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Colon cancer is a common malignant tumor in the digestive tract, with relatively high rates of morbidity and mortality. It is the
third most common type of tumor in the world. ,e effective treatment of advanced colon cancer is limited, so it is particularly
important to study the new pathogenesis of colon cancer. Ferroptosis is a nonapoptotic regulated cell death mode driven by iron-
dependent lipid peroxidation, a process which has been discovered in recent years. Autophagy involves lysosomal degradation
pathways that promote or prevent cell death. High levels of autophagy are associated with ferroptosis, but a clear association has
not yet been made between ferroptosis and autophagy in colon cancer. ,rough the analysis of transcriptome expression profiling
data in colon cancer, we obtained the common upregulated genes and downregulated genes by recording the intersection of the
differentially expressed genes in each dataset. Solute Carrier Family 2Member 1 (SLC2A1) was identified by combining autophagy
genes obtained from GeneCards and ferroptosis genes obtained from FerrDb. In order to explore the clinical significance and
prognostic value of SLC2A1, we utilized massive databases to conduct an in-depth exploration of the methylation of SLC2A1, and
we also investigated the differences in immune infiltration between tumor and normal tissues. We found that there are abundant
methylation sites in SLC2A1 and that the methylation of SLC2A1 is correlated with the immunosuppression of tumor tissue. We
discovered that during the induction of environmental factors, the transcription and methylation levels of SLC2A1 were greatly
increased, autophagy and ferroptosis were inhibited, and the immune system was defective, resulting in a poor prognosis for
patients. ,ese results suggest that the autophagy and ferroptosis-related gene SLC2A1 is involved in the tumor immune
regulation of colon cancer, and SLC2A1 may become a new therapeutic target for colon cancer.

1. Introduction

Cancer is a chronic disease characterized by abnormal cell
growth that gradually spreads and destroys normal body
tissues as the cancer progresses [1]. It is one of the most
prominent life-threatening diseases worldwide. According
to the latest estimates from the International Agency for
Research on Cancer (IARC), new cancer cases will continue
to increase. Colon cancer is the third most common

malignant tumor in the world, the second most common
cancer among females, and the third most common cancer
among males, with 1.2 million new cases and more than
600,000 deaths. Survival rates have improved over the past
three decades due to early detection, but the 5-year survival
rate for patients diagnosed at a later stage of the disease is
still only 14% [2–5]. Colon cancer remains a relatively
difficult disease to treat, although advanced treatments are
available which can improve survival rates for the disease.
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,erefore, it is particularly important to conduct an in-depth
exploration of the pathogenesis of colon cancer and new
therapeutic targets.

Ferroptosis is a nonapoptotic regulated cell death mode
driven by iron-dependent lipid peroxidation, a process
which has been discovered in recent years. Ferroptosis has
been reported to be involved in the pathogenesis of colon
cancer [6, 7]. ,e induction of ferroptosis is accompanied by
an increase in intracellular lipids and reactive oxygen species
(ROS), leading to cell death, which is why lipid antioxidants
can inhibit ferroptosis. Since iron is an essential ion in the
mitochondrial oxidative respiratory chain, mitochondria, as
organelles that are rich in iron ions and which generate ROS,
are considered to be an important site for ferroptosis. Not
only are they an important site for intracellular ROS gen-
eration, but fatty acid metabolism provides specific lipid
precursors for cellular ferroptosis. Autophagy, which refers
to any intracellular process involving lysosome degradation
of cytosolic components, also occurs during tumor pro-
gression [8]. Autophagy is essential for cell survival, dif-
ferentiation and development, and homeostasis [9].
Autophagy is involved in a variety of diseases, including
infection, cancer, neurodegeneration, and ageing, as well as
heart, liver, and kidney disease [10]. When ferroptosis oc-
curs, cells will face additional pressures such as hypoxia,
oxidative stress, and oncogene activation, which may induce
autophagy. In mitochondria, ferroptosis results in decreased
mitochondrial volume and cristae and increased membrane
density. ,is can also cause cells to erroneously and selec-
tively phagocytose mitochondria. In conclusion, there may
be an association between ferroptosis and autophagy in
colon cancer, and the mechanism of their interaction has not
yet been explored.

