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Abstract 

Background:  Cardiovascular disease (CVD) is the leading cause of death in the United States (US). Better cardiovas-
cular health (CVH) is associated with CVD prevention. Predicting future CVH levels may help providers better manage 
patients’ CVH. We hypothesized that CVH measures can be predicted based on previous measurements from longitu-
dinal electronic health record (EHR) data.

Methods:  The Guideline Advantage (TGA) dataset was used and contained EHR data from 70 outpatient clinics 
across the United States (US). We studied predictions of 5 CVH submetrics: smoking status (SMK), body mass index 
(BMI), blood pressure (BP), hemoglobin A1c (A1C), and low-density lipoprotein (LDL). We applied embedding tech-
niques and long short-term memory (LSTM) networks – to predict future CVH category levels from all the previous 
CVH measurements of 216,445 unique patients for each CVH submetric.

Results:  The LSTM model performance was evaluated by the area under the receiver operator curve (AUROC): the 
micro-average AUROC was 0.99 for SMK prediction; 0.97 for BMI; 0.84 for BP; 0.91 for A1C; and 0.93 for LDL prediction. 
Model performance was not improved by using all 5 submetric measures compared with using single submetric 
measures.

Conclusions:  We suggest that future CVH levels can be predicted using previous CVH measurements for each 
submetric, which has implications for population cardiovascular health management. Predicting patients’ future CVH 
levels might directly increase patient CVH health and thus quality of life, while also indirectly decreasing the burden 
and cost for clinical health system caused by CVD and cancers.
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Background
Cardiovascular disease (CVD) is the leading cause of 
mortality for both men and women in the United States 
(US), and accounts for almost 1 in every 4 deaths (https​
://www.medic​alnew​stoda​y.com/artic​les/28292​9.php). 
Cardiovascular health (CVH) metrics, defined by the 

American Heart Association (AHA), have important 
implications for CVD prevention [1–6]. Individuals 
with better CVH metrics have lower risk of CVD death 
and prevention efforts should focus on maintaining or 
improving CVH across the lifespan (https​://www.medic​
alnew​stoda​y.com/artic​les/32419​5.php). Management of 
CVH levels according to previously recorded measure-
ments may be critical to better manage CVH level of 
patients, as closer attention to certain risk factors may 
maximize prevention. Thus, predicting future CVH levels 
may be associated with better management of CVD.

Open Access

*Correspondence:  aixia.guo@wustl.edu
1 Institute for Informatics (I2), Washington University School of Medicine, 
600 S. Taylor Avenue, Suite 102, St. Louis, MO 63110, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0542-0920
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://www.medicalnewstoday.com/articles/282929.php
https://www.medicalnewstoday.com/articles/282929.php
https://www.medicalnewstoday.com/articles/324195.php
https://www.medicalnewstoday.com/articles/324195.php
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-020-01345-1&domain=pdf


Page 2 of 10Guo et al. BMC Med Inform Decis Mak            (2021) 21:5 

The seven cardiovascular risk factors which com-
prise CVH include: smoking status (SMK), physical 
activity, body mass index (BMI), diet, blood glucose, 
cholesterol, and blood pressure (BP) [2]. Recent stud-
ies [7, 8] have used previous measurements of weight 
and height data to predict BMI by employing regression 
analyses on population survey data. Other recent stud-
ies predicting changes in BP, [9, 10] hemoglobin A1c 
(A1C) [11], cholesterol (LDL) [12], and SMK [13] uti-
lized electronic health record (EHR) data. These studies 
employed machine learning algorithms such as classi-
fication tree, feature selection algorithms, and correla-
tion analyses.

Recently, healthcare organizations have employed deep 
learning models to discover useful patterns from the 
EHR, which contain rich longitudinal healthcare infor-
mation such as diagnoses, procedures, laboratory test 
results, and medications. Deep learning algorithms can 
be effectively used to predict certain medical events by 
capturing features and patterns contained in EHR data 
[14]. For example, scalable deep learning algorithms were 
applied in a previous study to accurately predict mor-
tality and readmission in EHR data from two academic 
medical centers [15].

