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Abstract

Mungbean (Vigna radiata L.) is an important food grain legume, but its production capacity

is threatened by global warming, which can intensify plant stress and limit future production.

Identifying new variation of key root traits in mungbean will provide the basis for breeding

lines with effective root characteristics for improved water uptake to mitigate heat and

drought stress. The AVRDC mungbean mini core collection consisting of 296 genotypes

was screened under modified semi-hydroponic screening conditions to determine the varia-

tion for fourteen root-related traits. The AVRDC mungbean mini core collection displayed

wide variations for the primary root length, total surface area, and total root length, and

based on agglomerative hierarchical clustering eight homogeneous groups displaying differ-

ent root traits could be identified. Germplasm with potentially favorable root traits has been

identified for further studies to identify the donor genotypes for breeding cultivars with

enhanced adaptation to water-deficit stress and other stress conditions.

Introduction

Worldwide, mungbean or green gram (Vigna radiata) is being cultivated on nearly 7 million

hectares area [1]. Among six Asiatic Vigna species, Vigna radiata is the most widely distributed

species [2]. It is a major grain legume and cash crop which is widely cultivated in South, East,

and South East Asia and is also increasingly grown in South America and sub-Saharan Africa.

It fits in many intense cropping systems due to its photo-insensitivity and short duration

nature. Mungbean is rich in easily digestible proteins, carbohydrates, fibers, minerals, vita-

mins, antioxidants, and other phytonutrients [3–5], thus can be used as a potential crop for the
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mitigation of malnutrition [6]. Mungbean is consumed as grain e.g. in dhal, as a sprout, or in

various other countless preparations. The yield potential of mungbean is about 2 tonnes per

hectare, while average productivity is nearly 0.5 tonnes per hectare. The large yield gap is pri-

marily due to their cultivation on marginal land, suboptimal crop management, and abiotic

and biotic stresses [7–9].

Mungbean, in comparison to other pulse crops, is relatively heat and drought tolerant, but

their production is still affected by severe abiotic stresses, such as low or high temperatures

[10], insufficient or excessive water [11, 12], high salinity [10], low soil fertility [13] and pol-

luted heavy metal-containing soils [14, 15] and ultraviolet-B (UV-B) radiation [16].

Mungbean is mainly grown in three seasons in the Asian continent which is spring (Febru-

ary/March), summer (March/April) and kharif (June/July). Erratic water supply during these

months exposes the seedlings to water stress when grown in rainfed conditions. Scarcity of

water imposes stress at any plant stage [17]. Yields in tropical and subtropical countries such

as India, Pakistan, and Ethiopia, will decline due to an expected higher incidence of water defi-

cits [18]. The expansion of the global drought-restrained zone is threatening the overall mung-

bean crop production [19]. Insufficient availability of water on its own is more critical than

any other environmental trigger for the growth of mungbean [20]. Water scarcity during the

seedling stage hinders the establishment of healthy seedlings and limits overall yield. Drought

produces many devastating effects on plants by disrupting various plant activities, such as car-

bon assimilation, reduced turgor, enhanced oxidative damage, and modifications in leaf gas

exchange, resulting in a reduction in yield [21]. Better water supply for plants is critical for

boosting crop production despite water shortages [22].

Root system architecture is seen as the main factor for efficient water absorption and there-

fore for maintaining productivity in conditions of drought [23]. Root features are commonly

known as the root system architecture (RSA), which refers to the form of the roots and their

physical space. With its ability to obtain more water from the soil, a deeper and more prolifer-

ative RSA is also capable of avoiding water deficit conditions.

Roots begin to spread into deeper soil layers as plants encounter water deficit stress [24,

25]. The root diameter and distribution of root conductivity-regulating metaxyl vessels are

also documented to provide drought tolerance in food grain legumes [26]. Thicker roots prefer

to penetrate deeper into soil layers [27].

The key determinants of proliferative rooting are the initiation and elongation of the lateral

root, which usually refers to the sum of the lateral root, root volume, root surface, and root

length density. Proliferative and deeper roots have increased capacity for water absorption in

water-deficient soils [28, 29]. The ideal root phenotypes under water deficit situations, in food

grain legumes, include root surface area [30], root length [31], deeper and proliferative roots

[32, 33] in soybean (Glycine max L.), root diameter in cowpea (Vigna unguiculata L.) [34],

root length in pea (Pisum sativum L.) [35], basal root angle in common bean (Phaseolus vulga-
ris L.) [36], and rooting depth, root surface area, root length density [37] and proliferative &

deeper roots [38, 39] in chickpea (Cicer arietinum L.). Other crops that have benefited from

ideal root phenotypes like proliferative and deep root traits under drought tolerance include

rice (Oryza sativa) [40, 41], maize (Zea mays) [42, 43], barley (Hordeum vulgare) [44], and

wheat (Tritcum aestivum) [45, 46].

