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INTRODUCTION
Widespread vaccination for COVID- 19 is underway; yet 
despite this, healthcare systems throughout many parts 
of the world continued to be overwhelmed by an esca-
lating caseload.1–5 The upward trajectory of COVID- 19 
cases places an inexorable strain on hospital resources 
and is likely to continue to do so in the future with each 

surge cycle of the pandemic and viral variants. In caring 
for patients hospitalized for severe COVID- 19 infection, 
clinical risk prediction tools to identify those most likely 
to decompensate in the short term would aid in optimizing 
the allocation of limited resources and minimize morbidity 
and mortality associated with the disease.
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Objective: To predict short- term outcomes in hospi-
talized COVID- 19 patients using a model incorporating 
clinical variables with automated convolutional neural 
network (CNN) chest radiograph analysis.
Methods: A retrospective single center study was 
performed on patients consecutively admitted with 
COVID- 19 between March 14 and April 21 2020. Demo-
graphic, clinical and laboratory data were collected, and 
automated CNN scoring of the admission chest radio-
graph was performed. The two outcomes of disease 
progression were intubation or death within 7 days 
and death within 14 days following admission. Multiple 
imputation was performed for missing predictor varia-
bles and, for each imputed data set, a penalized logistic 
regression model was constructed to identify predictors 
and their functional relationship to each outcome. Cross- 
validated area under the characteristic (AUC) curves 
were estimated to quantify the discriminative ability of 
each model.

Results: 801 patients (median age 59; interquartile range 
46–73 years, 469 men) were evaluated. 36 patients were 
deceased and 207 were intubated at 7 days and 65 
were deceased at 14 days. Cross- validated AUC values 
for predictive models were 0.82 (95% CI, 0.79–0.86) for 
death or intubation within 7 days and 0.82 (0.78–0.87) 
for death within 14 days. Automated CNN chest radio-
graph score was an important variable in predicting both 
outcomes.
Conclusion: Automated CNN chest radiograph analysis, 
in combination with clinical variables, predicts short- 
term intubation and death in patients hospitalized for 
COVID- 19 infection. Chest radiograph scoring of more 
severe disease was associated with a greater probability 
of adverse short- term outcome.
Advances in knowledge: Model- based predictions of 
intubation and death in COVID- 19 can be performed with 
high discriminative performance using admission clinical 
data and convolutional neural network- based scoring of 
chest radiograph severity.
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Numerous clinical prediction tools have been developed in a bid 
to better manage COVID- 19 infection. Varying permutations 
have been modeled; but most use a combination of readily avail-
able clinical parameters, including laboratory tests (e.g., white 
blood cell count, D- dimer, platelets) and demographic (e.g., age) 
and medical history data (e.g., vital signs, and comorbidities) to 
identify patients with symptomatic COVID- 19 who are most at 
risk for decompensation.6–8 While most of these models have 
not been validated for generalizability, they have identified some 
common features as associated with the disease course including 
age, pulmonary, and cardiovascular status.6,7

Given that pulmonary infection is a hallmark of the illness, chest 
imaging has also been shown to correlate with outcomes. Models 
developed using chest CT assessment of disease burden along 
with clinical variables are reported as reasonably accurate, with 
AUC estimates greater than 0.89,10; but, in most practice settings, 
chest CT is obtained only in a small subset of COVID- 19 
patients, usually as a secondary assessment in cases of negative 
RT- PCR results but persistent clinical suspicion of SARS- CoV- 2 
infection. Even when patients are symptomatic and hospitalized 
with severe disease, CT imaging is typically performed to assess 
associated complications, such as a pulmonary embolism, asso-
ciated secondary infections, or sequela of barotrauma.11

In contrast, chest radiographs, obtained routinely when patients 
suspected of or known to be infected with COVID- 19 present 
with symptoms, when used for prediction yield a model appli-
cable to most hospitalized COVID- 19 patients. Modeling using 
chest radiograph data in combination with clinical variables has 
been reported but their performance overall is less robust than 
chest CT.12–18 While there are many possibilities for this differ-
ence, one reason may be that chest radiograph assessment of 
disease severity is subject to greater observer variability. However, 
a convolutional neural network (CNN)- based algorithm that 
calculates a COVID- 19 severity score for a chest radiograph 
based on the density and extent of lung opacities has been devel-
oped, is publicly available, and has been shown to correlate with 
disease severity assessment by multiple radiologists.19–21 Such 
an automated tool, de novo not subjective and, therefore, more 
reproducible than human readers, better lends itself to a model 
for outcome prediction that can eventually be scaled and tested 
in large cohorts in various clinical settings.

