Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[N -(1-Azanidyl-2,2,2-trichloroethyl-idene)-2,2,2-trichloroethanimidamide]copper(II)

Namig G. Shikhaliyev, ${ }^{\text {a* }}$ Abel M. Maharramov, ${ }^{\text {a }}$ Vasily M. Muzalevskiy, ${ }^{\text {b }}$ Valentine G. Nenajdenko ${ }^{\text {b }}$ and Victor N. Khrustalev ${ }^{\text {c }}$

${ }^{\text {a }}$ Baku State University, Z. Khalilov St 23, Baku AZ-1148, Azerbaijan, ${ }^{\mathbf{b}}$ Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie gory $1 / 3$, Moscow 119991, Russian Federation, and ${ }^{\mathrm{C} X \text {-Ray Structural Centre, A.N. }}$
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St B-334, Moscow 119991, Russian Federation
Correspondence e-mail: namiq155@yahoo.com
Received 18 June 2012; accepted 16 August 2012
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.047 ; ~ w R$ factor $=0.133$; data-to-parameter ratio $=19.5$.

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Cl}_{6} \mathrm{~N}_{3}\right)_{2}\right]$, was obtained by the reaction of $\mathrm{CCl}_{3} \mathrm{CN}$ with ammonia in presence of CuCl . The $\mathrm{Cu}^{\mathrm{II}}$ atom is located about an inversion centre. The molecule consists of three planar units (one central square CuN_{4} and two $\mathrm{C}_{2} \mathrm{~N}_{3}$ fragments), adopting a staircase-like structure. The six-membered metallocycles have a sofa conformation with the Cu atom out of the plane of the 1,3,5-triazapentadienyl ligands by $0.246(5) \AA$. The ipso-C atoms of the CCl_{3} substituents are slightly out of the 1,3,5-triazapentadienyl planes by 0.149 (6) and -0.106 (6) \AA. The CCl_{3} groups of each 1,3,5-triazapentadienyl ligand are practically in the energetically favourable mutually eclipsed conformation. In the crystal, the molecules are packed in stacks along the a axis. The molecules in the stacks are held together by two additional axial $\mathrm{Cu} \cdots \mathrm{Cl}$ interactions of 3.354 (2) \AA. Taking the axial $\mathrm{Cu} \cdots \mathrm{Cl}$ interactions into account, the $\mathrm{Cu}^{\mathrm{II}}$ atom exhibits a distorted [4 + 2]-octahedral coordination environment. The stacks are bound to each other by weak intermolecular attractive $\mathrm{Cl} \cdots \mathrm{Cl}[3.505$ (2)-3.592 (3) Å] interactions.

Related literature

For a catalytic olefination reaction, see: Shastin et al. (2001); Korotchenko et al. (2001); Nenajdenko et al. (2003, 2004a,b,c, 2005, 2007). For related compounds, see: Boča et al. (1996); Kajiwara et al. (2002); Zhang et al. (2005); Igashira-Kamiyama et al. (2006); Zheng et al. (2007); Figiel et al. (2010).

Experimental

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Cl}_{6} \mathrm{~N}_{3}\right)_{2}\right]$
$M_{r}=673.11$
Triclinic, $P \overline{1}$
$a=5.9317$ (17) \AA
$b=9.078(3) \AA$
$c=10.831$ (3) A
$\alpha=98.475(5)^{\circ}$
$\beta=97.525(5)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.499, T_{\text {max }}=0.867$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.133$
$S=1.00$
2414 reflections
$\gamma=103.662(5)^{\circ}$
$V=552.1(3) \AA^{3}$
$V=552.1$ (3) A^{3}
$Z=1$
Mo $K \alpha$ radiation
$\mu=2.45 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.33 \times 0.24 \times 0.06 \mathrm{~mm}$

5662 measured reflections 2414 independent reflections 2108 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

> 124 parameters
> H -atom parameters constrained
> $\Delta \rho_{\max }=1.18 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-0.85 \mathrm{e}^{-3}$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2069).