Changing the root system architecture can improve desirable agronomic attributes such as

yield, drought tolerance, and tolerance to nutrient deficiencies [47–49], and incorrect pheno-

typing and small mapping population sizes hinder the use of genomics to improve root charac-

teristics in breeding programs [50]. To translate current physiological and genetic

breakthroughs into improvements of yield and productivity especially in dry ecosystems, pre-

cise phenotyping and evaluation of root-related traits are vitally important. An effective
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approach for increasing adaptation to edaphic stress is the selection and breeding of cultivars

with root systems that more effectively use nutrients and water than current varieties [51].

To examine root features, several phenotyping techniques were documented, particularly

hydroponic systems utilizing growth bags (or germination sheet) [52–54], agar-plate and aero-

ponic systems [55], soil rhizotrons [56–58], deep column methods [59], transparent containers

[60], PVC pipes (columns) and glass-walled rhizoboxes filled with soil, but these methods are

costly, require considerable labor and a large area for phenotyping larger genotype sets [61–

63]. The unique semi-hydroponic phenotyping system [64] was established to assess the het-

erogeneity of the root trait in the narrow-leaf lupin (Lupinus angustifolius L.) core set [65, 66].

The same technique was used for root phenotyping in chickpea [67], maize, and barley [68].

This unique semi-hydroponic technique was modified to suit the purpose to screen the

AVRDC mungbean mini-core collection for root traits.

The use of digital imaging and software tools for root image analysis is an innovative and

efficient way to accurately assess root traits [69–71]. Several software programs are available to

extract two-dimensional root morphology traits. This varies from the manual root label DART

[70], commercially available software and semi-automated root analysis tool WinRhizoTM

(Regent Instruments, Québec, Canada) (Pro, 2004) and EzRhizo [72], freely usable, fully inte-

grated and automated SmartRoot [73] software for small root systems.

The World Vegetable Center (WorldVeg) has established a mungbean mini-core set, which

represents a large proportion of the diversity available for this species in the WorldVeg gene

bank [74] This resource comprises a major genetic resource for identifying new traits for

future use in breeding programs. Characterizing the genotypic variability of the biodiverse

accessions of the AVRDC mungbean mini-core collection for variation of root characteristics

is the first step for identifying root traits for use in breeding more water and nutrient-use effi-

cient varieties. The present study determined the genotypic variation of root characteristics in

the AVRDC mungbean mini-core collection using a modified semi-hydroponic system and

resulted in the grouping of the germplasm based on key root traits.

Materials and methods

Experimental materials and growth conditions

Plant material for this analysis included the WorldVeg mini-core collection of 296 genotypes

[74] collected from 18 countries around the globe. The seeds were procured from the National

Plant Genetic Resources Bureau (NBPGR), New Delhi (S1 Table). The obtained seed was mul-

tiplied in the field during the 2018 rainy season at the Indian Agricultural Research Institute

(IARI) in New Delhi (Latitude 28˚ 38’ 31.9236" N and Longitude 77˚ 9’ 16.434"). The climate-

controlled growth chamber [CONVIRON, Canada, PGW 36 with a growth area of 3.3 m2 (36

ft2)] at the National Phytotron Facility (NPF) in IARI, New Delhi, India was used for experi-

ments. The studies were performed between September 2019 and December 2019. The day/

night temperature of 30/18˚C, 12 h photoperiod, and 90% relative humidity were maintained

in the growth chamber. Seeds were surface-sterilized for 3 minutes in 0.1% HgCl2 and then

rinsed in double-distilled water before being kept for germination in a modified semi-hydro-

ponics system.

Modified semi-hydroponic system

To suit the experimental purpose, the semi-hydroponic technique [64] has been modified. Our

fundamental goal was to screen larger germplasm sets for a shorter time. This was accomplished

by changing the bin size with smaller plastic trays and germination stands, resulting in a 26 cm

long germination stand with 12 cm width and 8 cm height (specifically created by Bio-Link Pvt.
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Ltd. New Delhi). The size of the plastic tray was 51 cm in length, 43 cm in width, and 13 cm in

height (Tarson products Pvt. Ltd.). Germination paper (SGPK-145; GSM with the creepy sur-

face was obtained from Bio-Link Pvt. Ltd New Delhi) with a size of 14 x 8 cm was used. Two

equally cut germination paper sizes (length 14 cm x height 10 cm) were positioned in each ger-

mination cell to accommodate seeds for germination. Eight liters of double distilled water were

used to moisten the germination paper stand in the plastic tray. For each accession, 10 seeds

were used for germination in each germination cell. In each germination stand, 12 germplasm

accessions were housed (Fig 1). Three germination stands were placed in each plastic tray, to

grow thirty-six mungbean accessions. A total of 9 plastic trays, each containing 36 accessions,

covered 296 AVRDC mungbean mini-core collection entries. Due to hard seeds produced dur-

ing seed multiplication in the field, we were at risk of poor germination. To prevent variable

germination rate, uniform 10 seeds were used for germination [75]. Three uniform, healthy

seedlings were selected from the emerging seedlings as three technical replicates after 20 days.