In this study, we attempted to explore the mechanism of
the interaction between ferroptosis and autophagy in colon
cancer. By analyzing three different transcriptome datasets
of colon cancer patients, we obtained the common upre-
gulated genes and downregulated genes by taking the in-
tersection of differentially expressed genes. ,e gene
SLC2A1 was identified by combining autophagy genes
obtained from GeneCards and ferroptosis genes obtained
from FerrDb. To explore the clinical significance and
prognostic value of SLC2A1, we used massive databases to
explore in depth the methylation of SLC2A1, and we in-
vestigated the differences in immune infiltration between
tumor and normal tissues using the gene expression om-
nibus (GEO) dataset. We found that there are a lot of
methylation sites in SLC2A1 and that the methylation of
SLC2A1 is correlated with the immunosuppression of tumor
tissue. Our results suggest that SLC2A1 further modulates
the immune microenvironment by regulating ferroptosis
and autophagy processes in colon cancer, thereby affecting
disease prognosis.

2. Materials and Methods

2.1. Data Acquisition. GEO is the world’s largest public
database containing genetic data on various types of diseases
[11]. We downloaded the expression profile data of

GSE10972, GSE23878, and GSE113513 for colon cancer.
Data processing was performed using R software to obtain
differential genes.

2.2. Information of Patients. We downloaded the data from
the Cancer Genome Atlas (TCGA) for various analyses, in-
cluding the differential expression analysis of unpaired
samples, the differential expression analysis of paired samples,
construction of the survival curve and receiver operating
characteristic (ROC) curve , and the correlation analysis of the
DNAmethylation probe and expression level. ,e differential
expression analysis of unpaired samples and the data of the
ROC curve were all derived from the RNAseq data in
Transcripts Per Kilobase of exon model per million mapped
reads (TPM) format from the TCGA and the Genotype-
Tissue Expression (GTEx) databases, processed by UCSC
Xena (https://xenabrowser.net/datapages/) through the Toil
process. We extracted the corresponding normal tissue data
from colon adenocarcinoma (COAD) and GTEx of TCGA,
and then the log2 normalization was used to transform the
RNAseq data in TPM format.,e paired samples and survival
curve data were derived from RNAseq data in the level
3 HTSeq-Fragments Per Kilobase per Million (FPKM) format
in the TCGA (https://portal.gdc.cancer.gov/) COAD portal.
We converted the RNAseq data in FPKM format into TPM
format and performed a log2 normalization.

2.3. SurvivalCurveAnalysis. ,eprincipal R package used to
express the difference was ggplot2 [version 3.3.3] (for vi-
sualization). ,e R packages used in the ROC curve were
pROC [1.17.0.1 version] (for analysis) and ggplot2 [3.3.3
version] (for visualization), with the false positive rate (FPR)
on the abscissa and the true positive rate (TPR) on the
ordinate. ,e survival curve used the survminer [version
0.4.9] (for visualization) and survival [version 3.2–10] (for
statistical analysis of survival data) R packages. ,e types of
prognosis included overall survival (OS) and progression-
free interval (PFI). Significance mark: ns, p≥ 0.05; ∗p< 0.05;
∗∗p< 0.01; ∗∗∗p< 0.001.

2.4. PPI Analysis. We used the STRING (https://cn.string-
db.org/) website, which contains data of many species [12]
relating to protein-protein interaction networks and func-
tional enrichment analysis. We entered the details of the
intersection genes, obtained the protein interaction network,
and downloaded the protein interaction data for subsequent
analysis. We used the GeneMANIA (https://genemania.org/)
website to help us predict the biological functions of
specific genes and gene sets [13]. Cytoscape is a software
application that visualizes molecular interaction networks
and biological pathways and integrates these networks with
annotations, gene expression profiles, and other status data
[14]. In Cytoscape (https://cytoscape.org/), we imported
the protein-protein interaction networks of 186 genes
obtained from STRING to remove the unconnected pro-
teins and then used the cytoHubba plug-in to calculate and
sequence the MCCs.
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2.5. Harvesting of Functional Gene Lists: FerrDb and
GeneCards. GeneCards (https://www.genecards.org/) is
a comprehensive database comprising information about
genes, including details of genomes, transcriptomes, and
proteins, as well as genetic, clinical, and functional aspects of
gene-centric data. We downloaded 6866 genes related to
autophagy using “autophagy” as the keyword. ,e auto-
phagy gene was intersected with the differential gene
in GEO.

FerrDb (https://www.zhounan.org/ferrdb/legacy/index.
html) was the first comprehensive database containing the
genes proven to be related to ferroptosis; it also includes
a number of monomers that can regulate ferroptosis [15].
We obtained 260 genes related to ferroptosis, including
driver, marker, and suppressor genes.