References

Boča, R., Hvastijová, M., Kožíšek, J. \& Valko, M. (1996). Inorg. Chem. 35, 4794-4797.
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Figiel, P. J., Kopylovich, M. N., Lasri, J., da Silva, M. F. C. G., da Silva, J. J. R. F. \& Pombeiro, A. J. L. (2010). Chem. Commun. 46, 2766-2768.
Igashira-Kamiyama, A., Kajiwara, T., Konno, T. \& Ito, T. (2006). Inorg. Chem. 45, 6460-6466.
Kajiwara, T., Kamiyama, A. \& Ito, T. (2002). Chem. Commun. pp. 1256-1257.
Korotchenko, V. N., Shastin, A. V., Nenajdenko, V. G. \& Balenkova, E. S. (2001). Synthesis, pp. 2081-2084.

Nenajdenko, V. G., Korotchenko, V. N., Shastin, A. V. \& Balenkova, E. S. (2004b). Russ. Chem. Bull. 53, 1034-1064.
Nenajdenko, V. G., Muzalevskiy, V. M., Shastin, A. V., Balenkova, E. S. \& Haufe, G. (2007). J. Fluorine Chem. 128, 818-826.

metal-organic compounds

Nenajdenko, V. G., Shastin, A. V., Golubinskii, I. V. \& Balenkova, E. S. (2004c). Russ. Chem. Bull. 53, 228-232
Nenajdenko, V. G., Varseev, G. N., Korotchenko, V. N., Shastin, A. V. \& Balenkova, E. S. (2003). J. Fluorine Chem. 124, 115-118.
Nenajdenko, V. G., Varseev, G. N., Korotchenko, V. N., Shastin, A. V. \& Balenkova, E. S. (2004a). J. Fluorine Chem. 125, 1339-1345.
Nenajdenko, V. G., Varseev, G. N., Korotchenko, V. N., Shastin, A. V. \& Balenkova, E. S. (2005). J. Fluorine Chem. 126, 907-913.
Shastin, A. V., Nenajdenko, V. G., Korotchenko, V. N. \& Balenkova, E. S. (2001). Russ. Chem. Bull. 50, 1401-1405.

Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. \& Chen, X.-M. (2005). J. Am. Chem. Soc. 127, 5495-5506.
Zheng, L.-L., Zhang, W.-X., Qin, L.-J., Leng, J.-D., Lu, J.-X. \& Tong, M.-L. (2007). Inorg. Chem. 46, 9548-9557.

supplementary materials

[N-(1-Azanidyl-2,2,2-trichloroethylidene)-2,2,2-trichloroethanimidamide]copper(II)

Namig G. Shikhaliyev, Abel M. Maharramov, Vasily M. Muzalevskiy, Valentine G. Nenajdenko and Victor N. Khrustalev

Comment

Recently we have discovered a new catalytic olefination reaction as a general method for the preparation of alkenes from polyhalogenated compounds and hydrazones (Fig. 1) (Shastin et al., 2001; Korotchenko et al., 2001; Nenajdenko et al., 2003, 2004a, 2004b, 2005, 2007).

During our study of the catalytic olefination reaction we have found that the reaction with trichloroacetonitrile demand the use of ethylenediamine as a base because in the case of ammonia no target alkene is formed (Nenajdenko et al., $2004 c$ c). We decided to study the reaction of $\mathrm{CCl}_{3} \mathrm{CN}$ with ammonia in presence of CuCl more thoroughly and found that the formation of the title copper (II) chelate complex takes place (Fig. 2). The formation of this complex can be explained by high electrophilicity of trichloroacetonitrile (Fig. 3). At the first stage, ammonia reacts with CN bond to form amidine \mathbf{A} as an intermediate. The subsequent reaction of \mathbf{A} with second molecule of trichloroacetonitrile gives \mathbf{B}. And finally, \mathbf{B} reacts with CuCl_{2} resulting in the copper(II) complex \mathbf{I} in a high yield. We believe that Cu^{2+} is formed by oxidation of Cu^{1+} with CCl 3 CN as it was confirmed previously for catalytic olefination reaction.

