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Abstract

Background: Candidate gene case-control studies have identified several single nucleotide polymorphisms (SNPs) that are
associated with asthma susceptibility. Most of these studies have been restricted to evaluations of specific SNPs within a
single gene and within populations from European ancestry. Recently, there is increasing interest in understanding racial
differences in genetic risk associated with childhood asthma. Our aim was to compare association patterns of asthma
candidate genes between children of European and African ancestry.

Methodology/Principal Findings: Using a custom-designed Illumina SNP array, we genotyped 1,485 children within the
Greater Cincinnati Pediatric Clinic Repository and Cincinnati Genomic Control Cohort for 259 SNPs in 28 genes and
evaluated their associations with asthma. We identified 14 SNPs located in 6 genes that were significantly associated (p-
values ,0.05) with childhood asthma in African Americans. Among Caucasians, 13 SNPs in 5 genes were associated with
childhood asthma. Two SNPs in IL4 were associated with asthma in both races (p-values ,0.05). Gene-gene interaction
studies identified race specific sets of genes that best discriminate between asthmatic children and non-allergic controls.

Conclusions/Significance: We identified IL4 as having a role in asthma susceptibility in both African American and
Caucasian children. However, while IL4 SNPs were associated with asthma in asthmatic children with European and African
ancestry, the relative contributions of the most replicated asthma-associated SNPs varied by ancestry. These data provides
valuable insights into the pathways that may predispose to asthma in individuals with European vs. African ancestry.
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Introduction

Asthma (MIM 600807) is a disease of chronic airway

inflammation characterized by recurrent episodes of wheezing,

dyspnea, chest tightness, and cough. It affects nearly 300 million

individuals worldwide including 20 million adults and children in

the United States [1,2]. Approximately 5,000 asthma deaths occur

in the US every year [3]. Previous studies have revealed strong

familial aggregation with heritability estimates between 36 and

79%, supporting the existence of asthma susceptibility genes.

Indeed, more than 120 genes have been found to be associated

with asthma- or atopy-related phenotypes as reported in greater

than 600 studies [4].

While many studies have evaluated the importance of genetics

on asthma susceptibility, most studies employ samples from

populations of European descent. Few have focused on asthma

risk in African Americans, despite the fact that asthma morbidity

and mortality are more prevalent in this subgroup. In the PubMed

database, European populations are mentioned 5 times more often

in various asthma related literature than African Americans

(http://www.ncbi.nlm.nih.gov). Studies in other ethnicities, par-

ticularly African-derived populations, are valuable, because they

may help localize the signals of association and because additional

variants present at high frequency in African-derived populations

may be absent or rare in Caucasian samples [5]. Furthermore, it is

not clear whether associations with asthma found in the Caucasian

samples can be consistently replicated in samples from predom-

inantly recent African ancestry. Genetic, environmental or

phenotypic heterogeneity, gene-gene and gene by environment

interactions or different recombination histories between popula-

tions could all contribute to a lack of replication in African-derived

populations. Genetic variants may also have different effects in

different populations because of unmeasured (and perhaps

unknown) environmental risk factors. Hence, the prognostic utility

value of specific variants for asthma risk assessment differs across

populations [6]. Given the greater genetic diversity and different
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linkage disequilibrium (LD) structure exhibited by African-

ancestry populations, understanding genetic variation in asthma

related genes in African American population could provide novel

insights into the etiology of asthma.

Therefore, the objective of this study was to identify the

similarities and differences in association patterns of asthma and

known candidate genes between European ancestry and African

American children. To accomplish this objective, we used a

carefully collected cohort of children from the greater Cincinnati

area as the discovery cohort and an independent replication

cohort of Caucasians and publicly available dataset of African

Americans.

Materials and Methods

Study population
The analysis included Caucasian and African American

asthmatic, allergic and non-allergic children enrolled in the

Greater Cincinnati Pediatric Clinic Repository (GCPCR) and

Cincinnati Genomic Control Cohort (GCC) and who met the case

and control definitions (outlined below). Recruitment for GCPCR

began in November, 2003 and is ongoing. Children with asthma

and other allergic conditions visiting the allergy/immunology,

pulmonary, and dermatology outpatient specialty clinics and from

the Emergency Department at CCHMC were invited to

participate in the GCPCR. Non-allergic control children were

recruited into GCPCR from headache, dental and orthopedic

clinics as well as from the community at large using paper and

online advertising media. Following written informed consent,

participants were asked to provide a buccal (using a cytobrush) or

saliva sample (Oragene DNA Self-Collection Kit, DNA Genotek

Inc., Ottawa, ON Canada) for DNA isolation and to complete

repository specific questionnaires. The GCC is an ongoing

community-based cohort of over 1,020 healthy children ages 3–

18 years old. In terms of race, ethnicity, gender, and socioeco-

nomic status, participants are representative of the 7 counties that

cover the Greater Cincinnati region. Participating GCC children

provided a blood sample for DNA isolation at their baseline visit.