2.6. Bioinformatic Processing

2.6.1. EWAS. ,e EWAS (https://ngdc.cncb.ac.cn/ewas/
datahub) database contains a large amount of data of dis-
ease types and was therefore convenient for helping us to
visualize methylation levels [16]. We were able to determine
the relationship between the methylation status of SLC2A1
in COAD and the methylation level and prognosis.

2.6.2. UALCAN. UALCAN (https://ualcan.path.uab.edu/
index.html) is a comprehensive, user-friendly tumor data-
base that provides users with a convenient way to explore
TCGA, the National Cancer Institute’s Clinical Proteomic
Tumor Analysis Consortium (CPTAC), and other datasets
[17]. From this database, we obtained methylation data
(from TCGA) and protein data (from CPTAC) for SLC2A1.

2.6.3. 5e Human Protein Atlas (HPA). ,is is a unique
website dedicated to providing immunohistochemical im-
ages, including those of many kinds of tumors and corre-
sponding normal tissues; it proved useful to us for exploring
the protein content of genes (https://www.proteinatlas.org/)
[18]. We obtained high-resolution immunohistochemical
images of normal tissues and tumor tissues from the website
to determine the abundance of protein.

2.6.4. CIBERSORTx. ,is was used to estimate the gene
expression profile and provide the estimated abundance of
member cell types in the mixed cell population by using the
gene expression data (https://cibersortx.stanford.edu/) [19].
We cleaned the original expression data from GEO, with the
requirements that the expression values do not undergo log
conversion and cannot have null values.

2.6.5. EcoTyper. EcoTyper (https://ecotyper.stanford.edu/)
is a new machine learning framework for the identification
of cell states and ecosystems from bulk, single-cell, and
spatially-resolved expression data [20]. EcoTyper extends
CIBERSORTx for large-scale profiling of cellular ecosystems.

2.6.6. xCell. xCell (https://xcell.ucsf.edu/) is a webtool that
performs cell type enrichment analysis from gene expression
data for 64 immune and stroma cell types [21]. xCell is a gene
signature-based method learned from thousands of pure cell
types from various sources. In order to explore the tumor
heterogeneity of colon cancer, we inferred the types of
sample cells from the expression profile in xCell.

2.6.7. MEXPRESS. ,is is a user-friendly database that vi-
sualizes DNA methylation, expression, and clinical data
(https://www.mexpress.be/) [22].

2.6.8. MethSurv. ,is is a web tool for performing multi-
variate survival analysis using DNA methylation data
(https://biit.cs.ut.ee/methsurv/) [23]. We used this website
to explore the relationship between methylation levels of
different methylation probes and prognosis.

2.6.9. SRAMP. SRAMP is a sequence-based RNA adenosine
methylation site predictor; it is used to predict the m6A
modification site on the target mRNA sequence (https://
www.cuilab.cn/sramp) [24].

2.6.10. JASPAR. ,is database contains a large amount of
transcription factor data, which can help researchers to
predict the binding sites of transcription factors and their
sequences (https://jaspar.genereg.net/) [25].

