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Abstract

We optimally localize isolated fluorescent beads and molecules imaged as diffraction-limited 

spots, determine the orientation of molecules, and present reliable formulae for the precisions of 

various localization methods. For beads, theory and experimental data both show that unweighted 

least-squares fitting of a Gaussian squanders one third of the available information, a popular 

formula for its precision exaggerates beyond Fisher's information limit, and weighted least-squares 

may do worse, while maximum likelihood fitting is practically optimal.

Microscopy is limited in resolution by fundamental diffraction effects. In order to resolve 

two objects, they must be separated by

(1)

Here λ is the wavelength of the light used, and NA is the numerical aperture of the 

microscope objective. However, if an isolated nanoscale emitter (fluorophore, quantum dot, 

fluorescent bead) is imaged, the photons forming the image are distributed as described by 
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the point spread function (PSF) of the microscope for the chosen source. The center of this 

image can be determined with much higher precision than its width. This is exploited in 

single-molecule tracking and localization microscopy, and spatial resolutions of a few 

nanometers, a hundred times less than Abbe’s limit, are achieved2,3,4. Also, far-field super-

resolution techniques now exist (PALM, STORM, FPALM, PALMIRA) which sequentially 

isolate each probe in a densely labeled sample to resolve intracellular protein localization 

patterns to within a few nanometers5,6. Further development and application of this super-

resolution microscopy is likely to provide insight into nearly every cellular process at both 

the systems level and the mechanistic level.

The localization analysis used in these super-resolution schemes is immature, however: 

Commonly, a 2D Gaussian (plus a constant background) is least-squares fitted to the 

distribution of intensity in each spot. This function is not the true PSF, however (and neither 

is the Airy distribution7). So results obtained by fitting a Gaussian have never been 

compared with the ultimate precision that can be achieved with the true PSF for a given 

number of photons, although this immutable benchmark is provided by Information Theory. 

The information inequality, the Cramér-Rao lower bound8,9, states that once an isolated 

probe has been imaged digitally, the precision with which a parameter θ of the PSF can be 

estimated, is given by

(2)

Here N is the number of photons in the image, and θ can, e.g., be a position coordinate. The 

function i(θ) is the information content of a single photon and is calculated from the PSF. 

The factor 21/2 is included to account for the excess noise10 of the commonly-employed 

EMCCD camera. Since N is limited by photobleaching of fluorophores, it is of great 

practical interest to achieve the equality in Eq.(2). Information theory is clear on this point: 

Maximum Likelihood Estimation (MLE) with the true PSF does this, and other unbiased 

estimators can only perform with lower precision.

With this in mind, we analyzed the cases of (i) fluorophores with fixed spatial orientation 

and (ii) isotropic distributions of fluorophores. We assumed perfect imaging conditions and 

that the imaged probes were in focus. We showed that theoretical PSFs, derived under these 

ideal conditions, provide accurate descriptions of measured PSFs and used them in MLE to 

show that one in practice achieves the lower bound of Eq.(2) for all parameters of interest. 

In Case i, we optimally estimated location and orientation of probes in focused images. In 

Case ii, we optimally estimated probe locations and compared our precision of localization 

to those of estimators popular in the literature.

First we considered a fluorescent molecule with fixed spatial orientation of its dipole, which 

was modeled as a point-source dipole emitter. Diffraction of the electromagnetic dipole-field 

results in a PSF that depends on the dipole’s orientation in space11 and is in general 

asymmetric (Fig. 1a–d). The PSF for a dipole oriented with azimuthal angle α and polar 

angle β is (Supplementary Note)
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(3)

where (x’,y’) =ρ’(cos ϕ’,sin ϕ’) are Cartesian, respectively polar coordinates of a point in the 

image plane relatively to the dipole’s location in that plane, and all dependencies on angles 

are explicit. The component p⊥ is the PSF of a fixed dipole orthogonal to the image plane, 

while p║ is the PSF of an isotropic distribution of dipoles parallel to the image plane and all 

located at the same position. These two PSFs and the functions Δp║ and p× depend only on 

the distance ρ’ to the location of the molecule in the image plane. All components but Δp║ 

are normalized by virtue of the definitions of I║ and I×(Supplementary Note) We evaluated 

these functions as numerical integrals (Supplementary Software 1) since no closed exact 

expressions exist for them. To evaluate these functions faster, we also derived accurate 

analytical approximations to them (Supplementary Note). These were used in Eq.(3) to fit 

simultaneously the center coordinates of the dipole probe and its angles, the total photon 

number in the spot, and a background level to experimental images (Fig. 1a–h). We used 

MLE to fit and refer to this estimator as MLE with the Theoretical PSF (MLEwT), with the 

accurate analytical approximation understood. Thus estimates of the fluorophore’s location 

and spatial orientation were obtained simultaneously and directly from focused images, 

unlike existing methods12–14. The PSF in Eq.(3) accurately describes the data to which it 

was fitted with MLE (Fig. 1e–p) and the analytical approximation was shown accurate 

compared to the full evaluation of Eq.(3) (Fig. 1q–t).