In this paper, we investigated the prediction of future 
CVH from previous measurements of CVH among 
patients utilizing one type of recurrent neural network 
(RNN) – long short-term memory (LSTM) networks [16]. 
LSTM is one type of architecture from recurrent neural 
network (RNN) which can capture temporal dynamic 
behavior from a temporal sequence. LSTM architecture 
is well-suited to predict time series with time lags of 
unknown size by learning from the previous experiences 
[17]. Unlike previous studies, we implemented LSTM 
techniques based on a large and nationally-representa-
tive longitudinal dataset of patients. We also compared 
LSTM models with other two baseline models, i.e., logis-
tic regression (LR) and random forest (RF). The EHR data 
used for these analyses was from more than 70 outpatient 
clinics across the US. We included five CVH submetrics 

(i.e., SMK, BMI, A1C, LDL and BP) in our analyses due to 
data availability.

Our purpose was to better understand the CVH tra-
jectory of patients and whether steps could be taken by 
providers and patients to maximize prevention efforts 
and the worsening of CVH. For example, if the CVH level 
was predicted to be worsening based upon the previous 
measures, then providers and patients could better main-
tain or control CVH to prevent it from becoming worse.

Methods
The Guideline Advantage (TGA) is an ambulatory qual-
ity clinical data registry of EHR data from more than 
70 different clinics across the US. The American Can-
cer Society, the American Diabetes Association, and the 
AHA established TGA for tracking and monitoring dis-
ease management and outpatient preventative care (https​
://www.scrip​ps.org/spark​le-asset​s/docum​ents/heart​
_rhyth​m_facts​.pdf ). In this paper, we used TGA data to 
predict their most recent CVH status based on previ-
ous CVH data. Each future CVH submetric was defined 
as the most recent measurement for each patient, while 
the previous CVH submetrics comprised all preceding 
measurements.

We first identified the patients with at least one CVH 
metric with a result date within a 13-year period (2004–
2016) of observation. Among these patients, 230,800 
had SMK data, and 53,882 patients had measurements 
of hemoglobin A1c (A1C) measures, 114,235 choles-
terol (low-density lipoprotein, LDL), 163,147 BMI, and 
261,526 BP, respectively. We identified 216,445 patients 
with at least two measures at different dates in any CVH 
submetric (25,080 patients for A1C, 58,385 patients for 
LDL, 121,267 patients for BMI, 197,387 patients for BP, 
and 126,709 patients for SMK).

Each of the five CVH measures as defined above 
were classified into one of three categories according to 
Table 1: ideal, intermediate, or poor. We utilized the Mul-
tum drug database [19] as a template to convert all drug 
names to their corresponding drug class. We employed 

Table 1  Measures of CVH which are available in the TGA (Adapted from: Lloyd-Jones, 2011) [18]

Poor health Intermediate health Ideal health

Health behaviors

  Smoking status Yes Former ≤12 months Never or quit > 12 months

  Body mass index ≥ 30 kg/m2 −5 - 29.9 kg/m2 < 25 kg/m2

Health factors

  LDL ≥ 160 mg/dL 130–159 mg/dL or treated to goal < 130 mg/dL

  Blood pressure Systolic ≥140 mmHg or Diastolic 
≥90 mmHg

Systolic 120–139 mmHg or Diastolic 
80–89 mmHg or treated to goal

Systolic < 120 mmHg
Diastolic < 80 mmHg

  Fasting plasma glucose ≥ 126 mg/dL 100–125 mg/dL or treated to goal < 100 mg/dL

https://www.scripps.org/sparkle-assets/documents/heart_rhythm_facts.pdf
https://www.scripps.org/sparkle-assets/documents/heart_rhythm_facts.pdf
https://www.scripps.org/sparkle-assets/documents/heart_rhythm_facts.pdf


Page 3 of 10Guo et al. BMC Med Inform Decis Mak            (2021) 21:5 	

the Levenshtein distance algorithm [20] in the conver-
sion process to compare drug names in our data set with 
those in the Multum drug database. Medications were 
considered as treatments for A1C, LDL, and BP only if 
the Levenshtein distance between compared strings was 
less than five.