3. Results

3.1. Excellent Sample Data Quality with High Confidence.
After downloading the expression profile data, it is essential
to assess the quality of the information [26]. Principal
component analysis (PCA) maps show the features of high-
latitude data by extracting their feature vectors, which are
then converted into low-dimensional data, and using two-
dimensional maps. ,e distance between samples indicates
the differences between them. ,e figure showed that the
characteristics of samples in the same group are similar, and
the differences in samples between different groups are
significant (Figures 1(a)–1(c)). ,e Uniform Manifold
Approximation and Projection (UMAP) map was also used
to determine differences between samples in the dataset
expression profile (Figures 1(d)–1(f )). ,e volcano plot is
used for visualizing the results obtained after difference
analysis. Each point in the volcano plot represents the
difference multiple of one molecule and the converted
corrected p value (Figures 1(g)–1(i)). A normalized box plot
was used to examine the chip strengths of the molecules in
each sample in the dataset (Figures 1(j)–1(l)). ,e first 40
genes with significant differences in each dataset were vi-
sualized in the form of heat maps (Figures 1(m)–1(o)). From
the three datasets, there were 113 common downregulated
genes and autophagy gene intersections, and 73 common
upregulated genes and autophagy gene intersections (Sup-
plementary Figure 1A–1B).
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Figure 1: Continued.
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3.2. Screening Genes to Obtain the Key Gene Associated with
Ferroptosis and Autophagy. We crossed the differential
genes analyzed from the three expression profiles with the
autophagy genes obtained from GeneCards to obtain a gene
set containing 186 genes. ,en we input the gene set into
STRING, and a complex and comprehensive protein-protein
interaction network diagram was produced (Figure 2(a)).
After the unconjugated proteins were removed, the protein
interaction data were imported into Cytoscape to calculate
the Maximal Clique Centrality (MCC) value, and 156 genes
were found to be involved in this interaction network. We
selected 55 genes with an MCC value greater than 10 and
then used the clinical data from TCGA to explore their
survival significance; from this, we obtained 19 genes with
clinical significance. Next, we intersected the ferroptosis
gene set obtained from FerrDb with the 19 genes and finally
obtained the SLC2A1 gene (Figures 2(b)-2(c)). In previous
studies, researchers used all-trans retinoic acid (ATRA) to
treat different lung cancer cells and found that the most
significant reduction in the transcription level of SLC2A1
was found in SLC2A1 and the genes in the same family, thus
excluding other gene families [5]. ,erefore, we determined
that the SLC2A1 gene not only plays an important role in
ferroptosis but also plays an indispensable role in autophagy
in colon cancer. In order to explore the clinical relevance of
SLC2A1 expression in colon cancer, clinical data from
TCGAwere downloaded for analysis and SLC2A1was found
to have high predictive power for the variable SLC2A1 in
predicting the outcomes of Normal and Tumor
(AUC� 0.968, CI� 0.957–0.979, Figure 2(d)). In the main
treatment outcome, PD, PR, and CR were all highly cor-
related with the expression level of SLC2A1 and all of them
were statistically significant (Figure 2(e)). Regarding path-
ological stages, the expression of SLC2A1 increased as the

stages progressed (Figure 2(f)). In stages M and N of the
tumor, the expression level of SLC2A1 increased slowly as the
tumor progressed, and it could be seen that the high ex-
pression of SLC2A1 seriously affected the deterioration of the
tumor (Figures 2(i)-2(j)). Moreover, SLC2A1 expression
levels in patients with lymphoid invasion were higher than
those in patients without lymphoid invasion, and SLC2A1
expression levels in patients with perineural invasion were
higher than those in patients without perineural invasion
(Figures 2(k)-2(l)). More importantly, in terms of PFI,
SLC2A1 expression levels were higher in deceased patients
than in surviving ones (Figures 2(m)-2(n)). ,e KM prog-
nostic curve also illustrates the excellent prognostic value of
SLC2A1 in both PFI and OS prognosis types (Figures 2(o)-
2(p)). In addition, both high SLC2A1 expression groups had
poor prognostic outcomes in the presence of residual tumor
and lymphoid invasion (Figures 2(q)-2(r)). We also per-
formed univariate and multivariate COX regression using
TCGA data and plotted the baseline data table (Supple-
mentary-Tables 1-2, Supplementary Figure 1C).

3.3. Transcriptomics and Proteomics Confirmed the High
Expression Level of SCL2A1 in Colon Cancer. From the
unpaired sample data from TCGA, theMannWhitneyU test
(Wilcoxon rank-sum test) showed that Tumor was higher
than Normal, and the median difference between the two
groups was 2.701 (2.531–2.867), with a statistically signifi-
cant difference (p< 0.001). ,e paired sample t-test showed
that Tumor was above the average level of Normal, and the
difference between the two groups was 1.774 (1.417–2.132),
with a statistically significant difference (t� 10.026,
p< 0.001). ,e result was a worse prognosis in the high
group (Figures 3(a)-3(b)). In addition, we explored the
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Figure 2: ,e excellent prognostic value of SLC2A1. (a, b) Protein interaction networks obtained from STRING and GeneMANIA. (c) ,e
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protein expression of SLC2A1 in the HPA and CPTAC
databases, and we found that the protein abundance of
SLC2A1 in tumors was much higher than that in normal
tissues (Figure 3(c)–3(g)).