The structure of the title compound $\mathbf{I}, \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{6} \mathrm{Cl}_{12} \mathrm{Cu}$, was unambigouosly established by X-ray diffraction study (Fig. 4). The compound \mathbf{I} crystallizes in the triclinic space group $P-1$ and there is a crystallographically imposed inversion centre at the Cu atom of each molecule. The Cu atom has a square-planar coordination. The 1,3,5-triazapentadienyl ligands are also planar (r.m.s. deviation is $0.021 \AA$). However, the six-membered metallocycles deviate significantly from the planarity and have a sofa conformation with the Cu atom out of the plane of the $1,3,5$-triazapentadienyl ligands by 0.246 (5) \AA. Thus, the molecule of I consists of the three planar units adopting the staircase-like structure. The similar molecular conformation has been previously observed in the related compounds (Zhang et al., 2005; Igashira-Kamiyama et al., 2006; Figiel et al., 2010). Nevertheless, it is important to note that the analogous complexes can adopt the planar conformation also (Boča et al., 1996; Kajiwara et al., 2002; Zheng et al., 2007). The ipso-C atoms of the $\mathrm{CCl}_{3}{ }^{-}$ substituents are slightly out of the $1,3,5$-triazapentadienyl planes by 0.149 (6) and - 0.106 (6) \AA. The CCl_{3}-groups of each 1,3,5-triazapentadienyl ligand are practically in the energetically favorable eclipsed mutual conformation.
In the crystal, the molecules are packed in stacks along the a axis (Fig. 5). The molecules in the stacks are held together by the two additional axial $\mathrm{Cu} \cdots \mathrm{Cl}\left[\mathrm{Cu} 1 \cdots \mathrm{Cl} 1^{1}\right.$ and $\left.\mathrm{Cu} 1 \cdots \mathrm{Cl} 1^{i}\right]$ interactions of 3.354 (2) \AA. Taking the axial $\mathrm{Cu} \cdots \mathrm{Cl}$ interactions into account, the Cu atom attains the distorted [4+2]-octahedral coordination environment. The different stacks are bound to each other by weak intermolecular attractive interactions [Cu2 $\cdots \mathrm{Cl} 2^{i i i} 3.505$ (2), $\mathrm{Cu} 2 \cdots \mathrm{Cl} 2^{\text {iv }} 3.592$ (3), $\mathrm{Cu} 3 \cdots \mathrm{Cl4}{ }^{\wedge} 3.516$ (2) and Cu3 $\cdots \mathrm{Cl}^{\text {vi }} 3.564$ (2) $\left.\AA\right]$. Symmetry codes: (i) $-x,-y+2,-z+2$; (ii) $x-1, y, z$; (iii) $-x+2,-y+3$, $-z+2$; (iv) $-x+1,-y+3,-z+2$; (v) $x+1, y+1, z$; (vi) $-x,-y+2,-z+1$.

Experimental

A solution of trichloroacetonitrile (7.3 ml) in DMSO $(15 \mathrm{ml})$ was dropped to a mixture of aqueous ammonia (5 ml) and freshly purified copper monochloride (0.3 g) during 3 min . upon keeping of the room temperature by the cooling on water-bath. The reaction mixture was stirred for 4 h . At the end of the reaction, the mixture was washed with water (150 ml) and filtered off. The formed product was re-crystallized from aqueous ethanol to give 1.47 g of red crystals of \mathbf{I}. Yield is 73%. M.p. $=472-474 \mathrm{~K}$.

Refinement

The hydrogen atoms were placed in calculated positions with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and refined in the riding model with fixed isotropic displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})\right]$.

Computing details

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL
(Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
$\mathrm{CHal}_{2} \mathrm{XY}$
$+$

Figure 1
New catalytic olefination reaction as a general method for the preparation of alkenes; X and Y are $\mathrm{H}, \mathrm{Hal}, \mathrm{CHal} \mathrm{H}_{3}, \mathrm{CN}$.

Figure 2
Reaction of $\mathrm{CCl}_{3} \mathrm{CN}$ with ammonia in presence of CuCl .

supplementary materials

Figure 3

The stage-to-stage reaction mechanism of the formation of \mathbf{I}.

Figure 4
Molecular structure of I with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Symmetry code: (i) $-x,-y+2,-z+2$.