All CVH data for each submetric were sorted in a time 
order as shown in Fig. 1, which illustrates the trajectory 
of A1C measurements for two random patients. The last 
CVH category in the series were marked as labels (i.e., 
ideal, intermediate, or poor A1C). We set each CVH sub-
metric value as 2 for the ideal category, 1 for intermediate 
category, and 0 for poor category for each CVH submet-
ric label. All of the preceding categorical measures were 
used as features.

We first conducted predictions for each CVH submet-
ric category by LSTM as shown in Fig. 2.

For each CVH submetric, we selected patients who had 
at least two measurements and then combined the sub-
metric name with its category. For example, if a patient 
had a poor category for BMI, we combined the submet-
ric name “bmi” and category “poor” as “bmipoor”. Then 
we mapped the resulting features to 32-dimensional 
vectors by a word embedding technique Word2Vec in 
our model, from which the resulting features (e.g., bmi-
poor) were all denoted by numerical vectors. The Genism 
Word2Vec model was configured the hyperparameters 
as following: size (embedding dimension) as 32, win-
dow (the maximum distance between a target word 
and all words around it) as 5, min_count (the minimum 

number of words counted when training the model) as 
1, sg (the training algorithm) as CBOW (The continues 
bag of words). We also added time information for all 
measurements as time steps. Each feature was associ-
ated with a time point which was calculated by the dif-
ference in days between the corresponding visit time and 
the latest measurement time. Sex and age information 
were also added for all patients. The input length was 
the maximum count of measures among patients in each 
prediction case. Thus, each patient was represented by 
a numerical embedding vector. Next, these embedding 
vectors were fed to a LSTM model. For each submet-
ric, the dataset was randomly split into training dataset 
(80%) and testing dataset (20%). We used the area under 
the receiver operator curve (AUC) to evaluate the perfor-
mance of the LSTM model.

We then applied the same methodology to patients 
who had at least two measures for each CVH submetric. 
For this patient subpopulation, we performed two types 
of predictions: one in which we used only one CVH sub-
metric to predict future values for that category, and the 
other in which we used all 5 CVH submetrics to pre-
dict the 5 future submetrics by multi-label classification 
and multiclass classification approaches. Criterion of 
AUC and accuracy were utilized to evaluate the perfor-
mance of the two types of predictions. Finally, we evalu-
ated the difference in performance for these two types of 
predictions.

For predictions using all 5 CVH submetric meas-
ures, we listed AUC and accuracy for the multilabel 

Fig. 1  Examples of two random patients with A1C measurements assessed on different dates
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classification approach which was designed to predict 
all 15 classes (5 submetrics × 3 classes each, method 
1) and a multiclass classification approach was used to 
predict all 3 classes of each CVH submetric in which we 
repeated the analysis 5 times (method 2). We applied 
another prediction using only one CVH submetric to 
predict future values for that category. For each sub-
population, we trained our model using 7855 patient 
samples, and validated the model on 1964 samples. We 

listed accuracy as the ability to predict correctly for 
each case as equally important.

To compare the performance of the above methods, 
we investigated the correlations between the latest sta-
tus of each of the 5 CVH submetrics. The three levels 
of each submetric were represented as numerical values 
(0, 1, 2) corresponding to CVH levels of poor, interme-
diate, and ideal. All patients were assigned numerical 
CVH levels for their 5 CVH submetrics. For example, 

Fig. 2  Flowchart of our prediction by LSTM for each CVH submetric from each submetric measures. Here m = 1. Where m is the threshold of 
number of measures, A1C patients means all the patients who had A1C measures and also number of measures was more than m. The same 
definition was used for LDL, BMI, BP, and SMK patients
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if a patient had ideal A1C, intermediate LDL, poor 
BMI, poor BP, and ideal SMK, then the levels of the 5 
CVH submetrics were represented as 2, 1, 0, 0, and 2. 
The Pearson’s correlation coefficients were calculated to 
evaluate correlations between these 5 CVH submetrics.

Our LSTM model was comprised of an input layer, one 
hidden layer (with 100 dimensions) and an output layer. A 
categorical cross-entropy loss function was employed as 
the output layer and a sigmoid function was used as the 
activation function for the hidden layer. Adam optimizer 
[21] was used to optimize the model with a mini-batch 
size of 64 samples. We did an extensive hyperparameter 
search for activation functions (i.e., Sigmoid, tanh, SeLU 
and ReLU), as well as the embedding dimensions of 32 
or 64. We did not extensively search other hyperparam-
eters such as number of LSTM layers, number of recur-
rent units, or batch size, as these hyperparameters were 
of minor importance upon initial investigation [22].