3.4. Multidatabase Joint Exploration of the Methylation Level
of SLC2A1. N6-methyladenosine (m6A) is a post-tran-
scriptional methylation modification that is widely distrib-
uted on the adenosine bases of RNA transcripts. ,is
modifier is involved in the degradation of RNA transcripts,
subcellular localization, and the regulation of splicing and

local variations. In mammalian transcriptomes, only a small
fraction of this motif is indeed modified, determining the
other sequential and structural features of the m6A modi-
fication site. Results from both the UALCAN and EWAS
databases revealed higher methylation levels of SLC2A1 in
tumors and worse case outcomes in the hypermethylated
group (Figures 4(a)–4(c)). After exploring the correlation
between the methylation levels of SLC2A1 methylation
probes and the transcription level of SLC2A1 in TCGA, we
found that a total of five probes were correlated with the
transcription level, with probes cg09824328, cg12656391,
and cg00102166 being negatively correlated, and probe
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Figure 3: ,e verification of SLC2A1 expression by transcriptomics and proteomics. (a) Unpaired samples. (b) Paired samples. (c) SLC2A1
protein expression in the UALCAN database. (d–g) Immunohistochemistry in the HPA database demonstrated the difference in protein
abundance of SLC2A1 in tumor and constituent tissues.

Journal of Oncology 7



Normal
(n=37)

Promoter methylation level of SLC2A1 in COAD

TCGA samples

Be
ta

 v
al

ue

Primary tumor
(n=313)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a)

colorectal cancer

colon
0

0.2

0.4

0.6

0.8

1

Case
Control

(b)

0
0

0.25

2.5
survival time (years)

5 7.5 10

0.5

Su
rv

iv
al

 P
ro

ba
bi

lit
y

0.75

1

Methylation level >= 0.177 (n=146)
Methylation level < 0.177 (n=145)

(c)

M
et

hy
la

tio
n 

Le
ve

ls 
(B

et
a v

al
ue

)

SLC2A1 (Log2 (TPM+1))
6 8 10

0.04

0.06

0.00

0.02

0.08

0.10

0.12

0.14

(d)

SLC2A1 (Log2 (TPM+1))
6 8 10

M
et

hy
la

tio
n 

Le
ve

ls 
(B

et
a v

al
ue

)

0.4

0.6

0.0

−0.2

0.2

0.8

1.0

(e)

SLC2A1 (Log2 (TPM+1))
6 8 10

M
et

hy
la

tio
n 

Le
ve

ls 
(B

et
a v

al
ue

)

0.04

0.06

0.00

0.02

0.08

(f )

SLC2A1 (Log2 (TPM+1))
6 8 10

M
et

hy
la

tio
n 

Le
ve

ls 
(B

et
a v

al
ue

)

0.04

0.05

0.02

0.03

0.06

0.07

0.08

(g)

SLC2A1 (Log2 (TPM+1))
6 8 10

M
et

hy
la

tio
n 

Le
ve

ls 
(B

et
a v

al
ue

)

0.04

0.05

0.02

0.03

0.06

0.07

(h)

SLC2A1 (Log2 (TPM+1))
6 8 10

M
et

hy
la

tio
n 

Le
ve

ls 
(B

et
a v

al
ue

)

0.4

0.6

0.0

0.2

(i)

SLC2A1 (Log2 (TPM+1))
6 8 10

M
et

hy
la

tio
n 

Le
ve

ls 
(B

et
a v

al
ue

)

0.03

0.04

0.01

0.02

0.05

0.06

0.07

(j)

SLC2A1 (Log2 (TPM+1))
6 8 10

M
et

hy
la

tio
n 

Le
ve

ls 
(B

et
a v

al
ue

)

0.012

0.016

0.008

0.020

0.024

(k)

SLC2A1 (Log2 (TPM+1))
6 8 10

cg
05

80
23

86
 (B

et
a v

al
ue

)

0.4

0.6

0.0

0.2

(l)

Figure 4: ,e DNA methylation of SLC2A1 in COAD. (a) Promoter methylation of SLC2A1 in UALCAN. (b, c) Methylation status and
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cg22176566 being positively correlated (Figures 4(d)–4(l)).
After the sequence of SLC2A1 was downloaded from NCBI
and the methylation sites of m6a were predicted using the
SRAMP website, we found that there were a large number of
methylation sites on the RNA of SLC2A1, and a total of 117
sites were obtained, including 16 sites with very high
reliability. We also showed the RNA secondary structure
of these 16 sites (Supplementary Table 3, Supplementary
Figure 2). In MEXPRESS, we found that the previously
mentioned probes exhibiting a negative correlation were
validated against SLC2A1 expression levels. In addition,
the expression level of SLC2A1 has a certain correlation
with sample type, tumor stage, venous invasion, and
lymphatic invasion. ,e heatmap also indicated that
cg00102166 and cg12656391 showed obvious hypo-
methylation. At the same time, the methylation status of
four methylation probes had considerable prognostic
significance for survival. ,e group with low methylation
of cg04287330 and cg13790786 had significantly poor
prognostic outcomes, while the group with high meth-
ylation of cg20294984 and cg22025263 had even worse
prognostic outcomes (Supplementary Figure 3).