For these genetic association studies, GCPCR participants aged 4

to 17 years with physician diagnosed asthma based on the ATS

criteria [7] (with or without allergic rhinitis and/or atopic

dermatitis), and available pulmonary function test results and/or

respiratory symptom scores were included as asthmatic cases.

Similar aged non-asthmatic GCPCR children with allergic rhinitis

and/or atopic dermatitis or non-asthmatic GCC children who

reported ever having hay fever or eczema were included as allergic

children. Children from either GCPCR or the GCC were

included as non-allergic controls if they reported not having any

personal or family history of asthma, and not having a personal

history of any allergic disorder. Written informed consent was

obtained from all interested patients and their parents/guardians.

The study was approved by the Cincinnati Children’s Hospital

Medical Center Institutional Review Board.

Replication cohorts
The Caucasian replication population includes asthmatic

children from the GCC compared to non-asthmatic adults with

no family history of asthma from the Cincinnati Control Cohort

(CCC). Like the GCC, the CCC is a population-based sample of

298 Caucasians (age 24–90 years) from the Greater Cincinnati/

Northern Kentucky area. The African American replication

populations were 42 African American trios (126 individual

samples) from the Childhood Asthma Management Program

(CAMP) data available from the NIH-based database of

Genotypes and Phenotypes (dbGaP) (http://www.ncbi.nlm.nih.

gov/gap) Formal permission for use of the dbGaP data was

obtained prior to analysis. Both the Caucasian and African

American replication cohorts were genotyped using Affymetrix 6.0

SNP chip.

Candidate gene and SNP selection, and genotyping
We conducted a large-scale evaluation of candidate genes to

identify common variants that influence asthma risk. A total of 28

candidate genes were selected for inclusion in a custom Illumina

GoldenGateTM assay. To investigate asthma liability genes

systematically, we selected 28 candidate genes. These candidates

were chosen based on a high number of replications in the

literature (.10) [8] and biologic relevance in the pathogenesis of

asthma or allergy. The description of candidate genes including

function and process terms deposited in the Gene Ontology (GO)

databases (http://www.geneontology.org; [^] accessed on June 20,

2010) are shown in Table 1.

SNPs for this chip were selected in one of two ways. First, non-

synonymous SNPs or SNPs in regulatory or coding regions were

selected. Second, tagging SNPs that efficiently capture all the

common genetic variation in a gene were selected using Haplo-

view and Tagger (http://www.broad.mit.edu/mpg/haploview).

The rationale for tagging SNPs is that genetic variants that are

near each other and in linkage disequilibrium (LD) tend to be

inherited together as a result of shared ancestry. The strong

correlations between markers within haplotype blocks help to

enable accurate representation of a gene region by a small number

of tagging SNPs. The SNPs were retrieved from Caucasians in the

United States with northern and western European ancestry

[CEU] and Yorubans in Ibadan, Nigeria [YRI] population

samples of the public HapMap database (http://hapmap.ncbi.

nlm.nih.gov). Genotyping using the Illumina GoldenGate Assay

(http://www.illumina.com) system was performed at the CCHMC

Genetic Variation and Gene Discovery Core. Genotypes were

assigned using Illumina’s BeadStudio v3.2 Software (San Diego,

CA).

Statistical analysis
All analyses were performed separately in Caucasian and

African American datasets. Prior to analysis, SNPs which failed

Hardy Weinberg Equilibrium (HWE) in the control dataset

(p,0.0001) or had poor genotype calling (missing rate greater

than 10%) or minor allele frequencies below 10% were excluded

from the analysis. In addition, individuals with more than 20% of

their total SNPs missing were also removed from the analysis. To

account for potential population stratification/confounding or

admixture in these samples, principal component analyses (PCA)

was performed using 30 unlinked Ancestry Informative Markers

(AIMs) and the EIGENSTRAT software [9]. The principal

component score for each individual was included as a covariate in

all models along with age and gender in logistic regression models.