Each tray was filled with 8 liters of modified Hoagland solution when cotyledon leaves were

developed. The basic nutrient solution consisted of 0.92 mM K2SO4, 1 mM MgSO4, 5 mM

urea, 0.75 mM CaCl2.2H2O, 0.04 mM Fe-EDTA) and micronutrients (0.62 μM CuSO4),

0.6 μM ZnSO4, 2.4 μM H3BO3, 0.6 μM Na2MoO4 and 0.9 μM MnSO4 [76]. The pH of the

nutrient solution was maintained at 6.0 with 1 M HCl or 1 M KOH for adjustment. The solu-

tion in the trays was replaced on alternating days and the entire system was periodically aer-

ated by small aquarium air pumps (SOBOTM TM, 5W, 2-way air pump with 2 nozzles, 4.2 W,

and 2 x 5.5 L, output power).

Root scanning for image capture

To capture root images, twenty days old seedlings were used. The intact root system was har-

vested from each plant and carefully spread, without overlapping roots, over a scanning tray of

Fig 1. Semi-hydroponic phenotyping platform (a) growth chamber (b) plastic tray (c) germination stand and paper setup (d) germinating mungbean seeds in

semi-hydroponic phenotyping platform (e) seedling grown for 18 days (f) root system of two contrasting genotypes grown for 18 days.

https://doi.org/10.1371/journal.pone.0247810.g001
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a root scanner (EPSONTM V700). TIFF-format grayscale quality images were analyzed by

WinRhizoTM (Pro version 2016; Regent Instrument Inc., Quebec, Canada). Setup parameters:

image resolution of 400 dpi, manual dark root on white background, scanner calibration, 8-bit

depth, image resolution of 4395 x 6125 pixels, 0 mm focal length. Roots are distributed in a 30

x 40 x 2 cm acrylic tray with a volume of 700 ml water. Manually, the debris was separated

from the sample roots by suspension in a beaker containing water. The trash-free clean roots

were used for scanning.

Root image analysis

Total root length (TRL), total surface area (TSA), primary root length (PRL), total root volume

(TRV), root average diameter (RAD), total root tips (TRT), total root forks (TRF), and total

root crossings (TRC)were the major root traits analyzed by the WinRhizoTM software. PRL

was measured manually through a steel measurement scale (EISCO-GROZTM).

The WinRhizoTM provided main and additional data to classify total root length (TRL),

total root volume (TRV), total root surface area (TSA), and total root tips (TRT) into five clas-

ses of root diameter intervals: class1: (0–0.5 mm), class 2: (0.5–1.0 mm), class 3: (1.0–1.5 mm),

class 4: (1.5–2.0 mm) and class 5: (>2.0 mm) [77–79]. In every class, the root traits were calcu-

lated as a proportion of the total trait [68]. The details of each tested trait are given in Table 1.

Biomass related traits like root dry weight (RDW) (mg), shoot dry weight (SDW) (mg), and

total dry weight (TDW) (mg) were determined using a digital weighing balance (CitizenTM,

CX 265) on three biological replicates after air-forced drying in an oven at 70˚C for 72 h.

Statistical analysis

The data were subjected to descriptive and summary statistics like mean, standard deviation,

skewness, kurtosis, coefficient of variation, and Pearson’s correlation by STAR (Statistical Tool

for Agricultural Research) 2.1.0 software [80]. Principal component analysis (PCA), frequency

distribution, and normal curve fitting were performed using PAST 4.03 software [81].

Three distinct classes of the AVRDC mungbean mini-core accessions were categorised

based on standard deviation (SD) and mean (x): (i)� x –SD, (small trait value) (ii) (� x– SD)

to (� x + SD), (average trait value) and (iii)� x + SD (high trait value) [82, 83]. For every root

Table 1. Description of the root traits assessed in the study.