To demonstrate the performance of MLEwT, we photographed single Rhodamine 

fluorophores at 1 Hz. This dye is bifunctional and was crosslinked to calmodulin proteins, 

which had been chemically engineered to have two binding cysteine sites12. This kept the 

flurophore’s orientation fairly fixed. The cross linked calmodulins were adsorbed non-

specifically to the coverslip. We chose seven fluorophores, which were sufficiently fixed in 

location and orientation during the imaging period, for analysis. In each image of this time-

lapse movie, we estimated the probe’s position and orientation using MLEwT. We 

compared fluctuations in distances between all pairs of probes to the r.m.s. deviations they 

should have according to theory, if caused only by shot-noise. The fluctuations of the polar 

and azimutal angles around their respective mean values agreed with the size of their 

theoretical error bars (Fig. 2a–b). The compounded statistics of these fluctuations 

demonstrated full agreement between experiment and theory (Fig. 2c–d). We conclude that 

MLEwT estimates positions and angles with the ultimate precision possible according to 

Fisher’s information limit, which was calculated using the full evaluation of Eq.(3) to ensure 

a rigid test. Note in particular that precision was not compromised discernibly by our 

analytical approximation to the theoretical PSF.

Next we considered the case of a point-size isotropic distribution of dipoles. If the exciting 

light is isotropic, the PSF of such a distribution is an isotropic superposition of PSFs for 

dipoles with fixed orientations, i.e.,

(4)
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where N║ and N⊥ are normalization constants (Supplementary Note). The same PSF results 

if the exciting light is polarized, provided thermal motion can rotate the dipoles freely and 

far between excitation and emission. A single freely and fast rotating dipole has the same 

PSF. If the light source is polarized, however, and the dipoles are not free to rotate, then 

even an isotropic distribution of dipoles, as in a fluorescent bead, will have an asymmetric 

PSF (Supplementary Note). Only if the exciting light is incident at the critical angle or along 

the coverslip, does the maximum of the PSF in this case coincide with the location of its 

dipole source (Supplementary Fig. 1).

We fitted such an asymmetric theoretical PSF to the experimental distribution from a TIRF-

illuminated 40-nm fluorescent bead (Fig. 3a–b). Similar asymmetric distributions due to the 

polarized illumination of TIRF were observed using single, freely rotating Cy3 fluorophores 

(data not shown). We used left-handed circular polarization of the initial excitation light, and 

so were left with five fitting parameters: the x- and y-coordinates of the bead’s center, the 

expected number of photons emitted by the bead, a constant background, and the super-

critical angle of the incident light. The width of the PSF was not fitted directly, but followed 

from the emission wavelength, the known properties of the optics, and the characteristics of 

the incident light. We approximated the PSF as we did for a fixed dipole (Supplementary 

Software 2). The near-perfect agreement between theory and data (Fig. 3c–d) ensures that in 

practice the Information Limit is reached by MLE with this PSF (MLEwT).

We compared MLEwT to two commonly used4,5,6,15 estimators, the so-called Gaussian 

Mask Estimator (GME) and Weighted (or Full) Least-Squares Gaussian Fit (WLS) 16,17. 

GME employs least-squares fitting with constant weights of a 2D Gaussian plus a constant 

background. Constant weights are incorrect weights, since photon counts in any pixel are 

Poisson distributed. Consequently, some practitioners use WLS, which approximates the 

weight of each pixel with 1/(the experimental count in the pixel). If pixels with low expected 

counts occur, however, some of them will have actual counts near zero, hence artificially 

large weights that throw the estimate off target, unless one patches WLS by adding counts 

ad hoc in such pixels. Fortunately, there is an easy alternative to GME and WLS: a 

Maximum Likelihood-fit of a 2D Gaussian plus a constant to the data (MLEwG) 

(Supplementary Software 3). MLE weighs data correctly and is the optimal fitting 

procedure, when the fitted function describes the data and one has a large total number of 

counts (here photons), as we did.