For the purpose of the study, we defined two different outcomes 
relative to hospital admission – death or intubation within 7 
days and death within 14 days. Death and intubation are 
readily available and objective endpoints that indicate a severe 
disease course in patients with COVID- 19. For the short- term 
outcome of 7 days, as some patients decompensated so quickly 
that they died before intubation, the two states were combined 
to describe a single outcome of critical COVID- 19 illness. Such 
a marker indicating high likelihood of rapid decline would 
enable management planning, such as triage to more intensive 
monitoring and possibly prophylactic therapy. An assessment 
of likelihood of death within 14 days encompasses the entirety 
of the two- week period over which most COVD- 19 positive 
patients presenting with symptoms decompensate into severe 

disease. Thus, it is a useful marker for healthcare resource 
allocation.

A CNN algorithm, for automated chest radiograph analysis, 
has been developed and validated as a surrogate for radiologist 
assessment and has been previously reported.19–21 The algorithm 
automates the chest radiograph interpretation yielding a repro-
ducible and numerical output of the imaging information. With 
this tool on hand, we set out to identify whether demographic, 
clinical, and laboratory variables, in combination with a chest 
radiograph severity score from the CNN algorithm, could be 
used to predict outcomes that could be used to guide manage-
ment of hospitalized COVID- 19 positive patients.

METHODS AND MATERIALS
Cohort definition and follow-up
Institutional review board (IRB) approval was obtained and 
the requirement for informed consent waived for this HIPAA 
compliant study. We performed a retrospective analysis of 
consecutive adult patients (age≥18 years old) admitted to our 
hospital system between 14 March 2020 and 21 April 2020 who 
were diagnosed with COVID- 19 by the reverse transcription- 
polymerase chain reaction assay before the time of or within 
four days following admission. Patients either presented through 
the emergency department or were transferred from outside our 
hospital system. All patients were followed to date of discharge or 
death. Patients who were alive and not discharged were followed 
until 15 September 2020.

Data collection
We queried our institution clinical data repository to extract the 
following demographic, clinical, and laboratory variables: age, 
gender, temperature, body mass index (BMI), oxygen saturation, 
ICU admission date, death date, comorbidities, ventilation status, 
fibrinogen, estimated glomerular filtration rate (eGFR), lactate 
dehydrogenase (LDH), platelets (PLT), prothrombin time (PT), 
white blood cells (WBC), D- dimer and C- reactive protein (CRP).

We used International Classification of Diseases, Tenth Revi-
sion codes (ICD- 10) to extract comorbidities (Supplementary 
Material 1), including diabetes, cancer, hypertension, cardiac 
disease, and respiratory disease (chronic obstructive pulmonary 
disease or emphysema and asthma). Laboratory values recorded 
were those closest to the admission date. Extracted laboratory 
values were those available within 7 days of admission; however, 
only the value closest to the date of admission was included. 
All Patients Refined Diagnosis- Related Groups (APRDRG) and 
ICD- 10 codes were used to extract ventilation status (Supple-
mentary Material 1). These variables were cross- referenced with 
thorough manual review of the electronic health record (EHR).

Outcome measures
Two outcome variables of short- term disease progression were 
defined: death or intubation within 7 days of admission and 
death within 14 days of admission.

Chest radiograph scoring
Chest radiographs included in this analysis were those available 
either up to 2 days prior to or 5 days post admission. If more 
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than one exam was available, the chronologically earliest radio-
graph within this interval was analyzed. Chest radiographs with 
an endotracheal tube in place were excluded from modeling for 
intubation. An automated severity score was generated for each 
of the chest radiographs determined from the density and extent 
of lung opacities using a the CNN algorithm, previously vali-
dated in multiple patient populations using the manual assess-
ments of disease severity by multiple radiologists as a reference 
standard.19 This algorithm receives raw DICOM pixel data from 
frontal chest radiographs as inputs and calculates a numeric 
score for lung disease severity. While the score is continuous, as 
a guide for interpretation, the following ranges of scores reflect 
different gradations of severity as established by our radiologists: 
≤2.5 no or minimal disease, >2.5 and ≤5.0 mild disease, >5.0 and 
≤9.0 moderate disease, and >9.0 severe disease. Examples of 
chest radiograph scores for representative images are shown in 
Figure 1.

