpha metrics for each plot, and ranks them, selecting the n top 
ones (e.g., 250 plots). For the beta metrics, the function chooses 
a seed plot, calculates the dissimilarity between the seed and all 
other plots, and chooses the most dissimilar one. Afterward, the 
most dissimilar one gets merged with the previous one and the 
process is repeated, finding the next most different to the cumula-
tive sample (i.e., it is an iterative process where each step depends 
on the former one. See Table 1, Appendix S2 and Guerin, Saleeba, 
et al. (2020)) for further details of both, the optimizers and the 
function.

2.3 | Data analyses

2.3.1 | Multisite beta diversity

We carried out all statistical analyses in R (R Core Team, 2020). To 
check to what degree biodiversity differences between plots were 
due to species replacement or species loss we computed multiple-
site Sorenson dissimilarities in beta diversity (βsor) accounting for 
both the spatial turnover (βsim) and the nestedness (βnes) compo-
nents of beta diversity (βsor  =  βsim  +  βnes; Baselga et al., 2018; 
Koleff et al., 2003).
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2.3.2 | Conservation reserve design applied to 
optimize monitoring strategies

We applied the maximum coverage and the minimum set prob-
lems to optimize monitoring site selection to prioritize sites to re-
visit. For both the minimum set problem and the maximal coverage 
problem, we performed the analyses by selecting individual plots. 
Subsequently, we applied the maximal coverage problem to spatial 
clusters of plots to consider a more realistic and feasible scenario 
because it is unlikely a field team would go to a remote area to only 
sample one plot, for example.

We developed the R function optim_species as part of this study 
which builds on functionalities from the vegan (Oksanen et al., 2019) 
and betapart (Baselga et al., 2018) packages. The optimization anal-
ysis is captured in this function which can be accessed in ausplotsR 
(Guerin, Saleeba, et al., 2020). The function is thus free and easily 
accessible and can be run on any similar dataset (see R code as well 
as another example in the Appendices S1 and S3 for details). Hence, 
we performed the analyses employing the optim_species function, 
using as data input the species versus sites matrix in terms of pres-
ence/absence, except for Shannon and Simpson, for which we used 
the matrix including percent cover values.

The maximal coverage problem
To address the maximal coverage problem, we set to 250 the num-
ber of plots to be selected for future revisits and monitoring. We 
decided on 250 plots within the AusPlots monitoring network be-
cause it is a feasible number of plots to revisit on a three-to-five-
year cycle.

The minimum set problem
To address the minimum set problem, we elucidated how many plots 
we would need to be revisited using each optimizer to account for at 
least 80% of the overall species richness (2,822 species). The mini-
mum set problem was analyzed employing the same optimizers de-
scribed for the maximal coverage problem (Table 1).

2.3.3 | Spatial coverage representativeness

To compare spatial coverage representativeness of the plots se-
lected by different optimizers, we computed the Clark and Evans 
aggregation index (Clark & Evans, 1954) for the spatial point pat-
terns obtained with each of the optimizers using spatstat (Baddeley 
et al., 2015). We applied the cumulative distribution function cdf 

TA B L E  1   Optimizer's description

Optimizer ID Optimizer name Description Special utilisation/Best used

Richness Species richness Count of the number of species present in a given site Identify biodiversity hotspots

RRR Range-rarity richness Inverse of the number of sites in which a species occurs. 
RRR = 

∑n

1
1∕ci, where ci is the number of map grid cells 

occupied by species i and n is the number of species

When the goal is to identify areas of 
high biodiversity and biological 
uniqueness

CRRR Corrected range-
rarity richness

Range rarity richness (RRR) divided by species richness. 
CRRR = (

∑n

1
1∕ci)/n, where ci is the number of map grid cells 

occupied by species i and n is the number of species

When the goal is to identify centers 
of endemism or highlight range-
restricted species

Shannon Shannon-Wiener 
diversity index

Combines species richness and the evenness or equitability 
by computing the species' relative abundances. H': 
−
∑S

i=1
pilognpi, where S is the species richness and pi is the 

relative abundance of the species

It assumes that all species are 
represented in a sample and that 
they are randomly sampled

Simpson Simpson diversity 
index

Combines species richness and the evenness or equitability by 
computing the species' relative abundances D = 1 − Σpi

2, 
where piis the proportional abundance of species i

It is the complement of Simpson's 
original dominance index, and 
represents the probability that 
two randomly chosen individuals 
belong to different species

Simpson_Beta Pairwise Simpson 
dissimilarity index

It is based on diversity partitioning, which separates species 
replacement (i.e., turnover) from species loss (i.e., 
nestedness). The Simpson dissimilarity corresponds to 
the turnover component of the Sorensen dissimilarity. 
Considering two sites, βsim = min(b, c)/(a + min(b, c)), 
where a is the number of species present in both sites, b is 
the number of species present in the first site, but not in 
the second, and c is the number of species present in the 
second site, but not in the first.