A 2D Gaussian-plus-constant does approximate the experimentally measured PSF very well 

in a properly chosen region (Supplementary Fig. 1). However, for light incident at angles 

above the critical angle, the center of the theoretical PSF differs from its maximum. The 2D 

Gaussian does not capture this feature, which results in a small bias in its estimates of center 

coordinates. One is rarely interested in absolute coordinates, however, and due to identical 

illumination of all probes, the asymmetry of the PSF of a bead is the same anywhere in the 

field of view, so distance-estimates using 2D Gaussians are unbiased, i.e., accurate. As for 

precision of estimated distances, GME has finite variance because its unweighted least-

squares fit effectively ignores the photon counts in the 1/r3 power-law tail of the 

experimental data (Supplementary Note). MLEwG is mathematically identical to the 

centroid, hence would locate with infinite variance (Supplementary Note), were no 
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background assumed. If the shoulders of the theoretical PSF are modeled as a constant 

background, however, and the fitted part of the image is truncated at those shoulders, then 

MLEwG achieves the precision of Fisher’s Information Limit, because a Gaussian plus a 

constant approximates the theoretical PSF almost perfectly there (Supplementary Fig. 1).

To demonstrate the performance of estimators, we melted 40-nm fluorescent beads onto a 

cover slip and photographed them 500 times at 10 Hz. In each image of this time-lapse 

movie, we localized the same beads with MLEwT, MLEwG, GME, and WLS 

(Supplementary Note). This revealed non-constant drift between camera and cover slip. 

Distances between beads were unaffected by drift, but showed thermal motion (Fig. 4a–d). 

The radius of each bead was 20 nm, so its center wiggled measurably over the spot it was 

attached to18. The simplest possible model for this thermal motion around a fixed position 

assumes a linear restoring force of the center’s coordinate to its average value. Since inertia 

is negligible, the motion then has a characteristic Lorentzian power spectrum19 to which the 

localization error due to shot-noise adds its white-noise spectrum. The constant power of the 

latter stands out at large frequencies, where the Lorentzian has vanished (Fig. 4e), and gives 

directly twice the time-averaged localization variance, which is seen to be the same for 

MLEwT and MLEwG, a factor 1.5 larger for GME, and 1.7 for WLS. These results agree 

perfectly with two theoretical predictions given in Eqs. (5) and (6) below. Alternatively, 

thermal noise can be removed by high-pass filtering the time series of bead-bead 

separations. We did that and were left with (correlated) fluctuations in bead-bead separations 

that originate solely in shot noise. We compared these errors to the expected errors and 

demonstrated excellent agreement between experiment and theory for the three reliable 

estimators (Fig. 4f–i). This demonstrated that the theoretically predicted advantage of 

MLEwT and MLEwG is realized experimentally. Furthermore, for the data presented here 

we found that the light is incident close to the critical angle, so coordinates determined by 

fitting 2D Gaussians should be nearly unbiased. This was confirmed experimentally by 

comparing with coordinates estimated with MLEwT (data not shown).

The theoretical r.m.s. deviations of estimators with which experimental data were compared 

(Fig. 4), are the square roots of twice the following expressions (Supplementary Note). (The 

doubling accounts for the “excess noise” of the electron multiplication process of the 

EMCCD (Supplementary Note).)

(5)

(6)

In both expressions σa
2 = σ2 + a2/12, making them correct to order a2/(12 σ2) in the pixel 

area a2, which is an excellent approximation for a ≤ σ . Both expressions treat the assumed 

background of b2 expected photons per pixel exactly, and replace Ref.16’s Eq.(17), which 

underestimates error bars systematically (Fig. 4e and Supplementary Fig. 2). When pixel 

counts are sufficiently high to stabilize WLS, its variance is also given by Eq.(5) 

Mortensen et al. Page 5

Nat Methods. Author manuscript; available in PMC 2011 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Supplementary Note). The factor 16/9 in Eq.(6) distinguishes it from the widely used error 

formula given in Eq.(17) in Ref.16 and explains why “30% excess error” was observed in 

Ref.16, when true errors of GME applied to computer simulated Gaussian distributed 

“photons” were compared to the errors predicted by that Eq.(17): (16/9)1/2 = 133%. Note 

furthermore that GME, MLEwG, and WLS when it works well, all underestimate the 

number N of photons in a spot to ~60% of its true value (Supplementary Fig. 2), because 

they all treat shoulders and tails in the measured PSF as background. The reason MLEwG 

can ignore 40% of the photons recorded by MLEwT, yet have the same localization 

precision, is because it ignores photons in the slowly varying tail, which contribute 

negligibly to localization precision. Note finally that computer algorithms for least-squares 

fitting typically converge faster than algorithms for MLE. Consequently, when 

computational speed an issue, one can use least-squares fitting for a speedy near-optimal fit, 

then use that fit as starting point for a truly optimal fit with MLE.