Statistical analysis
Descriptive summaries were generated for continuous and 
categorical variables; continuous variables were summarized as 
median and IQR (interquartile range) and categorical variables 
as frequencies (percentages). The percentage of missing data 
were also calculated for each variable.

Missing data were present in at least of the one candidate predic-
tors in 23% of the study population. Multiple imputation (MI) 
was used to account for the missing exposure values. Missing 
exposure data were “filled- in” using observed exposure data via 
a chained equation approach.22 To account for the uncertainty 
in the exposure data, this imputation process was repeated 
100 times resulting in the creation of 100 complete data sets. 
Outcome data were excluded from the imputation process.

For each imputed data set, a penalized (LASSO) logistic regression 
model was constructed. The model was chosen over a standard 
logistic model because of its ability to shrink parameter estimates 
that are not, or at most weakly, associated with the outcome of 
interest to zero. Thus, this approach simultaneously performs 
variable estimation and variable selection (e.g., variables whose 
estimates are zero are effectively dropped from the model). 
10- fold cross- validation was performed to estimate all model 
parameters (both covariate effects and the tuning parameter). 

Parameter estimates and cross- validated model predictions were 
stored for each imputed data set. Additional details about the 
missing data patterns, the analysis approach (e.g., tuning param-
eter selection, cross- validation), comparator models (linear vs 
non- linear coding of continuous variables, main- effects only vs 
interactions), and estimation methods (LASSO, random forests) 
are provided in the supplemental documentation.

Parameter estimates and cross- validated predictions were aver-
aged, or bagged, across imputed data sets. The importance of 
each variable was assessed by ranking the absolute value of the 
average estimates as well as estimating the percentage of times 
a non- zero estimate was obtained. Average predictions, and the 
true outcome status, were then used to estimate the cross- vali-
dated AUC curves and their 95% confidence intervals. A sche-
matic diagram of the data collection process and data analysis is 
presented in Figure 2.

Cross- fold validation rather than splitting our dataset was chosen 
for internal validation as this represents the current standard 
regardless of sample size. The former method avoids the possi-
bility that resultant validation metric (AUC, RMSE, etc) may be 
biased simply due to the choice of the test set.

The study cohort includes 315 patients (39%) whose chest radio-
graphs were used to develop the CNN algorithm.19 To quan-
tify the possible effect of data leakage (or double dipping), the 
proposed analyses was performed on both the full cohort and on 
the subgroup of patients whose chest radiographs were not used 
in developing the CNN algorithm.

All analyses were performed using R 4.0.2 (R Core Team (2020). 
R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. URL 
https://www.R-project.org/) and the mice, glmnet, pROC, 
randomForest, and caret libraries.22–27

RESULTS
Cohort description
Table 1 describes the diagnostic variables for the entire cohort. 
801 patients (median age 59, interquartile range 46–73 years; 
469 men). The median BMI for admitted patients was 28.9 (IQR, 
25.1–33.6) which implies many of these patients were classified 

Figure 1. Chest radiograph with their corresponding severity scores from the CNN algorithm. The automated severity score uses 
a Siamese CNN by using raw DICOM pixel data to calculate a numeric score for lung disease. An increasing score (left to right) 
corresponds to increasing parenchymal lung opacity and extent. The score is continuous; however, a severity scale proposed from 
radiologist interpretation is as follows: ≤2.5 no or minimal disease, >2.5 and ≤5.0 mild disease, >5.0 and ≤9.0 moderate disease, 
and>9.0 severe disease.19–21

https://www.R-project.org/
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as either overweight or obese. Cardiac disease, hypertension 
and diabetes were the most frequently encountered comorbid-
ities, present in 62%, 59%, and 38% of patients, respectively. The 
admission chest radiograph was on the day of hospitalization for 
691 patients (86%) and within 1 day for 722 (90%) of the cohort. 
The median score for the admission chest radiograph was 4.21 
(IQR 2.21–6.81), corresponding to mild disease. Fibrinogen, 
prothrombin time and D- dimer values were available within 2 
days of admission for 43%, 68%, and 89% of the cohort, respec-
tively. GFR, LDH, PLT, WBC and CRP values were available 
within two days of admission for 98%, 95%, 99%, and 95% of the 
cohort, respectively.