Abbreviated name Full trait name Description Measurement description

PRL Total Root Length (cm) Average of primary root length in three plants Measured using a scale

TPA Total Project Area(cm2) Average of total project area in three plants Measured electronically by WinRhizo Software

TSA Total Root Surface Area (cm2) Average root surface area inthree plants Measured electronically by WinRhizo Software

TRL Total Root Length(cm) Average root length of three plants Measured electronically by WinRhizo Software

ARD Average Root diameter (cm) Average root diameter of three plants Measured electronically by WinRhizo Software

LPV Length Per Volume (cm/mm) Average of length per volume in three plants Measured electronically by WinRhizo Software

TRV Total Root Volume (cm3) Average root volume of three plants Measured electronically by WinRhizo Software

TRT Total Root Tips(Number) Average of root tips inthree plants Measured electronically by WinRhizo Software

TRF Total Root Forks (Number) Average of Total root forks in three plants Measured electronically by WinRhizo Software

TRC Total Root Crossings (Number) Average of Total root crossings in three plants Measured electronically by WinRhizo Software

RDW Root dry weight in (mg) Average Root dry weight in three plants Measured manually in digital scale

SDW Shoot dry weight (mg) Average Shoot dry weight in three plants Measured manually in digital scale

TDW Total dry weight (mg) Average Total dry weight in three plants Measured manually in digital scale

RSR Root to Shoot Ratio (mg/mg) Average of Root to Shoot Ratio in three plants Measured manually

https://doi.org/10.1371/journal.pone.0247810.t001
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character the H’, Shannon-Weaver diversity index [84–86] was determined using the formula:

H0

¼ �
XR

i¼1

pi ðln piÞ

In which,

1. pi is the proportion of individuals belonging to the ith class

2. s is the total number of accessions.

Results

Phenotypic variation

The AVRDC mungbean mini-core collection displayed distinct phenotypic differences of the

traits under investigation when grown in the modified semi-hydroponic system. The coeffi-

cient of variation of the traits observed was greater than 30% (Table 2). The root characteris-

tics exhibiting high variation were PRL, TSA, TRL, TRF, and LPV. Trait PRL ranged from

133.38 cm (EC 862594) to 1.96 cm (IC 616154) and TRL ranged from 60.35 cm (EC 862670) to

0.79 cm (EC 862662). Only minor differences were found for TSA (16.26 cm2 for IC 616276 to

1.04 cm2 for EC 862662), ARD (1.74 cm for EC 862653 and 0.39 cm for IC616115) and TRV

(0.19 cm3 for EC 862645 to 0.01 cm3 for IC 616114) (Tables 2 and S2).

The frequency distribution of most root and biomass traits was skewed towards a smaller trait

value, except for PRL and TPA, which showed a near-normal distribution (Fig 2). Fine roots

(less than 1 mm) made up the bulk of the root system in all genotypes, while accessions originat-

ing in Australia had the highest proportion of roots with a diameter of 1.00–1.5 mm (Fig 3).

Correlation among root traits

All root traits were positively correlated with each other, except for ARD, which was negatively

correlated with the other traits. The biomass traits RDW, SDW, TDW, and RSR did not show

Table 2. Candidate trait variation in the AVRDC mungbean mini-core collection.

S.No Traits Max Mini Mean±SD CV (%) Skewness Kurtosis

1 PRL 133.38 1.96 39.64±29.96 75.577 0.81 -0.23

2 TPA 8.79 1.14 4.51±1.76 39.050 0.40 -0.50

3 TSA 16.26 1.04 7.48±3.66 49.003 0.32 -0.84

4 TRL 60.35 0.79 16.62±11.82 71.150 0.78 0.17

5 ARD 1.74 0.39 0.71±0.23 32.594 1.35 1.86
6 LPV 60.23 0.12 16.35±11.82 72.333 0.78 0.17

7 TRV 0.19 0.01 0.05±0.02 51.396 1.16 2.32
8 TRT 181.00 2.00 25.02±24.63 98.412 2.65 10.98
9 TRF 90.00 0.00 18.79±17.30 92.061 0.87 0.68

10 TRC 12.00 0.00 1.18±1.89 59.763 2.18 5.69
11 RDW 99.97 2.60 25.57±18.78 73.463 1.26 1.64
12 SDW 177.11 2.10 44.96±32.14 71.481 1.11 1.40
13 TDW 277.00 10.00 70.54±49.89 70.737 1.16 1.56
14 RSR 3.81 0.05 0.61±0.28 46.746 6.83 67.15

�Skewness and kurtosis were analyzed for seedling root traits, and values bigger than 1 are highlighted in italics

https://doi.org/10.1371/journal.pone.0247810.t002
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any association with root traits. While RDW showed positive association with other biomass

traits like SDW and TDW (Fig 4).