In summary, given the exponential rise in reports on analysis of isolated fluorescent probes 

in vitro and in vivo, the simple and optimal analysis provided by MLEwG combined with 

Eq.(5) should satisfy a practical need for precision in localization of isotropic probes. Where 

it doesn’t, or for counting photons, or for fluorophore molecules with fixed or time-resolved 

dipole orientation, one can use MLEwT, optimally with our analytical approximate PSF, and 

with the assurance that doing better is impossible because this unbiased estimator achieves 

the information limit.

Methods

Imaging of fluorescent beads

We melted 40 nm fluorescent beads (FluoSpheres, 580/605, Invitrogen, F8770) onto a 

coverslip by loading a 1:10000 bead dilution into a flow cell made from a coverslip, a 

microscope slide and double-sided tape. The flow cell was placed on a heat block at 98C 

(coverslip-side down) for ~2 minutes. Water or buffer was added to the flow cell before 

imaging. The sample was imaged using a home-built objective-type TIRF microscope using 

a 1.65 NA 100× objective (Olympus, Melville, NY) to create evanescent excitation and to 

collect the emission of the fluorescent probe and an EMCCD camera was used for detection 

(Andor Technology, Belfast, Ireland, iXon DV 887 EMCCD)4. Images were taken with a 

pixel size of ~28 nm.

Imaging of fixed rhodamine molecules

We used bis-((N-iodoacetyl)piperazinyl)sulfonerhodamine (Invitrogen, B-10621) to 

crosslink two engineered cysteines in chicken calmodulin (P66C, A73C) as previously 

described11,14. Briefly, bifunctional rhodamine was introduced in a 1:4 ratio to calmodulin 

which had been exchanged into labeling buffer (25 mM phosphate buffer, pH 7.4, 100 mM 

NaCl2, 1 mM CaCl2). These conditions were found to produce ~90% monomers while other 

conditions produced higher levels of dimers. The reaction was allowed to occur for 45 

minutes at room temperature in the dark. To quench the reaction, 2 mM of DTT was added. 

Buffer exchange was then performed using Micro Bio-Spin 6 chromatography columns 

(Bio-Rad, Hercules, CA) to remove excess dye. Electrophoresis of the labeled calmodulin 
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through a denaturing PAGE gel and imaging on a Typhoon scanner (GE Healthcare 

Biosciences, Pittsburgh, PA) allowed the measurement of the dimer:monomer ratio.

The labeled calmodulin adsorbed non-specifically to the coverslip, and was imaged using a 

Nikon TIRF microscope (1.49 NA 100× objective) to create evanescent excitation and to 

collect the emission of the fluorophore. The emission was imaged with an EMCCD camera 

(Andor Technology, Belfast, Ireland, iXon DV 887 EMCCD) with pixel size approximately 

44 nm. In all data acquisitions, no special effort was made to ensure precise focus. The focus 

was determined by eye.

Summary of theoretical methods

Detailed derivations and analyses may be found in the Supplementary Note. Briefly, we 

modeled the diffraction limited image of an isolated in-focus fluorescent probe 

systematically for two cases: (i) A single dipole-emitter with fixed orientation in space. (ii) 

An isotropic superposition of such dipoles with homogeneous distribution in space within a 

sphere with 40 nm diameter and TIRF-illuminated20. Building on the known pattern of 

diffraction in a circular aperture of a monochromatic, in-focus, on-axis, fixed dipole 

emitter11 (not to be confused with the text-book Airy pattern formed by a monochromatic 

plane wave with on-axis wave vector), we accounted for finite pixel-size, Poisson statistics 

of photons from source and background, excess noise from the on-chip electron-

multiplication process of the EMCCD21, read-out noise of the EMCCD21, and the emission 

spectrum of the fluorophore. Read-out noise was negligible for our purposes. The 20 nm 

radius of the fluorescent sphere and the width of the emission spectrum both result in a just 

discernible broadening of the diffraction-limited image compared to the PSF from a 

monochromatic point-emitter. When we ignored this broadening, we found a negligible 

effect on the precision with which the fluorescent source (either fixed dipole or fluorescent 