3.5. Transcription Level of SLC2A1 Is Associated with
Immune Infiltration in Tumors. In order to explore the re-
lationship between the transcription level of SLC2A1 and
immune infiltration, we downloaded the RNAseq data from
TCGA to study the infiltration level of multiple immune
cells, including aDCs [activated dendritic cells], B cells, CD8
T cells, cytotoxic cells, DCs, eosinophils, iDCs [immature
DCs], macrophages, mast cells, neutrophils, NK CD56
bright cells, NK CD56dim cells, NK cells, pDCs [plasma-
cytoid DCs], T cells, T helper cells, Tcm [T central memory]
cells, Tem [Teffector memory] cells, Tfh [T follicular helper]
cells, Tgd [T gamma delta] cells, ,1 cells, ,17 cells, ,2
cells, and Treg cells. In the data of TCGA, we found that the
expression level of SLC2A1 was correlated with some of
these immune cells, and there was a positive correlation with
NK CD56 bright cells, eosinophils, mast cells, NK cells,
neutrophils, DCs, iDCs, Tem cells, and NK CD56dim cells.
However, it was negatively correlated with Tcm, ,2, and
helper cells (Figure 5(a)). ,e association of the high
transcription level of SLC2A1 with the infiltration of
a number of immune cells includes DCs, eosinophils, iDCs,
mast cells, neutrophils, NKCD56bright cells, NK cells, and T
helper cells (Figure 5(b)). At the same time, the correlation
between the infiltration fraction of different immune cells
and the transcription level of SLC2A1 can also be observed
from the scatter diagram (Figures 5(c)–5(h)). We also
performed a correlation analysis (Supplementary Table 4)
for the key marker of each immune cell.

In order to systematically identify the cell states and
cellular communities (ecotypes) in colon cancer, we used the
EcoTyper tool to perform the analysis, inputting data from
GSE10972, GSE23878, and GSE113513, which meet the
stringent data requirements of CIBERSORTx, entered for
analysis (Supplementary Figure 4). Tissue is a complex
environment composed of numerous cell types.

Understanding cellular heterogeneity in the tumor micro-
environment is an emerging field of research in cancer. We
used xCell to explore the tumor microenvironment in
COAD using three datasets from GEO. ,e three heat maps
reveal some interesting observations. Among the 64 types of
immune cells, a small number of them were found to have
a low infiltration fraction in normal tissue but a significantly
increased infiltration fraction in tumor tissue. However,
most types of immune cells revealed a high infiltration
fraction in normal tissue but a significantly decreased in-
filtration fraction in tumor tissue, a phenomenon similar to
“depletion” (Figures 5(i)–5(k)), such as typical T-cell de-
pletion. Various T-cell subtypes are such as CD4+ Tcm;
CD4+ T cells; and CD4+ naı̈ve T cells such as CD8+Tcm. In
addition, we found that M1 and M2 macrophages, various
B cell subtypes, and different subtypes of endothelial cells all
share the same cell state as T cells. After initial T cells are
activated by antigens, costimulation and inflammation, they
proliferate exponentially and differentiate into effector
T cells and memory T cells. At the same time, we can also
observe that the total immune infiltration of the tumor tissue
and the sum of the scores of all types of immune cells are
much lower than those of the normal tissue, indicating that
the patient’s immune response was decreased, and it even
promoted the immune escape of the tumor cells (Supple-
mentary Figure 5).

4. Discussion

Colon cancer is the third most common malignant tumor in
the world. Both ferroptosis and autophagy are thought to be
involved in the development of colon cancer, but the re-
lationship between them has not been revealed. To explore
the mechanisms underlying the association between fer-
roptosis and autophagy in colon cancer, we downloaded
three high-quality colon cancer datasets from the GEO
database and analyzed differentially expressed genes. We
then intersected the differentially expressed genes with
autophagy-related genes to obtain a gene set containing 186
genes. A protein-protein interaction network was con-
structed for this gene set, and genes with low correlation
were eliminated. At the same time, survival analysis was
performed using TCGA data, with 19 genes with prognostic
significance being considered as key genes. Subsequently, we
found the intersection between ferroptosis-related genes and
key genes to obtain SLC2A1 as a potential marker gene. ,e
expression level of SLC2A1 itself is associated with the
prognosis of colon cancer patients. SLC2A1 has a large
number of methylation sites, and themethylation of SLC2A1
is related to T cell exhaustion and immunosuppression in
tumor tissue.