Figure 5
The crystal packing of \mathbf{I} along the a axis. Dashed lines indicate the intermolecular axial $\mathrm{Cu} \cdots \mathrm{Cl}$ and attractive $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions.

[N -(1-Azanidyl-2,2,2-trichloroethylidene)-2,2,2- trichloroethanimidamide]copper(II)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Cl}_{6} \mathrm{~N}_{3}\right)_{2}\right]$
$M_{r}=673.11$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.9317$ (17) \AA
$b=9.078$ (3) \AA
$c=10.831$ (3) \AA
$\alpha=98.475(5)^{\circ}$
$\beta=97.525(5)^{\circ}$
$\gamma=103.662(5)^{\circ}$
$V=552.1$ (3) \AA^{3}

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\min }=0.499, T_{\text {max }}=0.867$
$Z=1$
$F(000)=327$
$D_{\mathrm{x}}=2.024 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3874 reflections
$\theta=2.4-27.7^{\circ}$
$\mu=2.45 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Plate, red
$0.33 \times 0.24 \times 0.06 \mathrm{~mm}$

5662 measured reflections
2414 independent reflections
2108 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=1.9^{\circ}$
$h=-7 \rightarrow 7$
$k=-11 \rightarrow 11$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from
> neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.076 P)^{2}+0.84 P\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=1.18$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.85 \mathrm{e}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cu1	1.0000	1.0000	0.0000	$0.03611(19)$
C11	$0.20230(19)$	$0.81177(15)$	$0.21612(13)$	$0.0696(3)$
C12	$0.28874(19)$	$0.61212(13)$	$0.01081(11)$	$0.0644(3)$
C13	$0.5633(2)$	$0.65213(14)$	$0.25606(12)$	$0.0677(3)$
C14	$1.0465(2)$	$1.42819(12)$	$0.33037(12)$	$0.0730(4)$
C15	$0.5879(2)$	$1.27757(17)$	$0.35949(16)$	$0.0868(5)$
C16	$0.9881(3)$	$1.18805(17)$	$0.47247(11)$	$0.0886(5)$
N1	$0.7097(5)$	$0.8671(3)$	$0.0275(3)$	$0.0437(7)$
H1	0.6365	0.7918	-0.0331	$0.052 *$
C2	$0.6169(5)$	$0.8813(4)$	$0.1278(3)$	$0.0358(6)$
N3	$0.6704(5)$	$0.9993(3)$	$0.2235(3)$	$0.0441(7)$
C4	$0.8405(6)$	$1.1234(4)$	$0.2244(3)$	$0.0353(6)$
N5	$0.9823(6)$	$1.1456(3)$	$0.1452(3)$	$0.0446(7)$
H5	1.0802	1.2351	0.1582	$0.054 *$
C6	$0.4243(6)$	$0.7471(4)$	$0.1511(4)$	$0.0421(7)$
C7	$0.8629(7)$	$1.2489(4)$	$0.3416(3)$	$0.0425(7)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0386(3)$	$0.0301(3)$	$0.0377(3)$	$0.0011(2)$	$0.0172(2)$	$0.0035(2)$
C11	$0.0495(6)$	$0.0725(7)$	$0.0932(9)$	$0.0109(5)$	$0.0390(6)$	$0.0205(6)$
C12	$0.0505(5)$	$0.0531(6)$	$0.0697(7)$	$-0.0144(4)$	$0.0029(5)$	$0.0011(5)$
C13	$0.0586(6)$	$0.0634(7)$	$0.0806(8)$	$0.0026(5)$	$0.0025(5)$	$0.0422(6)$
C14	$0.0951(9)$	$0.0370(5)$	$0.0731(7)$	$-0.0102(5)$	$0.0382(6)$	$-0.0097(5)$
C15	$0.0568(7)$	$0.0793(8)$	$0.1141(11)$	$0.0171(6)$	$0.0303(7)$	$-0.0268(8)$