sphere) can be localized as compared with the combined errors due to photon shot noise and 

excess noise. We consequently treated these sources as monochromatic and point-like. The 

theoretical PSF in this approximation was further approximated precisely—using the 

cumulant expansion—to an analytical expression that reduces the need for numerical 

integration to once for each experimental setting. This analytical approximation was used as 

the theoretical PSF for fixed dipoles, and a weighted superposition was used as the 

theoretical PSF for TIRF-illuminated20 fluorescent beads. These theoretical PSFs describe 

the expectation value for experimental data in each pixel as functions of the location of the 

point-source and other parameters describing it. We also calculated the expected variance of 

experimental data with respect to this expectation value in each pixel, in order to test our 

theory against experimental data. Since all effects accounted for by our theory are well-

proven physics, the experimental variance can only exceed or equal our theoretical variance, 

and will exceed it if our modeling ignores discernible effects, by definition of the latter. 

Consequently, agreement between theoretical variance and experimental variance is strong 

confirmation that our choices of what to leave in and what to leave out were correct.

Information Theory8 states a limit to the precision with which one can localize an isolated 

point-source in a diffraction-limited image of that source. Information theory also states that 

MLE with the true PSF achieves this lower bound8 in the limit of high photon numbers. We 
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calculated the information-theoretical limit to the precision with which one can determine 

the location and other parameters of a fixed dipole emitter, using its theoretical PSF. We did 

the same for a TIRF-illuminated sphere using its theoretical PSF. Finally, we assumed a 2D 

Gaussian plus a constant as PSF, and calculated the information-theoretical limit with which 

its center can be located by fitting a function of the same form to data with MLE (MLEwG). 

This we did analytically, as a function of photon count, the Gaussian’s width, background 

photon level, and pixel size. For comparison, we also calculated analytically how well that 

center can be determined by fitting the 2D Gaussian plus a constant to data with least-

squares method. This amounts to the so-called Gaussian Mask Estimator scheme of Ref. 16, 

and our formula for the expected error replaces the approximate interpolation formula given 

there. Finally, we demonstrated that the expected error on locations estimated by weighted 

least-squares fitting of a 2D Gaussian plus a constant to similarly distributed data (WLS)16 

equals the result for MLEwG. All these analytical calculations are made possible by an 

approximation that converts apparently intractable sums over pixels to doable integrals over 

the image plane, doable because of the rotational symmetry possessed by the assumed 

problem, the Gaussion-plus-constant-distributed photons, once pixels are gotten rid of. The 

diffraction-limited image of a TIRF-illuminated fluorescent sphere is not quite rotationally 

symmetric in the plane, so fitting a symmetric PSF to it, a Gaussian plus a constant, may 

cause a biased estimate, as vividly illustrated by a simple one-dimensional problem in Ref. 

22. However, since the asymmetry is caused by asymmetric illumination of symmetric 

objects, we found the bias is the same for all fluorescent spheres in a given image, hence not 

affecting their relative positions.

Our theoretical results for expected errors were obtained by the usual analytical propagation 

of errors by linearization of functions around expectation values. The quality of this 

approximation was tested by finding the real error of each estimator, by applying it to 

synthetic data produced by Monte Carlo simulation of photons distributed according to the 

theoretical PSF and processed by the EMCCD. The analytical results did not differ from the 

Monte Carlo results, thus confirming that linearization for error propagation is an excellent 

approximation for our realistic photon counts, even the lowest among them.

The distance-measurements that we use as experimental tests of the performance of various 

localization-estimators, were all done for distances much larger than the widths of the 

diffraction-limited images of the probes whose separations we measured. Consequently, we 

could safely assume that our distance estimates have Gaussian distributed errors because our 

localization estimates do. The bias on distance-estimates introduced with this assumption, 

which was derived, described, and demonstrated in Ref. 22, is negligible in our case.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Point spread functions for four fixed fluorophores with different spatial orientations. (a–d): 