It is used to maximize species 
turnover

Frequent The most frequent plots selected over 1,000 iterations with 
a randomized starting seed using the pairwise Simpson 
dissimilarity index

Simpson_
Random

The pairwise Simpson dissimilarity index with a randomized 
starting seed iterated 1,000 times
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without edge correction because of corresponding to the mean 
value of nearest neighbor distance distribution function G(r) from a 
point pattern within an arbitrary shape. The Clark-Evans test values 
show whether a spatial point pattern distribution is clustered (R < 1), 
or ordered or regular (R > 1). We also mapped the location of the 
250 selected plots obtained from the maximal coverage problem to 
visually support the differences in spatial representativeness when 
applying each of the biodiversity optimizers.

2.3.4 | Environmental coverage representativeness

We compared sets of optimized plots for their climatic representa-
tiveness across Australia. We extracted data for 25  climatic vari-
ables from Harwood et al. (2016) (Appendix S4). We assessed plant 
species composition data from field plots in the order they were 
selected by the different optimizers, treating successive plots as 
additions to a cumulative sample of environmental and ecological 
space. We computed Euclidean distances for environmental varia-
bles with the function vegdist from the vegan package to assess the 
environmental representativeness of the subsets of plots selected 
by different optimizers. We implemented the betadisper function to 
analyze multivariate homogeneity of dispersions (distance to group 
centroid in principal coordinates space) of the cumulative samples 
(Anderson et al., 2006) for the different optimizers. We plotted the 
cumulative mean of environmental variation against the subsets of 
plots selected and visually compared the representativeness when 
using each of the biodiversity metrics as optimizers. Finally, we 
conducted a permutation test for homogeneity of multivariate dis-
persions with 999 permutations to explore pairwise comparisons 
between optimizers with regards to environmental coverage.

2.3.5 | Monitoring strategy optimization 
considering logistics

Spatial clustering
To make the optimization more realistic in terms of field work fea-
sibility, we clustered the 774 plots by geographic distance using 
a modified version of the CalcDists function (https://gist.github.
com/sckot​t/931445) in which we estimated the distances among 
plots with the distCosine function from the geosphere package 
(Hijmans, 2019). The final number of clusters was 68, with an 
average number of eleven plots (nine sites) within each of them. 
The number of sites within each cluster ranged from three to 24 
(Appendix S5).

We aggregated the species presence/absence data of species in 
the plots comprising each cluster. For the cover data, we calculated 
the Shannon and Simpson indices per plot, and then calculated the 
average value of the index for all the plots. We set to 20 the num-
ber of clusters to be selected via the same optimization process. We 
then compared the species accumulation in the top 20 clusters when 
employing each of the biodiversity metrics.

3  | RESULTS

3.1 | Multisite beta diversity across Australia

A total of 3528 species were recorded across all of the sampled plots 
(n = 774 plots). The multisite Sorenson dissimilarity index was 0.998, 
the species turnover component (i.e., Simpson dissimilarity) corre-
sponded to 0.997, while the nestedness component was only 0.001, 
indicating a very high rate of species replacement across the distrib-
uted plot network.

3.2 | Conservation reserve design applied to 
optimize monitoring strategies

When comparing species accumulated with each of the optimiz-
ers, we observed that the species turnover-based metrics (i.e., the 
pairwise Simpson dissimilarity with its three implementation vari-
ants: Simpson_Beta, Simpson_Random, and Frequent) were the in-
dices that maximized the cumulative number of species (Figure 1). 
In particular, the Frequent variant outperformed the other two, 
with 3,051  species accumulated (86.5% of the species recorded; 
Appendix S6).