Intubation or death within 7 days
A total of 243 (30.3%) patients were either intubated or died by 
day 7. Of these, 36 patients (4.5%) died and 207 (25.8%) had 
been intubated (Table  2). Table  3 summarizes the discrimina-
tive performance of the prediction models. The cross- validated 
AUCs were approximately 0.80 for all evaluated models and esti-
mation methods. Given the similarity of these results, specific 
details pertaining to the penalized logistic regression model 
utilizing only main effects (no interactions) and continuous vari-
ables modeled as linear terms are summarized.

The average standardized regression coefficients of this model 
are presented in Table  4. Chest radiograph severity score was 
positively associated with death or intubation within 7 days. 
Clinical variables that also demonstrated a positive association 
included the presence of cardiovascular disease, hypertension, 
and diabetes. Laboratory values that demonstrated a positive 

association included CRP, LDH, WBC count, and D- dimer 
whereas eGFR, SpO2 (oxygen saturation) and platelets demon-
strated a negative association, indicating a protective effect of a 
higher value.

Figure  3A illustrates the distribution of average standardized 
regression coefficients for each variable and the percentage of 
times, across the imputed data sets, each variable had a non- zero 
estimate. In defining the importance of a predictor both in terms 
of the absolute value and the percentage of times a non- zero esti-
mate was seen, cardiac disease, CXR and CRP, SpO2, WBC, and 
eGFR were deemed important predictors of death or intubation 
within 7 days of hospital admission. The cross- validated ROC 
curve for this model is presented in Figure 3B and its associated 
AUC is 0.82 (95% CI, 0.79–0.86) (Table 3).

Death within 14 days
Sixty- five (8.1%) patients died by day 14 (Table 2). Chest radio-
graph severity score was positively associated with this outcome 
(Table  4). The only clinical variable that also demonstrated a 
positive association was age. eGFR and SpO2 values showed a 
negative association, thereby indicating a protective effect of a 
higher value.

Age, eGFR, CXR, and SpO2 values were all deemed important 
predictors of death within 14 days of hospital admission 
(Figure  4A). The cross- validated ROC curve for this model is 
presented in Figure 4B and its associated AUC is 0.82 (95% CI, 
0.78–0.87) (Table 3).

Figure 2. Data collection and analysis. A numeric score of the severity of COVID- 19 on each chest radiograph was obtained using 
the convolutional neural network (CNN) algorithm. Demographic, clinical, laboratory, and chest radiograph score were combined 
to impute 100 datasets. Penalized logistic regression modeling was performed on each dataset to identify relevant predictors of 
each outcome. 10- fold cross- validation was performed to identify all model parameters and to estimate model predictions. Cross- 
validated predictions were averaged, or bagged, across datasets to estimate cross- validated ROC curves and AUC estimates.
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Subgroup analysis
Table  5 summarizes the cross- validated AUC estimates by 
estimation method (LASSO, random forests) and by model 
complexity for the subgroup of 486 patients not included in the 
CNN algorithm development. We assume that the results of the 
random forests are the surrogates for the gold- standard since this 
estimation approach does not require the explicit modeling of 
covariate effects, or their interactions. For intubation or death 
with 7 days, the cross- validated AUCs for the full and subgroup 

cohorts were 0.81 (95% CI, 0.78–0.84) and 0.80 (95% CI, 0.76–
0.85), respectively. Similarly, for death within 14 days, the cross- 
validated AUCs for the full and subgroup cohorts were 0.83 (95% 
CI, 0.79–0.87) and 0.83 (95% CI, 0.78–0.88), respectively. Due to 
the similarity of these estimates, the data leakage was adequately 
accounted for in the analysis approach (i.e., via the use of cross- 
fold validation). Additional summaries for this subgroup are 
presented in the Supplementary Materials.