supplementary materials

C16	$0.1405(14)$	$0.0778(9)$	$0.0422(6)$	$0.0311(9)$	$-0.0047(7)$	$0.0076(5)$
N1	$0.0425(15)$	$0.0386(15)$	$0.0407(15)$	$-0.0039(12)$	$0.0135(12)$	$-0.0039(12)$
C2	$0.0343(15)$	$0.0320(15)$	$0.0399(16)$	$0.0027(12)$	$0.0094(12)$	$0.0099(12)$
N3	$0.0496(16)$	$0.0379(15)$	$0.0401(15)$	$-0.0022(12)$	$0.0199(13)$	$0.0035(12)$
C4	$0.0397(16)$	$0.0312(15)$	$0.0346(15)$	$0.0058(12)$	$0.0109(12)$	$0.0063(12)$
N5	$0.0515(17)$	$0.0300(14)$	$0.0478(16)$	$-0.0025(12)$	$0.0241(13)$	$0.0003(12)$
C6	$0.0341(16)$	$0.0409(17)$	$0.0505(19)$	$0.0028(13)$	$0.0118(14)$	$0.0136(14)$
C7	$0.0497(19)$	$0.0364(17)$	$0.0394(17)$	$0.0066(14)$	$0.0158(14)$	$0.0014(13)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cu}-\mathrm{N} 5$	1.931 (3)	N1-C2	1.284 (4)
$\mathrm{Cu} 1-\mathrm{N} 1$	1.941 (3)	N1-H1	0.8600
C11-C6	1.749 (4)	C2-N3	1.322 (4)
C12-C6	1.767 (4)	C2-C6	1.537 (4)
C13-C6	1.759 (4)	N3-C4	1.321 (4)
C14-C7	1.762 (4)	C4-N5	1.282 (4)
C15-C7	1.742 (4)	C4-C7	1.544 (4)
C16-C7	1.736 (4)	N5-H5	0.8600
N5-Cu1-N1	87.83 (12)	Cu1-N5-H5	116.4
C2-N1-Cu1	126.0 (2)	C2-C6-Cl1	111.9 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	117.0	C2-C6- Cl 3	106.7 (2)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{H} 1$	117.0	Cl1-C6-Cl3	110.2 (2)
N1-C2-N3	128.5 (3)	C2-C6- Cl^{2}	112.5 (2)
N1-C2-C6	120.3 (3)	Cl1-C6-Cl2	107.50 (19)
N3-C2-C6	111.2 (3)	Cl3-C6-Cl2	108.0 (2)
C4-N3-C2	120.5 (3)	C4-C7-C16	107.4 (2)
N5-C4-N3	128.3 (3)	C4-C7-Cl5	110.5 (2)
N5-C4-C7	120.3 (3)	C16-C7-Cl5	111.2 (2)
N3-C4-C7	111.4 (3)	C4-C7-C14	112.4 (2)
$\mathrm{C} 4-\mathrm{N} 5-\mathrm{Cu} 1$	127.1 (2)	C16-C7-Cl4	108.0 (2)
C4-N5-H5	116.4	C15-C7-Cl4	107.3 (2)
N5-Cu1-N1-C2	-14.1 (3)	N1-C2-C6-Cl1	-140.6 (3)
$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2$	165.9 (3)	N3-C2-C6-Cl1	41.9 (4)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	12.6 (6)	N1-C2-C6-Cl3	98.8 (3)
$\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 6$	-164.4 (2)	N3-C2-C6-Cl3	-78.7 (3)
N1-C2-N3-C4	-0.4 (6)	N1-C2-C6-Cl2	-19.5 (4)
C6-C2-N3-C4	176.7 (3)	N3-C2-C6-Cl2	163.0 (3)
C2-N3-C4-N5	-5.2 (6)	N5-C4-C7-Cl6	-105.0 (3)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 7$	177.1 (3)	N3-C4-C7-Cl6	72.9 (3)
N3-C4-N5-Cu1	-2.2 (6)	N5-C4-C7-Cl5	133.5 (3)
C7-C4-N5-Cu1	175.3 (2)	N3-C4-C7-Cl5	-48.6 (4)
N1-Cu1-N5-C4	9.6 (3)	N5-C4-C7-Cl4	13.7 (4)
N1-Cu1-N5-C4	-170.4 (3)	N3-C4-C7-Cl4	-168.4 (3)

Symmetry code: (i) $-x+2,-y+2,-z$.