For univariate indices, the subsets of plots selected by RRR and 
species richness when applying the maximal coverage problem, 
accumulated a greater number of species (2,866 and 2,864, re-
spectively, which accounted for 81.2% of all the species recorded 
in AusPlots sampling) than the rest of the optimizers. When incor-
porating species frequencies, the Shannon index outperformed the 
Simpson index for both the maximal coverage problem and the mini-
mum set problem. CRRR was a poor optimizer, with 2,024 species ac-
cumulated which accounted for 57.4% of the total number of species 
recorded (Figure 1; Appendix S6).

3.3 | Spatial coverage representativeness

All the subsets of plots selected were spatially clustered, but they 
differed among each other regarding their spatial representative-
ness. To visually complement the results from the Clark-Evan test, 
we mapped the subsets of plots selected with different optimizers 
(Figure 2). Species richness was the optimizer that presented the 
most clustered spatial distribution (R = 0.366), followed by Shannon 
and Simpson optimizers (both displaying R = 0.408). Plots selected 
with RRR and CRRR displayed Clark-Evans values of R = 0.414 and 
R  =  0.428, respectively. From the species turnover-based metrics, 
pairwise Simpson dissimilarity (Simpson_Beta) showed better spatial 
coverage (R = 0.450), whereas the best optimizer in terms of spatial 
representativeness was Frequent (R = 0.545).

Plot selection based on species richness and RRR was geograph-
ically biased toward coastal regions, failing to cover remote areas 
within the Australian outback. This was also the case for the Shannon 
and Simpson indices. Contrarily, the opposite trend (i.e., optimized 

https://gist.github.com/sckott/931445
https://gist.github.com/sckott/931445
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plots located toward central and remote areas) was found when 
selecting plots based on CRRR. This suggests that when selecting 
plots using univariate diversity metrics, the results are geographi-
cally biased toward sites located either in biodiversity hotspots and 
areas with milder environmental conditions (e.g., richness) or in re-
mote centers of endemism (e.g., CRRR). Plot selection with pairwise 
Simpson dissimilarity accounts for the species ID and the turnover 
component; therefore, the spatial distributions displayed with these 
indices were more balanced in terms of representation across the 
whole Australia, than those obtained by univariate biodiversity met-
rics. This trend was enhanced when selecting the most frequent 
plots after 1,000 simulations of the pairwise Simpson dissimilarity 
plot selection.

3.4 | Environmental coverage representativeness

The permutation test for homogeneity of multivariate dispersions 
showed significant differences in environmental representativeness 

among optimizers (F = 6.49; p-value ≤ .001; Table 2). We found that 
optimization with CRRR was the least representative in terms of en-
vironmental coverage (CRRR: average distance to median = 3.41), 
showing significant differences with the environmental coverage 
of the subsets selected by all the other optimizers. Richness and 
RRR were the most representative with regards to environmental 
coverage (Richness and RRR: average distance to median  =  4.75 
and 4.64, respectively), followed by Simpson_Beta and Frequent 
(Simpson_Beta and Frequent: average distance to median  =  4.33 
and 4.46, respectively; Figure 3; Table 2), with only marginally sig-
nificant differences between Richness and Simson_Beta (Table 2). 
Shannon and Simpson (Shannon and Simpson: average distance to 
median = 4.15 and 4.07, respectively) were both significantly less 
environmentally representative than Richness and RRR, while no 
significant differences were found between the former two and 
the results obtained by Simpson_Beta and Frequent. Hence, rich-
ness was the biodiversity metric that best covered environmental 
differences when used as the optimizer. Results of the monitoring 
strategy optimization for plot clusters are detailed in Appendix S7.

F I G U R E  1   Site optimization process 
applying conservation reserve design 
strategies based on: (a) Maximum 
coverage problem (selection of 250 sites) 
and (b) Minimum set problem (selection 
of the minimum number of plots that 
allow including 80% of the species, 
represented by dashed line). Optimization 
has been performed in both cases 
employing different optimizers, including 
species richness, range rarity richness 
(RRR), corrected range rarity richness 
(CRRR), Shannon-Wienner diversity 
index (Shannon), Simpson diversity index 
(Simpson), the turnover component 
of beta diversity, or pairwise Simpson 
dissimilarity index (Simpson beta), the 
most frequent plots selected in 1,000 
iterations with a randomized starting seed 
using the pairwise Simpson dissimilarity 
index (frequent), and the plots selected 
with a randomized seed using the pairwise 
Simpson dissimilarity index (SimpsonBeta_
random seed)
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4  | DISCUSSION

Large-scale monitoring networks aim for high spatial coverage but 
resource constraints enforce trade-offs between spatial and tempo-
ral sampling. Our results, as applied to the TERN AusPlots dataset, 
clearly demonstrate that to design monitoring strategies that track 
the greatest number of species while ensuring environmental and 
spatial representativity, it is better to focus on the turnover compo-
nent (i.e., species replacement) through diversity partitioning than 
on univariate diversity indices.