Principal components analysis for root and shoot trait variability

Fourteen characteristics were used in the PCA and 95.61 percent of the total variation was cap-

tured by three principal components (PCs) with eigenvalues > 1. For TRL, SDW, RDW, and

Fig 2. Frequency distribution of root traits in the AVRDC mungbean mini core collection with the trait value on

the x axis and the number of accessions on the y-axis.

https://doi.org/10.1371/journal.pone.0247810.g002

Fig 3. Distribution of total root length based on root diameter classes (0 to 0.5mm, 0.5 to1.0mm, 1.0 to1.5mm, 1.5 to 2.0mm and 2.0 to

2.5mm).

https://doi.org/10.1371/journal.pone.0247810.g003
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TDW, PC1 accounted for 64.93 percent of the variability. PC2 accounted for 26.34% of the var-

iability contributed by PRL, LPV, TRF, and TRT (Table 3). Biplots (Fig 5A and 5B) display

the distribution of genotypes based on PCA regression scores, indicating the relative distance

between the AVRDC mungbean mini-core accessions based on the combination of root trait

values. 95.61 percent of the variability was expressed by loading plots. The PC1 vs PC2 biplot

showed 14 genotypes as outliers (Fig 5A) and 21 genotypes were classified as outliers in the

PC1 vs PC 3 biplot (Fig 5B). PCA loading scores showed that the characteristics

TDW>SDW>RDW>PRL are major contributors with the magnitude of their contribution to

PC1 in decreasing order, while PRL>TRT>TRF>TRL>LPV are contributing characteristics

in PC 2 (Table 4).

Diversity pattern and grouping by trait performance

The mungbean genotypes were classified into 3 groups, namely low, medium, and high trait

diversity (Table 4). Most genotypes belonged to the medium group for all traits. The traits

PRL, ARD, TRT, TRC, RDW, SDW, and RSR had a relatively large proportion of genotypes in

the high trait value (� x+SD) category, while for TPA, TRL, LPV, TRF, and TDW a greater

number of genotypes were in the low trait value (� x –SD) category.

Fig 4. Correlations coefficients among all the root and biomass traits, boxed blocks indicate significant correlations at (p<0.05). (A: PRL, B:

TPA, C: TSA, D: TRL, E: ARD, F: LPV, G: TRV, H: TRT, I: TRF, J: TRC, K: RDW, L: SDW, M: TDW, N: RSR).

https://doi.org/10.1371/journal.pone.0247810.g004
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H’- Shannon-Weaver diversity index

Using the Shannon-Weaver diversity index (H’), the phenotypic diversity among the charac-

ters was compared. A high H’ defined balanced frequency groups for a character and high

diversity, while a low H’ suggested an unbalanced frequency for a trait and low diversity. H’

values for the traits were distinct and ranged from 0.37 to 0.96 between the genotypes

(Table 4). Root traits including TSA, TRL, LPV, and TRF were more diverse than TRT, ARD,

and TRC. For most of the characteristics, the diversity indices were above 0.5, suggesting the

existence of sufficient heterogeneity. However, total root tips (0.36) and total root crossings

(0.37) showed unbalanced frequency and lacked diversity.

Diversity of the AVRDC mungbean mini-core collection based on root

traits

Among the mini-core accessions, an agglomerative hierarchical clustering (AHC) dendrogram

showed significant trait diversity (Fig 6). Entries were divided into eight clusters by cluster

analysis. With 135 entries, cluster VI was the largest, and with just one entry from Iran, cluster

VIII was the smallest (IC 862636). Clusters VII (78 entries) and V (55 entries) were the second

and third-largest clusters. The second and third smallest clusters are Clusters IV (2 entries of

Indian origin) and III (4 entries, two of Indian origin and one each from the Philippines and

Australia).

Discussion

Across both breeding programs and scientific research, the quest for root characteristics has

intensified, offering improvement in the acquisition of resources and tolerance to abiotic stress

including heat and drought stress, especially in resource-poor environments. Advancement

was delayed due to problems in effective and accurate root trait phenotyping in large germ-

plasm panels [49, 50, 87]. In the AVRDC mungbean mini-core collection of 296 genotypes, the

use of a modified semi-hydroponic phenotyping system saved time and space for phenotyping

and provided access to a substantial variation of root traits.

The novel method of semi-hydroponic phenotyping [64] has been modified to screen and

explore the genetic variation of different root characters at the early vegetative stage of the

Table 3. Different principal components and their loading scores trait wise.