We also compared LSTM models with two baseline 
models: logistic regression (LR) and random forest (RF). 
The logistic regression model was configured as follows: 
the L2 norm was used in the penalization, i.e., the vari-
ance of predicted value and real value of training data; 
the stopping criteria was set as 1.0*10–4; the inverse of 
regularization strength, which reduces the potential 
overfitting, was set as 1.0. The RF model was configured 
as follows: the number of trees in the random forest was 
set 100; the number of maximum features can be used in 
each tree was set as the square root of the total number 
of features; the minimum number of samples at a leaf 
node of a tree was set as 1. Analyses were conducted by 
using the libraries of Scikit-learn, Scipy, and Matplotlib 
with Python, version 3.6.5 in 2019.

Results
Table 2 shows characteristics of our overall study popula-
tion and of the subpopulation of patients with multiple 
measurements for each of the 5 submetrics. The overall 
population contained approximately 56% females and 
48% white race with an average age of 45 years. For the 
overall population, the average values of CVH submet-
rics were as follows: A1C was 7.2%, LDL was 107 mg/
dL, BMI was 28.5 kg/m2, systolic BP was 123 mmHg and 
diastolic BP was 73 mmHg. Around 16% patients were 
current smokers. The subpopulation was older (58 years), 
and BMI and BP were higher compared to the overall 
population.

Figure 3 displays the performance of the LSTM mod-
els for each CVH submetric prediction. The AUC for 
the A1C category prediction using all measures was 0.21 
for ideal category, 0.83 for intermediate category, and 
0.93 for poor category; the micro-average and macro-
average of AUC for A1C prediction was 0.91 and 0.89, 

respectively (Fig.  3a). Similarly, the micro-average and 
macro-average AUC for LDL prediction was 0.93 and 
0.82 (0.97 and 0.97 for BMI, 0.84 and 0.81 for BP, 0.99 
and 0.93 for SMK). The values of AUC for LDL predic-
tions for ideal, intermediate, and poor categories were 
0.81, 0.77 and 0.86 (0.98, 0.94 and 0.98 for BMI, 0.85, 0.73 
and 0.85 for BP, 0.94, 0.87 and 0.96 for SMK), respectively 
(Fig.  3b–e). Additional file  1: Figure S1 and Additional 
file 2: S2 (in the supplementary material section) displays 
the performance of LR and RF by ROC curves for each 
submetric.

Table 3 lists other additional metrics, i.e., overall accu-
racy, precision, recall, and F1-score, to evaluate perfor-
mance for LSTM, LR, and RF models. The results showed 
that LR performed better than RF in all cases, and LSTM 
performed the best in all the cases.

Table 4 lists the AUC and accuracy for the prediction of 
future CVH by LSTM models by using all five submetric 
measures and single CVH submetrics as predictors for 
the subpopulation.

Table  4 showed that AUC and accuracy values 
remained almost the same as predictions using all 5 CVH 
submetrics compared to only using data from a single 
CVH submetric. There were some differences between 
methodologies. For accuracy values for multi-label classi-
fication (Method 1), which predicted all 15 classes at one 
time, the model calculated an overall optimal score while 
ignoring some classes. As a result, there were some low 

Table 2  Characteristics [mean (SD) or n (%)] of the overall 
and common study population

Patients Overall population 
(n = 216,445)

Subpopulation 
(n = 9819)

Demographics

  Gender n (%)

      Female 121,592 (56.2) 5423 (55.2)

      Male 94,747 (43.8) 4392 (44.7)

      Other/Unknown 106 (0.0) 4 (0.1)

  Race n (%)

      White 103,630 (47.9) 3254 (33.1)

      Non-white 46,327 (21.4) 1600 (16.3)

      Unknown 67,283 (31.1) 4965 (50.6)

  Age, years mean (std) 45 (23) 58 (14)

CVH submetrics mean (std)