Species turnover best optimized the selection of plots from a 
monitoring network to be revisited more often when applying both 
the minimum set and the maximal coverage approaches. Species 
turnover maximized species complementarity and spatial repre-
sentativeness, without being significantly worse than the other 

optimizers regarding environmental representativeness. We ob-
tained more robust results when we ran 1,000 random-seed itera-
tions and extracted the most frequently selected plots (“Frequent”) 
compared to using a predetermined, fixed seed (“Simpson_Beta”). 
These results make sense considering that turnover was the most 
relevant source of change (accounting for 99% of total multisite beta 
diversity) among the Australian vegetation communities sampled. It 
is surprising that range-rarity-richness performed badly (worse than 
random) when corrected by species richness (i.e., CRRR), since that 
should, in theory, highlight complementary sites that have species 
with few other occurrences.

When comparing univariate biodiversity metrics, our results 
indicated species richness was the worst performing biodiver-
sity metric optimizer in terms of spatial representativeness. This 
is consistent with previous findings that have also demonstrated 

F I G U R E  2   Geographic location of the selected plots (N = 250) applying the maximum coverage problem. Black dots correspond to all the 
plots established. Color dots refer to each of the selection employing different optimizers

TA B L E  2   Pairwise comparisons between optimizers with regard to environmental representativeness when applying maximal coverage 
problem at plot level

Richness RRR CRRR Shannon Simpson Simpson_Beta Frequent

Richness 0.68 ≤0.001 ≤0.01 ≤0.05 ≤0.1 0.25

RRR 0.68 ≤0.001 ≤0.1 ≤0.05 0.20 0.49

CRRR ≤0.001 ≤0.001 ≤0.01 ≤0.01 ≤0.001 ≤0.001

Shannon ≤0.05 ≤0.1 ≤0.01 0.78 0.48 0.21

Simpson ≤0.01 ≤0.05 ≤0.01 0.75 0.29 0.12

Simpson_Beta ≤0.1 0.22 ≤0.001 0.48 0.30 0.58

Frequent 0.25 0.48 ≤0.001 0.21 0.12 0.58

Note: The observed p-value are located in the below diagonal, while the permuted p-value are in the above diagonal. Only significant differences are 
highlighted in bold. Notice that marginally significant values (p-value ≤ .1) are shown although not highlighted.
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richness-based decisions, despite their promise and simplicity, do 
not meet the complementarity principle (Godoy-Bürki et al., 2014; 
Gotelli & Colwell, 2001), and are biased toward spatial clustering 
around more tropical climatic conditions (Veach et al., 2017). Based 
on these results, we provide further evidence that species richness 
is not an efficient measure of biodiversity and its change over time 
(Hillebrand et al., 2018).

Optimization based on corrected range-rarity-richness (i.e., 
CRRR) failed to be environmentally, spatially and ecologically repre-
sentative in terms of biodiversity, with the lowest number of species 
accumulated across the whole network (worse than random) and the 
worst environmental representativeness. The poor performance of 
optimization based on CRRR has implications for monitoring strate-
gies and conservation planning. While conservation reserves could 
aim to protect endemic species (Pelletier et al., 2018), monitoring 
priorities defined on species occurrences at plot level should not be 
based on CRRR, as it will neither meet the principle of complemen-
tarity nor representativeness of the whole network and will fail to 
inform on the ecological reality.

Among the univariate biodiversity metrics, RRR was the most 
balanced, capturing a great number of species and being spatially 
and environmentally representative. Its estimation is straightfor-
ward from incidence datasets; therefore, when seeking a simple but 
relatively reliable way to select sites for a monitoring program, from 
the univariate metrics we recommend using RRR as an alternative to 
species turnover-based prioritization. Our findings are supported by 
previous work demonstrating the great ecological representation of 
this index, as well as its effectiveness as a surrogate for biodiversity 
when fitted to environmental models to predict biodiversity in the 
absence of available data (Albuquerque & Beier, 2015, 2016).