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 PC 11 PC 12 PC 13 PC 14

PRL 0.130 0.671 -0.632 -0.317 0.026 -0.138 0.073 -0.024 -0.085 0.003 -0.009 -0.010 0.001 0.000

TPA 0.008 0.036 -0.034 -0.007 0.002 -0.003 0.311 -0.261 0.906 -0.011 0.034 0.098 -0.010 0.000

TSA 0.009 0.082 -0.059 -0.027 0.010 -0.004 -0.820 0.403 0.381 -0.023 0.050 0.080 -0.004 0.000

TRL 0.027 0.266 0.012 0.295 -0.084 0.575 0.004 -0.071 -0.073 -0.180 0.660 0.157 -0.007 0.000

ARD 0.000 -0.004 0.002 -0.001 -0.001 -0.004 0.027 -0.005 -0.107 -0.003 -0.238 0.963 -0.068 0.000

LPV 0.027 0.266 0.014 0.295 -0.082 0.574 -0.050 -0.043 0.043 0.186 -0.664 -0.154 0.005 0.000

TRV 0.000 0.000 0.000 0.001 0.000 0.000 0.001 -0.003 0.002 -0.003 -0.008 0.069 0.998 0.000

TRT 0.056 0.514 0.764 -0.381 0.033 -0.057 0.012 0.003 0.001 0.000 0.001 0.000 0.000 0.000

TRF 0.027 0.338 0.106 0.757 0.025 -0.547 -0.004 -0.010 -0.007 -0.002 0.000 -0.001 -0.001 0.000

TRC 0.003 0.029 0.001 0.050 -0.012 0.067 0.472 0.873 0.089 -0.019 0.002 0.002 0.002 0.000

RDW 0.288 -0.041 0.004 0.048 0.756 0.090 0.004 -0.001 -0.003 -0.016 -0.004 -0.001 0.000 0.577

SDW 0.509 -0.073 0.024 -0.020 -0.629 -0.071 -0.008 0.002 0.004 0.014 0.003 0.000 0.000 0.577

TDW 0.797 -0.115 0.028 0.028 0.126 0.019 -0.003 0.001 0.000 -0.002 0.000 -0.001 0.000 -0.577

RSR -0.001 0.000 0.000 0.002 0.022 0.000 0.004 0.018 0.000 0.965 0.251 0.065 0.000 0.000

https://doi.org/10.1371/journal.pone.0247810.t003
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AVRDC mungbean mini-core collection (Tables 2 and S1). Previously, the semi-hydroponic

phenotyping platform provided quality data for the wild narrow-leaf lupin [65], core collec-

tions of lupin [66], and chickpea [67] to assess the genetic basis of variation in root

characteristics.

The mungbean root system is similar to those of other dicotyledonous species including

Arabidopsis, Medicago, and other legumes like chickpea and develops through consecutive

branch/lateral root orders from a primary root that emerges from the embryo [88]. The vol-

ume and size of lateral branches/roots is an important contributor to the growth and develop-

ment of food grain legumes [89].

Depth of rooting and density of root branches are essential architectural features that

directly affect water and nutrients acquisition in the soil strata [90]. The PRL of the deep-root-

ing genotype EC862594 was more than twice as high as the average value of the whole germ-

plasm set and genotype EC862670 had a more than 3-fold TRL than the average,

corroborating the trait diversity present in the AVRDC mungbean mini-core collection (S2

Table). Another aspect that affects deep rooting is root penetrability and root thickness or root

diameter [91]. The thicker roots prefer to go deeper into the soil to obtain water from deeper

soil layers [27]. Research shows that in chickpea there is a strong association between the pro-

lific root system and the development of grain in terminal drought situations [38]. In the case

of total surface area, the best genotype IC616276 only had about 20% more TSA than the aver-

age. This suggests that the TSA exhibited lower variations in the AVRDC mungbean mini-

core collection (Tables 5 and S2).

Proliferative rooting is primarily characterized by the initiation and elongation of lateral

roots, which usually refers to the number of the lateral root, the root length density (RLD), and

the root volume and the root surface area. Proliferative roots have a considerably large water

Fig 5. Biplots and outliers in comparison between a) Principle Component 1 vs. Principle Component 2. Biplots and outliers in

comparison between b) Principle Component 1 vs. Principle Component 3. (Where A: PRL, B: TPA, C: TSA, D: TRL, E: ARD, F:

LPV, G: TRV, H: TRT, I: TRF, J: TRC, K: RDW, L: SDW, M: TDW, N: RSR).

https://doi.org/10.1371/journal.pone.0247810.g005

Table 4. Candidate traits and their Shannon-Weaver diversity indices (H‘) in the AVRDC mungbean mini-core

collection.