Statistical comparisons in both Caucasians and African

Americans were made between asthmatic children and non-

allergic controls and also between the allergic children and the

non-allergic controls. As a general association screen, we tested for

the additive models of single SNP analysis, which assume that each

copy of the risk allele will increase disease prevalence. Uncondi-

tional logistic regression was used to calculate p-values and odds

ratios for each SNP using the software PLINK (V1.05) and

Bonferroni adjustment that scales the original threshold by the

number of tests performed was used to correct for multiple testing

and determine the statistical significance of each SNP [10]. To

investigate the relationship between IL4 and IL13 genes, linkage

Racial Differences in Childhood Asthma
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Table 1. Asthma candidate genes and number of SNPs used in analyses.

Gene symbol Gene name Chr location
SNPs
genotyped* Gene Ontology Terms (www.geneontology.org)

Process Function

ATPAF1 Apoptotic protease
activating factor 1

1p33 3 (1) protein complex assembly

CHI3L2 chitinase3like 2 1p13 13 (9) carbohydrate metabolic process, chitin
catabolic process

cation binding, hydrolase
activity

CHIA chitinase 1p13.2 31(23) cell wall chitin metabolic process, immune
response, polysaccharide catabolic process,
response to fungus, response to acid

cation binding, chitin binding,
lysozyme activity, sugar
binding

CLCA1 chloride channel accessory 1 1p22.3 29 (24)

FLG filaggrin 1q21.3 12 (6) keratinocyte differentiation, multicellular
development

calcium ion binding, structural
molecule activity

IL10 interleukin 10 1q32.1 10 (9) B cell differentiation, T-helper 2 type immune
response, defense response to bacterium,
immune response, inflammatory response,
receptor biosynthetic process, negative
regulation of interleukin12

cytokine activity, interleukin10
receptor binding, protein
binding

INSIG2 insulin induced gene 2 2q14.1 9 (9) cholesterol metabolic process, lipid metabolic
process, response to sterol depletion, steroid
metabolic process

protein binding

NFE2L2 nuclear factor
erythroidderived 2like 2

2q31.2 8 (5) regulation of transcription, DNA dependent
transcription from RNA polymerase II promoter

sequencespecific DNA binding,
transcription factor activity

ADIPOQ adiponectin, C1Q and
collagen domain
containing

3q27.3 13 (10) fatty acid betaoxidation, generation of precursor
metabolites and energy, protein/glucose
homeostasis, lowdensity lipoprotein particle
clearance, negative regulation of inflammatory
response

cytokine activity, eukaryotic
cell surface binding, protein
homodimerization activity

ADRB2 adrenergic, beta2,
receptor, surface

5q33.1 9 (6) Gprotein coupled receptor protein signaling
pathway, receptormediated endocytosis,
negative regulation of inflammatory response

beta2adrenergic receptor
activity, potassium channel
regulator activity, receptor
activity

IL13 interleukin 13 5q31.1 7 (6) cell motion, cellcell signaling, immune response,
inflammatory response, signal transduction

cytokine activity, interleukin13
receptor binding,

IL4 interleukin 4 5q3135 10 (7) B cell differentiation, Thelper 2 type immune
response, cellular defense response, cholesterol
metabolic process, regulation of immune
response, positive regulation of isotype
switching to IgE isotypes

cytokine activity interleukin4
receptor, binding

IL9 interleukin 9 5q31.1 5 (5) immune response, inflammatory response
positive regulation of cell proliferation positive
regulation of interleukin5 biosynthetic process

cytokine activity growth
factor activity cytokine
receptor binding

SPINK5 serine protease inhibitor
Kazal type 5

5q33.1 19 (13) negative regulation of immune response,
regulation of T cell differentiation,
epithelial cell differentiation

serinetype endopeptidase
inhibitor activity

TSLP thymic stromal
lymphopoietin

5q22.1 9 (9) cytokine activity

CCL26 eotaxin3 7q11.23 10 (5) Chemotaxis, immune response inflammatory
response, signal transduction

chemokine activity

SERPINE1 serpin peptidase inhibitor,
clade E, member 1

7q22.1 20 (9) chronological cell aging fibrinolysis, regulation of
angiogenesis

protease binding, protein
binding, serinetype
endopeptidase activity

ALOX5 arachidonate 5lipoxy
genase

10q11.21 14 (13) inflammatory response, leukotriene biosynthetic
process, oxidation reduction

arachidonate 5lipoxygenase
activity, calcium ion binding

SPI1 spleen focus forming virus
proviral integration spi1

11p11.2 8 (7) negative regulation of transcription from RNA
polymerase II promoter, positive regulation of
genespecific, transcription

protein binding,
sequencespecific DNA binding

SERPINA1 serpin peptidase inhibitor,
clade A (alpha1
antiproteinase, antitrypsin),
member 1