  A1C (%) 7.2 (1.9) 7.4 (1.9)

  LDL (mg/dL) 106.9 (35.9) 101.7 (34.8)

  BMI (kg/m2) 28.5 (9.2) 34.3 (8.6)

  BP, systolic (mmHg) 122.5 (19.4) 129.5 (18.5)

  BP, diastolic (mmHG) 73.0 (16.1) 76.8 (11.7)

  Current smoking n (%) 34,122 (15.8) 2667 (27.2)
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Fig. 3  The area under the curve (AUC) for predictions regarding 5 CVH submetrics by LSTM. Figure (a) shows the prediction for A1C according to all 
previous A1C measures, and b-e were for LDL, BMI, BP, and SMK predictions, respectively
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values of accuracy which resulted from this method; for 
example, accuracy of predicting poor A1C was 50.7%.

Figure 4 lists the correlations between the latest status 
of each of the 5 CVH submetrics. The calculated values 
were Pearson’s correlation coefficients. Higher absolute 
values indicated stronger associations between variables. 
The correlation coefficient between A1C and BP was 0.1, 
0.083 for A1C and BMI, and 0.074 for BMI and BP.

Discussion
In this study, we employed a RNN model – an LSTM 
model – to predict CVH measure categories in each sub-
metric using 14-year longitudinal CVH measures from 
the EHR of more than 70 different outpatient clinics. 
We also studied a subpopulation of patients who had at 
least two measures for each CVH submetric to predict 
the CVH submetric measure categories using data from 
a single submetric data versus all 5 submetrics employing 
multi-label and multiclass classification techniques.

The comparison of LSTM models to two baseline mod-
els (i.e., LR and RF) indicated that LSTM models outper-
formed the other models. Our results indicated that CVH 
measure categories can be accurately predicted by previ-
ous CVH measures for that metric with LSTM models. 
BMI, SMK, A1C, and LDL predictions and all their cor-
responding micro-average AUC values were greater than 
0.90. The micro-average AUC value for BP prediction was 
lower (0.84), which might result from the measurement 
variability of BP inhereherin EHR data.

We used all previous trajectories of a given CVH sub-
metric to predict the most recent value for that submet-
ric. We also used all available CVH submetrics to predict 
the most recent value for a given submetric considering 
there might be associations between different submet-
rics. Our results indicated that combining all CVH sub-
metrics did not improve the prediction performance. 
Thus, the focus of our study was to predict one CVH 
submetric according to trajectories of the same submet-
ric. In our subpopulation analyses, the criterion of AUC 
and accuracy were not improved by using all 5 CVH sub-
metrics compared to data from a single submetric. One 
reason for this finding may be due to the low correlations 
between these 5 submetric labels.

One key strength of our study was the use of the TGA 
dataset which was a large and nationally representa-
tive longitudinal EHR dataset. The contribution of this 
study was the first to investigate the predictions of future 
CVH from all previous CVH measures by deep learning 