Table 1. Diagnostic variables collected from the cohort at admission. Continuous variables are summarized by median and IQR 
(interquartile range) and categorical variables as frequencies (proportions). The percentage (%) of missing data for each variable 
collected is provided

Variables Overalla Missing (%)b
N   801

Demographics Age 59 [46, 73] 0

  Gender (Male) 469 (58.6) 0

  BMI 28.9 [25.1, 33.6] 7.2

Comorbidities COPD 83 (10.4) 0

  Asthma 107 (13.4) 0

  Emphysema 26 (3.2) 0

  Hypertension 476 (59.4) 0

  Cancer 109 (13.6) 0

  Diabetes 305 (38.1) 0

  Cardiac disease 497 (62.0) 0

CXR Score Admission 4.21 [2.21, 6.81] 8.1c

Labs WBC 6.52 [5.09, 8.49] 0.9

  D- Dimer 974 [602, 1631] 5.5

CRP 74.3 [34.2, 144.3] 5.7

  LDH 326 [246, 436] 3.6

  Platelets 199 [157, 255] 1

  Estimated GFR 82 [57, 100] 1.2

Symptoms SpO2 (%) 95 [93, 97] 1.1

  Temperature (°C) 36.9 [36.4, 37.4] 3.7
aContinuous variables are summarized by median and IQR (interquartile range) and categorical variables as frequencies (proportions).
bThe percentage (%) of missing data for each variable collected is provided.
cIn these patient’s admission chest radiograph demonstrated an endotracheal tube in situ, which was an exclusionary criterion.

Table 2. Vital status at 7- and 14- day post admission and intubation status at 7 days post admission for the cohort

Outcomes (N = 801) Value Frequency (%)
Vital status / intubated at 7 days post admission Alive and not intubated 558 (69.7)

  Deceased and/or intubated 243 (30.3)

  Intubated and alive at 7 days 207 (25.8)

  Deceased at 7 days without intubation 25 (3.1)

  Intubated and deceased at 7 days 11 (1.4)

Vital status 14 days post admission Alive 736 (91.9)

  Deceased 65 (8.1)
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DISCUSSION
Our study showed that in patients hospitalized for COVID- 19, 
readily available data obtained early in admission (i.e., demo-
graphics, major co- morbidities, vital signs, laboratory values, 
and a severity score of the chest radiograph generated by a CNN- 
based algorithm) can predict the likelihood of decompensation 
to severe illness. Models of intubation or death within 7 days and 
of death within 14 days both showed a cross- validated discrim-
inative performance of 0.82. As stated above, there was a cohort 
overlap of 315 patients. In order to address concerns regarding 

data leakage, analyses were performed in the full cohort, and 
in a subgroup excluding overlapping subjects. In each model, 
including modeling of the subgroup not used to develop the 
CNN algorithm, the automated chest radiograph severity score 
was identified as an important predictor that was positively asso-
ciated with patient outcome. Oxygen saturation and eGFR were 
also seen as important predictors for both outcomes.

Previous studies on the usefulness of a chest radiograph in prog-
nosticating early progression of COVID- 19 to critical illness 

Table 3. Cross- fold validated AUC estimates (95% confidence intervals) by model parameterization (e.g., continuous variables 
modeled as linear or non- linear terms, and all two- way interactions or no interactions between predictors) and estimation method

Intubation or death within 7 days Death within 14 days
Penalized (LASSO) Logistic Regression Linear: No Interactions 0.82 (0.79, 0.86) 0.82 (0.78, 0.87)

Non- linear: No Interactions 0.82 (0.79, 0.85) 0.82 (0.77, 0.86)

Linear: All 2- way Interactions 0.81 (0.78, 0.84) 0.79 (0.74, 0.83)

Random Forests   0.81 (0.78,0.84) 0.83 (0.79, 0.87)

Table 4. Average standardized penalized regression coefficients by variable category and outcome (LASSO: linear, no interaction 
model)

Intubation or death within 7 days Death within 14 days
  Category Variable Inclusion* (%) Average Standardized 