SLC2A1 encodes the major glucose transporter in the
mammalian blood-brain barrier. ,e encoded protein is
mainly present in the cell membrane and cell surface and
promotes the glucose transporter responsible for constitu-
tive or basal glucose uptake [27–30]. SLC2A1 can affect
functions such as carbohydrate homeostasis and carbohy-
drate kinase activity. ,e increase in SLC2A1 expression
may stimulate cellular glycolysis, and our analysis also

Journal of Oncology 9



NK CD56bright cells 
Eosinophils 

Mast cells
NK cells

Neutrophils
DC 
iDC
Tem

NK CD56dim cells
Macrophages

aDC
�1 cells

Cytotoxic cells
TReg

CD8 T cells
TFH
Tgd

B cells
T cells

�17 cells
pDC
Tcm

�2 cells
T helper cells

Correlation

Correlation

P value

* p < 0.05
** p < 0.01

0.05

0.8

0.2
0.4
0.6

0.10
0.15
0.20
0.25

−0.2 −0.1 0.0 0.1 0.2 0.3

**
**
**
**

**
**

**
*

*

*
*

**

(a)

DC

En
ric

hm
en

t s
co

re
s

**
**

**

**

*****

***

***

iDCEosinophils Mast cells Neutrophils NK CD56bright cells NK cells T helper cells

0.2

0.0

0.4

0.6

0.8

SLC2A1
Low
High

**
**

**

**

*****

***

***

(b)
0.7

0.6

0.5

0.4

0.3

0.2

0.1En
ric

hm
en

t s
co

re
s o

f c
el

ls

5 7 9
The expression of SLC2A1

Log2 (TPM+1)

(c)

0.6

0.4

0.2

0.0

En
ric

hm
en

t s
co

re
s o

f c
el

ls

5
The expression of SLC2A1

Log2 (TPM+1)

7 9

(d)
0.55

0.50

0.45

0.40

0.35

0.30En
ric

hm
en

t s
co

re
s o

f c
el

ls

5 7 9
The expression of SLC2A1

Log2 (TPM+1)

(e)

0.6
0.5
0.4
0.3
0.2
0.1
0.0En

ric
hm

en
t s

co
re

s o
f c

el
ls

5 7 9
The expression of SLC2A1

Log2 (TPM+1)

(f )
0.7

0.6

0.5

0.4

0.3En
ric

hm
en

t s
co

re
s o

f c
el

ls

5 7 9
The expression of SLC2A1

Log2 (TPM+1)

(g)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

En
ric

hm
en

t s
co

re
s o

f c
el

ls

5 7 9
�e expression of SLC2A1

Log2 (TPM+1)

(h)

Figure 5: Continued.
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suggests that the expression of SLC2A1 may contribute to
the Warburg effect and promote tumor cell metastasis
(Supplementary-Figure 6A). Previous studies have shown
that high transcription levels of SLC2A1 may lead to lym-
phoid and perineural invasion [31], suggesting that SLC2A1
plays a conserved function in a variety of malignancies.

By further investigating the mechanism by which
SLC2A1 affects prognosis, we learned that SLC2A1 is closely
related to HK family proteins [32]; therefore, we explored
the epigenetic modification of SLC2A1, which has been
shown in past studies to be hypermethylated with high levels
of transcription, and the protein level is high in colon cancer
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Figure 5: ,e immune infiltration of COAD and SLC2A1 was investigated according to the combined data of TCGA and GEO. (a–h)
Correlation between the expression level of SLC2A1 in the TCGA database and the infiltration of different immune cells. (i–k)
Immunoinfiltration analysis in xCell using expression profiles from three GEO datasets.
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[33]. We predicted the methylation sites of SLC2A1 and
found that the SLC2A1 sequence contained a large number
of m6a modification sites (with 16 very high-confidence
sites); methylation sites were also revealed in the RNA
secondary structure. ,e correlation between SLC2A1 and
the expression levels of several methylase and autophagy-
related proteins was also explored, and SLC2A1was found to
be associated with these proteins (Supplementary
Figure 6B). At the same time, we studied the correlation
between the expression levels of several probes, which also
proved that the overall DNA methylation level of SLC2A1
and the methylation levels of these probes were significantly
associated with prognosis.