Fixed rhodamine molecules were imaged as described in Methods. (e–h): MLEwT applied 

to fixed probes (a–d) with 578 nm peak emission wavelength. We found orientations in 

polar angles, of 0.28, 0.60, 0.89, and 1.18 radians, respectively, for (e–h), and in azimuthal 

angles of 0.68, 2.23, 3.61, and 5.03. (i–l): Measured signal values compared to expected 

values. We binned the expected signals, and associated pixels with a bin if the expected 

signal falls within it. For each bin, the mean experimental signal is plotted against the 
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expected signal. Error bars indicate the theoretical s.e.m. with which data should scatter 

about the straight line through the origin with unit slope. (m–p): Histograms of pixel 

fluctuations around their expected values. For each pixel in the experimental images (a–d), 

the fluctuation is the measured signal value minus its expected value, scaled by its 

theoretical r.m.s. deviation. For sufficiently large expected pixel signals, theory predicts the 

standard normal distribution (solid line) for the fluctuations. (q–t): Comparing the 

theoretical PSF to its analytical approximation (Supplementary Data). At (0,0) the two 

functions coincide. For each fit in (e–h), we show the percentile deviation of the analytical 

approximation from the theoretical PSF as a contour plot. Contour lines are plotted for 0.01, 

0.1 (both solid lines), and −0.1 (dashed lines).
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Figure 2. 
Demonstration of MLEwT on fixed fluorophores. (a): Time-series of repeatedly estimated 

azimuthal angles of four fixed fluorophores using MLEwT. Error bars indicate the 

theoretical r.m.s. deviation of each estimate, as caused by shot-noise only. For each time-

series, the full lines represent the weighted mean value of the angle. (b): Polar angles for the 

same probes, obtained as in (a). (c): Histogram of fluctuations about the mean values of 

azimuthal and polar angles in seven time-series consisting of 68 estimates analyzed using 

MLEwT. Each fluctuation was re-scaled using the theoretical covariance matrix for it. 
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Consequently, theory dictates a normal distribution with variance one, shown with the solid 

line. (d): Histogram of fluctuations about the mean values in time-series of distance 

estimates with MLEwT. For each of the seven probes used in (c), time series of Euclidean 

distances between the probe and all other probes fluorescing simultaneously were 

calculated. Fluctuations are given in units of their theoretical r.m.s. deviation, found by 

assuming shot-noise is the only source of statistical fluctuations. If this assumption is 

correct, theory dictates the normal distribution with unit variance, shown here as a solid line. 

(Because each probe contributes to several distance estimates, the latter are not fully 

independent statistically, but this "oversampling" of data merely reduces statistical noise in 

the shown histogram.)
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Figure 3. 
The point spread function of a 40-nm fluorescent bead. (a): 40 nm fluorescent beads were 

imaged as described in Methods. (b): Theoretical image: Obtained by applying MLEwT to 

the experimental image (a). We assumed circular polarization of the incident light. (c): 

Measured signal values compared to expected values. We binned the expected signals, and 

associated pixels with a bin having expected pixel values within it. For each bin, the mean 

experimental signal is plotted against the expected signal. The error bars indicate the 

theoretically predicted s.e.m. with which an experimental mean value is allowed to scatter 
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about the straight line drawn through the origin with unit slope. (d): Histogram of pixel 

fluctuations around their expected values. For each pixel in the experimental image (a), the 

fluctuation is the measured signal value minus its expected value, scaled by its theoretical 

r.m.s. deviation. For a sufficiently large expected pixel signal, the actual signal value is 

approximately normally distributed. For such fluctuations, the theory dictates the normal 

distribution with variance one, shown with the solid line.
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Figure 4. 
Comparing four estimators. (a–d): Time series of repeatedly measured distance between two 

fluorescent beads melted onto a cover slip. Notice the larger scatter in (d) compared to (c) 

and (c) compared to (a) and (b). (a): Distances obtained with MLEwT. (b): Distances 

obtained with MLEwG applied to the very same data. (c): Distances obtained with GME. 

(d): Distances obtained with WLS. (e): Power spectra of the four time series. The excess 

power at lowest frequencies may be due to Brownian motion of the beads18. The plateau 

value at larger frequencies equals twice the variance of the point-source localization scheme. 
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Curves: Fits of a Lorentzian plus a constant to experimental power spectra. Arrows: Plateau 

values according to theory (Supplementary Note). Note that the white arrow (MLEwT and 

MLEwG, undistinguishable) marks the information limit: All unbiased estimators have 

variances larger than or equal to this limit. Note also that Eq.(17) in Ref. 16 violates the 

information limit when applied to the experimental data discussed here, hence must be 

wrong. (f): Histogram of fluctuations about the mean value in time-series of distance 

estimates with MLEwT. Each fluctuation was divided by the theoretical r.m.s. deviation for 

it. Consequently, theory dictates a normal distribution with variance one, shown with the 

solid line. (g): Same for MLEwG. (h): Same for GME. (i): Same for WLS, rescaled using 

Eq.(5). The width of the histogram compared to theory is due to low experimental values in 

some pixels.
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