Estimate
Inclusion (%) Average Standardized 

Estimate

  (Intercept) 100 −1.035 100 −2.741

Demographics Age 0 0.000 100 0.581

  Gender 0 0.000 0 0.000

  BMI 2 0.000 0 0.000

Comorbidities Diabetes 100 0.067 0 0.000

  Cancer 0 0.000 0 0.000

  Hypertension 95 0.015 0 0.000

  Cardiac Disease 100 0.610 0 0.000

  COPD 0 0.000 20 0.001

  Emphysema 0 0.000 0 0.000

  Asthma 0 0.000 0 0.000

Chest X- ray (CXR) 
Score

First score within 
[−2,5] days of hospital 
admission

100 0.4346 84 0.054

Labs

  eGFR 100 −0.106 100 −0.405

  LDH 100 0.619 0 0.000

  Platelets 98 −0.050 0 0.000

  WBC 100 0.107 1 0.000

  D- Dimer 3 0.000 0 0.000

  CRP 100 0.402 0 0.000

Symptoms SpO2 100 −0.184 79 −0.028

  Temperature (°C) 80 0.026 0 0.000

Footnote: *Inclusion denotes the percentage of times the variable had a non- zero parameter estimate across 100 imputed data sets.
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have produced varying results. A UK- based study that examined 
the chest radiographs of over 1000 patients admitted to a tertiary 
academic hospital in mid- March to mid- April 2020 failed to 
demonstrate any significant or clinically meaningful associa-
tion between chest radiograph findings and 30- day outcomes of 
death or hospital discharge.28 Scoring systems for chest radio-
graphs elsewhere have been successfully used semi- quantitative 
scoring tools in order to predict the likelihood of admission to 
hospital and/or death.17 Typically this is performed by dividing 
the chest radiograph into separate zones and scoring each 
section. For young patients (aged 21–50 years), a higher chest 
radiograph score (>3) was positively associated with hospital 
admission.17 While in another study, a higher chest radiograph 
score was positively associated with death.29 However, in both 
studies, the involved a small number of radiologists in a single 
institution.17,29

“In contradistinction to reader- based scoring systems, AI based 
scoring of chest radiographs offer the advantages of greater 
reproducibility, and scalability. At the outset of the pandemic, 
the diagnostic performance of AI based systems as compared 
to reader- based chest radiograph scoring systems has been 
evaluated elsewhere and was shown to be independent and 
comparable predictors of adverse outcomes in patients with 

COVID- 19.30 More recent studies have built on this initial 
experience to develop AI- based radiograph analysis that out- 
performs, radiologist derived scores and clinical variables.31,32 
A notable shortcoming of the study by Jiao and colleagues, was 
the dichotomization of outcomes into critical and non- critical. 
In contrast, our study aimed to assist in the stratification of all 
hospitalized patients with COVID- 19, to assist in the allocation 
of critical care resources by identifying those at most risk for 
decompensation. When integrated with clinical or laboratory 
values, predictive models with modest discriminative perfor-
mance for hospitalization outcomes including critical illness and 
death, have been reported with AUC’s of 0.66 and 0.59, respec-
tively, reported elsewhere.15 Our model adds to the growing 
evidence that AI scoring of chest radiographs are an important 
variable in models that assess COVID- 19 severity early in the 
course of illness.”

Models using reader- based scoring of chest radiographs, even 
when successful, cannot be easily generalized. Scaling such 
models for validation in larger cohorts and in other clinical 
settings would be challenging given the manual and subjective 
nature of the chest radiograph input. If validated, implemen-
tation into a clinical workflow would involve chest radiograph 
severity scores from numerous radiologists introducing observer 

Figure 3. A. Model predicting intubation or death within 7 days. Distribution of penalized logistic regression estimates across 100 
imputed data sets are shown. Average standardized estimates (e.g., higher LDH, CRP or CXR score and lower SpO2, eGFR, plate-
lets (PLT) values) were associated with an increased odds of being intubated or death within 7 days. LDH, cardiac disease, CXR, 
CRP, SpO2, WBC, and eGFR values were deemed important, as defined as both the absolute value of the standardized regression 
coefficient and the percentage of times the estimate was non- zero (reported in the X- axis below each variable). The asterisk corre-
sponds to the average estimate, including those reduced to zero via the LASSO algorithm (Table 4). (B.) ROC curve of intubation 
or death within 7 days of hospital admission using bagged cross- validated predictions and the true outcome status (AUC: 0.82 
[95% CI: 0.79–0.86], Table 3).
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variability as a factor in the model’s performance. In contrast, 
our models depend upon a chest radiograph severity score auto-
matically derived from a CNN- based algorithm that analyzes the 
DICOM inputs of the radiographic dataset. Thus, the imaging 
output becomes objective, reproducible, and scalable and is 
now amenable to high- throughput dissemination, similar to 
laboratory testing. The use of a CNN to generate a numeric and 
continuous variable also provides an opportunity to dynamically 
model outcomes as the clinical profile of patients with severe 
COVID- 19 evolves with viral mutations, public immunization, 
and novel therapies.33