The Shannon and Simpson (alpha) optimizers performed compar-
atively poorly in the three dimensions studied here (i.e., ecological, 
spatial and environmental representativeness). Hence, plot selection 
prioritization processes should preferably not be based on these 
metrics.

Both reserve design approaches (minimum set problem and max-
imal coverage problem) displayed similar results in terms of species 
accumulation, but with important consideration of the threshold 

a  priori selected regardless of the approach. For example, as ob-
served in Figure 1, species accumulations curves for some metrics 
crossed-over when reaching approximately either the 70% of the 
species (minimum set problem) or 150 plots (maximal coverage 
problem). This suggests the target matters and robust results may be 
jeopardized if thresholds are set too low.

When implementing optimization for spatial clusters of plots, 
differences in ecological representativeness were diluted rela-
tive to plot-by-plot selection (except in the case of CRRR, which 
still performed significantly worse than the rest of the optimizers). 
Nevertheless, selection based on species turnover (most specifically 
employing the Frequent optimizer) performed best, with Frequent 
and Simpson_Beta approaches the most, and second most, environ-
mentally and spatially representative, respectively. This has impli-
cations for hands-on applications of the current findings, since the 
prioritization of clusters of plots will need to be carefully supervised 
to ensure complementarity and representativeness. We therefore 
suggest that practitioners perform plot-by-plot optimization to get 
the ideal subset and then apply logistic principles to determine clus-
ters of plots in a given geographic area.

Our results have potential application to conservation reserve 
design, whereby species turnover metrics could be considered to 
optimize complementarity and representativeness. Various criteria 
have been followed to design conservation reserves historically, in-
cluding maximizing species richness or genetic diversity, protecting 
rare or endemic species or restoring impacted or degraded areas 
(Kingsland, 2002; Margules et al., 1982). In this sense, Simpson pair-
wise dissimilarity is potentially useful as it selects a representative 
subset of the habitats and flora within a region.

Regarding management recommendations, the target set when 
applying prioritization strategies to large-scale monitoring networks 
should consider a minimum threshold of 70% of the total recorded 
richness when applying the minimum set problem and a subset in-
cluding at least 20% of the sites when applying the maximal cover-
age problem.

The application of the findings reported here has some limita-
tions. For example, optimization and therefore reserve design based 
on species turnover relies on already available ground data and 

F I G U R E  3   Environmental 
representativeness of the 250 selected 
plots using different optimizers reflected 
by the cumulative mean dispersion. All 
environmental variables employed in the 
analyses are described in the Appendix S4
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sampled communities and in some cases this information is incom-
plete or even non-existent. The optimization process employed in 
this study (and the tools developed for the analysis) can be imple-
mented in a variety of studies, and can potentially be extended to 
similar approaches such as site selection based on phylogenetic or 
functional alpha and beta diversity. Similarly, it could be used to de-
tect change in ecosystem composition over time in the context of a 
spatial framework; or within a temporal framework to identify sites 
with the most dissimilar samples among revisits, that is, sites where 
vegetation is shifting more rapidly over time. These techniques will 
enable large-scale monitoring programs to maximize the value of in-
formation at a given resourcing level.

In summary, monitoring ecological state, function, and change 
over time has become essential at national and continental scales. 
The selection of sites for regular monitoring based on univariate bio-
diversity metrics (e.g., richness, CRRR) often fails to meet the princi-
ples of complementarity and representativeness. We have therefore 
developed a practical, free, and easy-to-use tool that can be used 
in any species versus sites dataset. The tool uses a set of alpha and 
beta diversity metrics to optimize species representation in a subset 
of monitoring sites to maximize species complementarity and spatial 
and environmental representation. Our results demonstrate that a 
representative subset of monitoring sites can be selected by finding 
the most ecologically dissimilar communities. This approach targets 
differences in composition instead of focusing on univariate metrics 
such as species richness, while also capturing spatial and environmen-
tal diversity. Long-term monitoring sampling strategies need to be 
carefully planned and designed. Applying reserve design approaches 
based on spatial vegetation compositional differences to maximize 
coverage constitutes a cost-effective and easily updated strategy to 
define monitoring priorities that leverages ground data already col-
lected. This will in turn help policy, decision-making, and conserva-
tion practices ensuring them to be based on accurate information that 
meets the complementarity and representativeness principles.
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