S.No Trait 296 mungbean lines Shanon weaver index

Low Medium High

1 PRL 48 195 53 0.88

2 TPA 51 198 47 0.86

3 TSA 58 180 58 0.94

4 TRL 65 181 50 0.93

5 ARD 23 227 46 0.69

6 LPV 65 181 50 0.93

7 TRV 41 210 45 0.80

8 TRT 0 262 34 0.36

9 TRF 79 170 47 0.96

10 TRC 0 260 36 0.37

11 RDW 30 223 43 0.73

12 SDW 46 199 51 0.86

13 TDW 45 209 42 0.81

14 RSR 127 135 34 0.56

https://doi.org/10.1371/journal.pone.0247810.t004
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absorption potential in water deficit soils. In environments with water scarcity, lines with

higher RLD showed improved yield and drought-tolerance-related performance [92].

Mungbean is predominantly cultivated on soils with residual moisture from previous rainy

seasons. Terminal drought stress, especially at the end of the growing season, is a major con-

straint restricting the yield of mungbean [8, 10, 93]. The mungbean genotypes with longer pri-

mary roots and larger total surface area could perform better in terms of water and nutrient

acquisition, especially when water and nutrients are heterogeneously distributed across differ-

ent soil levels. This research identified deeper rooting genotypes, like EC862594, IC616203,

IC616109, IC616184, and EC862589 (S2 Table), that could access water from deeper soil layers

whenever the topsoil dries up later during the season.

The root morphology traits vary from species to species and also between different geno-

types of a species [65, 93, 94]. Root architectural features such as TSA, TRL, ARD, PRL, and

TRV were responsible for most of the observed root trait variability at the seedling level. Corre-

lation studies showed a positive correlation among TRL, PRL, TPA, TRV, TSA, TRT, and

TRF. The stated traits also exhibited a negative correlation with the average root diameter

(ARD). The selection of higher ARD values would negatively affect the root traits mentioned

above. Plants with smaller root diameter and a specific root length of fine roots are found to be

better suited to dry conditions [95]. The root surface area and root length are mainly influ-

enced by the root diameter [96].

Fig 6. Dendrogram depicting the diversity of the AVRDC mungbean mini-core accessions. Clusters C-I(pink), C-II

(brown), C-III(blue), C-IV(violet), C-V(grey), C-VI(red), C-VII(green) and C-VIII(yellow). (A separate picture file

was uploaded for dendrogram).

https://doi.org/10.1371/journal.pone.0247810.g006

Table 5. Variability of root architectural details of ten contrasting genotypes of the AVRDC mungbean mini-core collection grown under semi-hydroponic

conditions.

Top five genotypes having ideal phenotypes

No. PRL TSA TRL ARD TRV RDW SDW TDW RSR

1 EC862594 IC616276 EC862670 EC862653 EC862645 IC862615 EC862617 EC862617 EC862602

2 IC616203 IC61625 IC616247 IC616222 IC61625 EC862617 IC862615 IC862615 EC862588

3 IC616109 IC616175 IC61625 EC862661 IC616247 IC616200 EC862654 EC862654 IC616169

4 IC616184 IC616107 IC616166 EC862651 IC616208 IC616150 EC15198 IC616200 IC616148

5 EC862589 EC15046 IC616101 IC616191 IC616118 EC862654 IC616150 IC616150 IC616106

Bottom five genotypes with undesirable phenotypes

No PRL TSA TRL ARD TRV RDW SDW TDW RSR

1 IC616154 EC862662 EC862662 IC616115 IC616114 IC862636 EC862602 EC862659 EC862662

2 EC862634 EC862622 EC862634 EC862585 IC616197 IC616239 EC862588 IC616258 IC616263

3 EC862662 EC862634 IC616250 IC616271 EC15184 EC862622 EC862659 EC15184 IC616099

4 EC862622 EC862651 IC616195 EC862646 IC616154 EC862605 EC862611 IC616154 IC616269

5 EC862651 IC616194 IC616154 IC616120 EC862634 IC616220 IC616258 EC15216 IC616226

https://doi.org/10.1371/journal.pone.0247810.t005
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Water and nutrient uptake capability are determined by root architecture. In the early

stages, genotypes with vigorous root growth (TRL and TSA) take up water and minerals more

effectively and have better seedling establishment [97], resulting in increased photosynthetic

ability, a higher output of biomass, and a higher survival rate under stressful conditions. The

root number and TRL [98, 99] are positively correlated with yield and biomass.

Our analysis showed that among the diameter classes large parts of the mungbean root sys-

tem consist of a variety of very fine and fine roots in diameters between 0.5 and 2.0 mm. The

absorption of water and nutrients, the involvement of very fine and fine roots are well estab-

lished [64, 100, 101]. In the root system, a high percentage of fine roots contributes to an

improvement in TSA for the acquisition of more water and nutrients and helps plants to cope

with stress [102].