Table 3  Additional metrics used to evaluate each model

Models Submetric cases Accuracy Precision Recall F1-score

LSTM A1C ideal 0.78 0.74 0.68 0.71

A1C intermediate 0.66 0.66 0.66

A1C poor 0.87 0.89 0.88

LDL ideal 0.80 0.83 0.97 0.89

LDL intermediate 0.46 0.12 0.19

LDL poor 0.49 0.32 0.38

BMI ideal 0.91 0.94 0.95 0.94

BMI intermediate 0.83 0.83 0.83

BMI poor 0.94 0.94 0.94

BP ideal 0.65 0.59 0.24 0.34

BP intermediate 0.53 0.70 0.61

BP poor 0.78 0.75 0.77

SMK ideal 0.95 0.97 0.97 0.97

SMK intermediate 0.86 0.24 0.38

SMK poor 0.87 0.85 0.86

RF A1C ideal 0.78 0.77 0.61 0.68

A1C intermediate 0.64 0.70 0.67

A1C poor 0.87 0.89 0.88

LDL ideal 0.79 0.81 0.98 0.89

LDL intermediate 0.0 0.0 0.0

LDL poor 0.46 0.35 0.40

BMI ideal 0.91 0.92 0.94 0.93

BMI intermediate 0.82 0.81 0.81

BMI poor 0.95 0.93 0.94

BP ideal 0.63 0.66 0.06 0.11

BP intermediate 0.52 0.69 0.59

BP poor 0.74 0.78 0.76

SMK ideal 0.93 0.97 0.95 0.96

SMK intermediate 0.0 0.0 0.0

SMK poor 0.80 0.85 0.82

LR A1C ideal 0.78 0.74 0.68 0.71

A1C intermediate 0.66 0.66 0.66

A1C poor 0.87 0.89 0.88

LDL ideal 0.79 0.83 0.96 0.89

LDL intermediate 0.45 0.16 0.24

LDL poor 0.47 0.27 0.34

BMI ideal 0.91 0.94 0.94 0.94

BMI intermediate 0.83 0.83 0.83

BMI poor 0.94 0.94 0.94

BP ideal 0.65 0.55 0.26 0.36

BP intermediate 0.54 0.62 0.58

BP poor 0.75 0.79 0.77

SMK ideal 0.95 0.96 0.97 0.97

SMK intermediate 0.80 0.16 0.27

SMK poor 0.86 0.83 0.85
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approaches using TGA longitudinal EHR data. We 
acknowledge that the conversion of numerical variables 
into categories may result in information loss, therefore 
our future work would focus on using the numerical val-
ues to predict the three classes.

LSTM models can effectively predict CVH trajecto-
ries of patients on a large ambulatory population. It 
is crucial to predict future changes in CVH to better 

manage CVH of patients. For example, if the A1C level 
was predicted to be worsening based upon the previ-
ous measures, then providers and patients could better 
maintain or control A1C to prevent it from becom-
ing worse. Therefore, predicting future CVH could 
improve the health and quality of life of patients. Ideal 
CVH measures were associated with lower incidence 
of CVD and cancers [6, 23–28]. Thus, predicting 
future levels of CVH might indirectly decrease the cost 
and burden on the health system caused by CVD and 
cancers.

Limitations
A limitation in our analyses was that our results were 
based on the TGA data source, which is large and more 
representative, thus it might yield to different results on 
other data source.

Conclusions
We found that LSTM models can be effective at accu-
rately predicting CVH measure categories in each 
submetric from the time-series CVH measures. The 
performance was not improved by using all 5 CVH 
submetric measures compare to using single submet-
ric measures in the subpopulation. Predicting patients’ 
future CVH levels might increase patient CVH health 
and indirectly improve quality of life for patients and 

Table 4  AUC and accuracy by LSTM using all 5 CVH submetric measures using multi-label (Method 1), multiclass (Method 
2), and single submetric measures for the subpopulation

CVH AUC​ Accuracy (%)

CVH category Method 1 Method 2 Single Method 1 Method 2 Single

A1C ideal 0.97 0.92 0.91 99.7 90.7 90.3

A1C intermediate 0.81 0.83 0.84 94.7 78.7 79.7

A1C poor 0.90 0.92 0.93 50.7 86.2 87.4

LDL ideal 0.77 0.78 0.78 60.7 84.0 82.3

LDL intermediate 0.69 0.71 0.73 99.9 88.0 88.4

LDL poor 0.82 0.86 0.81 1.0 92.2 93.1

BMI ideal 0.97 0.97 0.97 97.6 96.6 97.0

BMI intermediate 0.96 0.95 0.94 97.6 92.0 91.8

BMI poor 0.98 0.97 0.97 69.3 94.6 94.3

BP ideal 0.76 0.77 0.77 99.5 75.9 76.1

BP intermediate 0.59 0.61 0.63 99.0 59.3 58.8

BP poor 0.78 0.77 0.79 99.9 81.2 80.2

SMK ideal 0.95 0.94 0.93 45.4 94.7 94.3

SMK intermediate 1.0 0.78 1.0 1.0 99.7 99.9

SMK poor 0.95 0.95 0.93 98.3 94.7 94.3

Fig. 4  Correlations between 5 CVH submetric labels
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decrease the burden and cost for clinical health sys-
tem caused by CVD and cancers. These findings have 
important implications for predicting trajectories of 
CVH in a patient population. Future research should 
work towards identifying optimal time to intervene on 
future CVH values.
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