With respect to other prediction models that have investigated 
the association between critical illness and clinical and/or labo-
ratory values, our results are mostly congruent. Established risk 
factors for critical illness in larger cohorts from the UK and US 
suggest a similar positive association between demographic vari-
ables (age, BMI, and co- morbidities), laboratory variables (CRP, 
D- dimer), and clinical variables such as admission oxygen satu-
rations.34–36 The importance of eGFR in modeling outcomes has 
not been previously noted but has not been included in many 
previous modeling studies. It may serve as a surrogate marker 
of cardiovascular disease, hypertension, or diabetes, and as a 

Figure 4. A. Model predicting death within 14 days. Distribution of penalized logistic regression estimates across 100 imputed 
data sets are shown. Average standardized estimates (e.g., increased age and lower eGFR values) were associated with death 
within 14 days. Age, eGFR CXR and SpO2 values deemed important, as defined as both the absolute value of the standardized 
regression coefficient and the percentage of times the estimate was non- zero (reported in the X- axis below each variable). The 
asterisk corresponds to the average estimate, including those reduced to zero via the LASSO algorithm (Table 4). (B.) ROC curve 
of death within 14 days of hospital admission using bagged cross- validated predictions and the true outcome status (AUC: 0.82 
[95% CI: 0.78–0.87], Table 3).

Table 5. Cross- fold validated AUC estimates (95% confidence intervals) by model parameterization (e.g., continuous variables 
modeled as linear or non- linear terms, and all two- way interactions or no interactions between predictors) and estimation method 
for the subgroup of patients not included in the CNN algorithm development

Intubation or death within 7 days Death within 14 days
Penalized (LASSO) Logistic Regression Linear: No Interactions 0.81 (0.76, 0.85) 0.77 (0.71, 0.83)

Non- linear: No Interactions 0.80 (0.75, 0.84) 0.79 (0.72, 0.85)

Linear: 2- way Interactions 0.78 (0.73, 0.82) 0.78 (0.72, 0.84)

Random Forests   0.80 (0.76, 0.85) 0.83 (0.78, 0.88)
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continuous variable that can be readily and objectively verified, 
may be a more informative predictor than the clinical history.

Our study has several important limitations. Most important 
is the single center design and absence of an external test set. 
Indeed, these concerns have been highlighted extensively in 
more recent reviews examining the available body of evidence 
for deep- learning- based assessment of COVID- 19 chest radio-
graphs, noting that single- center bias, differences in technical 
parameters and the presence of chest radiograph artifacts, which 
may hamper the reliability of many available deep learning 
models.37 Moreover, the data were collected from patients 
presenting early in the pandemic when COVID management 
and prognosis was quite different, at least as it has evolved within 
our practice setting. These considerations limit the generaliz-
ability of our prediction model. However, given the heteroge-
neity of the COVID- 19 surges and medical practice during the 
duration of this pandemic, obtaining sufficiently complete and 
homogeneous datasets with outcome data to validate generaliz-
ability has not yet been feasible.38 The CNN algorithm, however, 
has been validated previously in separate populations.21 While 
clinical and demographic variables were retrieved in the majority 
of patients, these values were missing in some. We assumed the 
missing data mechanism was at random and accounted for vari-
able missingness using multiple imputation. If this assumption 
is not satisfied, then additional data would need to be collected 
to properly handle the missing data. We did not gather patient 
symptoms at presentation as they were variably recorded. Thus, 
it is possible that patients without COVID- 19- related symptoms 
hospitalized for other conditions could have been included in our 
cohort. However, our institution was undergoing a COVID- 19 
surge during the accrual period. Patients requiring non- COVID 
related hospitalizations were being diverted, if possible, to other 
centers, non- emergent procedures requiring hospitalization had 

been canceled, and those testing positive for COVID- 19 but 
without symptoms were being monitored as outpatients virtu-
ally. Thus, nearly all of the patients with COVID- 19 positive tests 
hospitalized during this period were admitted for this diagnosis. 
Finally, other factors previously noted as important predictors, 
such as duration of symptoms prior to presentation and chest CT 
findings, were not included in our modeling as the data were not 
available on most of the cohort.

Our models identify COVID- 19 patients at risk of progressing 
to intubation or death within the first two weeks of hospitaliza-
tion. Predictors are clinical, laboratory, and radiographic data 
routinely obtained at the point of admission. The chest radio-
graph scoring of disease severity is an important predictor and, as 
it is automated and CNN- based, is numerical and readily scaled 
into a high throughput clinical workflow, similar to the other 
laboratory values. If validated, the model could be used to help 
inform resource allocation and clinical practice algorithms in 
settings where a surge in case burden strains hospital resources.
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