The root to shoot ratio (RSR) is also used to predict the distribution of biomass among

roots and shoots [103]. In rice seedlings, the water deficit situation raises the root-to-shoot

ratio by altering enzymatic activity and carbohydrate balancing [104]. EC862602, EC862588,

and IC616169 are genotypes identified with higher RSR values (Tables 5 and S2). In the phos-

phorus efficiency studies, higher ratios of root to shoots are often labeled as index traits

because of the improvement in root biomass and the large deep root system required to extract

more nutrients [105, 106].

The Cluster II, VI, and VIII genotypes are candidates for crossing programs to produce suc-

cessful root trait recombinants such as PRL, TSA, TRL, TPA, and TRT. The cross-combina-

tions (EC 862594 (C-II) x IC 616154(C-VI), TSA (IC 616154(C-II) x EC 862622(C-VI), TRL

(EC 862670(C-VII) x EC 862662(C-VI), TPA(IC 15252(C-VII) x IC 616154(C-VI)) will help

increase PRL. For TSA and TRV, genotypes in clusters V and III are diverse (Fig 3). The rate

of absorption of nutrients is dependent on the TSA and TRV [107, 108]. The root traits TSA,

TRL, and TRV were the target traits for mungbean to increase the efficiency of nutrient use

(especially phosphorus) at the seedling stage [109]. Increasing nitrogen efficiency in maize, the

RDW and TRL played an important role [110]. IC 862615, EC 862617, IC616200, and

IC616150 were identified with having higher RDW (Tables 5 and S2). In the case of finger

millet, the starvation reaction to phosphorus is mitigated by increased TRL and root hair

count and length [111].

A thorough understanding of the multiple associations between root traits [112] is needed

for the proper use of root traits in crop breeding. To demonstrate the relationship and diversity

of the characteristics and relative homogeneous grouping of genotypes based on root traits,

our research examined principal component analysis, hierarchical clustering, Pearson’s corre-

lation, and Shanon-Weaver diversity indices. The variations contained in the AVRDC mung-

bean mini-core collection for PRL, TSA, TPA, TRT, and TRF have the potential for mungbean

improvement programs and genotype categorization in high trait value, medium trait value,

and low trait value classes based on mean and SD facilitates the selection of breeding materials

[113, 114].

The Shannon-Weaver diversity index (H’) showed phenotypic diversity among the root

characteristics, where low H’ values stand for unbalanced frequency distribution and lack of

trait diversity [115], while high H’ means high genetic diversity in traits [116]. In the AVRDC

mungbean mini-core collection, root characteristics i.e., TRL, TSA, LPV, and TRF had a rela-

tively high level of H’ (>0.9) showing high diversity for these characteristics. The high H’ value

and the positive correlation of these characteristics with PRL and TPA showed that these char-

acteristics are appropriate at the seedling stage to improve water and nutrient uptake efficiency

in mungbean. Besides, variations in ARD, TRV, and TRT would also be useful in stressful

environments to increase nutrient productivity and crop yields [117].

PLOS ONE Understanding hidden half (roots) in mungbean

PLOS ONE | https://doi.org/10.1371/journal.pone.0247810 March 4, 2021 13 / 21

https://doi.org/10.1371/journal.pone.0247810


The genetic and molecular basis of the root system architecture and its plasticity in drought

conditions has been documented in major legumes. QTLs for root surface area [30] and root

length [31] in soybean, root diameter in cowpea [34], root length in pea [35], basal root angle

in common bean [36], and rooting depth, root surface area and root length density in chickpea

[37] and root surface area, lateral root number and specific root length [118] in lentil have

been reported. For other essential crops such as Rice [119, 120], durum wheat [121], barley

[122, 123], maize [124], sorghum [125], pearl millet [126], finger millet [111], and cotton [127]

very significant progress has been made in the understanding and use of root traits in breeding

programs. The ideal root architectural ideotype for abiotic stress tolerance for optimized nutri-

ent and water acquisition and even coining the phrase ’ . . .steep, cheap and deep . . .’ [128] i.e.

steep (root angle) [129], cheap (metabolic costs) [130] and deep (root architectural arrange-

ments) [46, 131]. There is ample evidence that the entries chosen on the basis of semi-hydro-

ponics or hydroponics are also successful in soil and field experiments [132–135].

Mungbean genotypes identified in this experiment with such a wide variety of root proper-

ties could be used for subsequent studies in greenhouses and on-field assessment. Finally, the

development of mapping population, use of molecular markers technology, root simulations,

and gene mapping to develop germplasm with improved root traits for better tolerance to

water deficit and harsh conditions.
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