According to the literature, when SLC2A1 is signifi-
cantly activated and transcribed by the DNA methylation
modifier, lymphoid-specific helicase will significantly in-
hibit ferroptosis, which also leads to significantly reduced
lipid peroxidation and ROS [34]. However, after the
deacetylase Sirtuin 2 (SIRT2) is inactivated by ROS,
acetylated Forkhead Box O1 (FoxO1-Ac) accumulates in
the cytoplasm and complexes with Autophagy Related 7
(ATG7), which can stimulate autophagy. ,is autophagy-
inducing mechanism keeps FoxO1 inactive as a transcrip-
tion factor in the cytoplasm but still inhibits the growth of
tumor xenografts in nude mice [35, 36]. Our results suggest
that methylation of SLC2A1 is associated with immuno-
suppression in colon cancer. Chronically high expression
of SLC2A1 may lead to prolonged antigen exposure of
immune cells and inflammation. Effector T cells are con-
tinuously stimulated, transforming them into exhausted
T cells; T cell exhaustion is one of the major factors in
immune dysfunction in cancer patients. ,is leads to
immune escape and tumor progression. ,ese results
suggest that the expression and hypermethylation of
SLC2A1 affects the processes of ferroptosis and autophagy,
which in turn affects tumor immunity.

Our study substantiates that the ferroptosis and
autophagy-co-associated gene SLC2A1 is involved in tu-
mor immune regulation and tumor prognosis in colon
cancer. Hypermethylation of SLC2A1 is associated with
T cell exhaustion and suppression of the immune micro-
environment in colon cancer, a process which is most likely
mediated by ferroptosis and autophagy. However, further
research is required to determine the specific biological
mechanism for this. ,e limitation of this study is that the
data were obtained using exclusively bioinformatic
methods; thus, there is a lack of experimental data. In
conclusion, our study demonstrates that SLC2A1 is in-
volved in the regulation of ferroptosis and autophagy in
colon cancer, which in turn regulates tumor immunity and
affects tumor progression. Our results also indicate that
SLC2A1 may become an effective therapeutic target for
colon cancer in the future.
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Supplementary Materials

Supplementary Figure 1. Intersection of differential genes
and autophagy genes. A: there were 113 intersecting genes of
common downregulating genes and autophagy genes. B:
there were 73 intersecting genes of coupregulated genes and
autophagy genes. C: forest map is shown. Supplementary
Figure 2. ,e m6a site on the SLC2A1 sequence and its
secondary RNA structure are predicted. A: distribution map
of m6a prediction sites. B–Q: secondary RNA structure with
very high-confidence methylation sites. Supplementary
Figure 3. Comprehensive exploration of the methylation
probes of SLC2A1. A: heat map of SLC2A1 in MEXPRESS is
illustrated. B: heat map of SLC2A1 in MethSurv is shown.
C–F: methylation probes of clinical significance in SLC2A1
are depicted. Supplementary Figure 4. Analysis of GEO data
using EcoTyper. A: the row of the heat map corresponds to
cell state, the column corresponds to sample, and the colour
corresponds to cell state abundance. ,e colour bar on the
left represents the state of each cell, the cancer ecotype it
forms, its cell type, and its ID. ,e top colour bar indicates
the cancer ecotype with the highest abundance in each
sample. B–M: a heat map is shown on the left, which depicts
the cell type-specific expression of cell state characteristics of
genes in TCGA cancer samples for reference. ,e right side
shows the heat map of gene expression of cell state char-
acteristics in GEO data. N: classification diagram of cell
interaction state is shown. Supplementary Figure 5. Stacked
histogram of immune infiltration scores. A-B: distribution of
immune scores of GSE23878 and GSE113513 in CIBER-
SORTx are illustrated. C–E: immune infiltration scores of
GSE 10972, GSE23878, and GSE113513 in xCell are shown.
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Supplementary Figure 6. Biological functions affected by
SLC2A1 and correlation with specific proteins. A: Effects of
SLC2A1 can be seen in GeneMANIA. B: correlation between
SLC2A1 expression levels and methylase, autophagy and
ferroptosis proteins in COAD is shown. Supplementary
Table 1. Univariate/multivariate COX regression. Supple-
mentary Table 2. Baseline data sheet of SLC2A1. Supple-
mentary Table 3. Prediction of SLC2A1 methylation sites in
SRAMP. Supplementary Table 4. Correlation between
SLC2A1 and key marker of immune cells. (Supplementary
Materials)
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