14q32.1 15 (15) acutephase response, blood coagulation peptidase activity, peptidase
inhibitor activity, protease
binding, protein binding,
serinetype endopeptidase
inhibitor activity

CIITA class II, major
histocompatibility complex

16p13.13 13 (8) immune response, regulation of transcription,
DNAdependent, response to antibiotic

protein binding, transcription
coactivator activity

Racial Differences in Childhood Asthma
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disequilibrium (LD) plots were computed independently for

Caucasians and African Americans using Haploview version 4.1

[11]. Results were evaluated after correcting for multiple testing

using a Bonferroni adjustment taking into account LD correlation

between SNPs.

To compare the allele frequencies between Caucasian and

African Americans asthmatic and non-allergic controls, we used

the absolute allele frequency difference also called delta (d). It is

defined as the absolute value of the difference of the frequency of a

particular allele observed between the two populations. If we let

P11 represent the frequency of allele in the first population and P21

the frequency of the same allele in the second population, then

d= |P112P21|. A marker with d= 1 provides perfect information

regarding ancestry whereas a marker with d= 0 carries no

information [12].

Recursive partitioning (RP) was used to evaluate gene-gene

interactions using the R package PARTY (v0.9-995; www.r-

project.org). The purpose of RP is to identify the optimum

combination of SNPs that best discriminate between asthmatic

and control subjects. RP uses a series of regressions to identify

covariates (in this case SNPs) which best splits the data into distinct

homogeneous strata (e.g. those at high risk of asthma versus those

at low risk of asthma). A conditional inference tree was built by

first identifying the SNP (in this case, rs2243250 in IL4) which best

discriminates asthma cases and non-allergic controls and imple-

menting a binary split. Then the groups of children along each

subsequent branch are treated as individual datasets and the

regression analysis was repeated to identify the SNP that next best

discriminates between asthma cases and controls. This process is

repeated over and over for each of the resulting subsets until the

stopping rules are met. We used the significance level of the

conditional independence tests as a= 0.05 for our stopping

criterion and the minimum number of children in a node

considered for splitting was 200 for Caucasian and 80 for African

American. The variable selection procedure and the stopping rules

allow the application of statistical test procedures to minimize

over-fitting issues [13]. Using the predict function, we then classed

individuals as affected or unaffected based on the final tree, and

used the predicted and actual disease status to calculate

classification accuracy. In contrast to traditional diagnostic tests,

such as cluster analysis [14], that typically classify patients into one

of two groups, RP results identify several genetically characterized

groups with associated asthma risk ranging from very low to very

high.

We used Ingenuity Pathways Analysis (IPA) 8.6 (Ingenuity

Systems, Mountain View, CA, USA), to demonstrate whether the

RP interacting genes are part of an integrated and interconnected

biological networks that involved in genes that have functional

commonalities in both races. A data set containing RP gene

identifiers was uploaded into IPA to map and generate putative

networks based on the manually curated knowledge database of

pathway interactions extracted from the literature. The gene

network was generated using both direct and indirect relation-

ships/connectivity. These networks were ranked by scores that

measured the probability that the genes were included in the

network by chance alone.

SNP Imputation
For the replication Caucasian (GCC cases and CCC controls)

and African American dbGaP (CAMP trio dataset) populations,

we utilized the available genotyping data from the Affymetrix 6.0

SNP chip (http://www.ncbi.nlm.nih.gov/gap). However, none of

the five IL4 SNPs evaluated in our Caucasian population and only

two SNPs in African American populations were present on the

AffymetrixH 6.0 SNP chip. Imputation was performed to infer

genotypes at untyped markers using MACH 1.0.16 (http://www.

sph.umich.edu/csg/MaCH), which uses a hidden Markov model

to estimate an underlying set of unphased genotypes for each

individual in a cohort. We used information on patterns of

haplotype variation in the HapMap CEU and YRI samples

(release 22) as our reference haplotype. We only considered SNPs

that were either genotyped or could be imputed with relatively

high quality (RSQ .0.4). The estimated mismatch rate in Markov

model is about 0.001 for both populations.

For the Caucasian population, both imputed and genotyped

SNPs were tested for association with asthma status using additive

logistic regression models in PLINK. For the dbGaP CAMP

dataset, association analysis was performed using the transmission

Gene symbol Gene name Chr location
SNPs
genotyped* Gene Ontology Terms (www.geneontology.org)

Process Function

IL4Ra interleukin 4Ra 16p11 31 (16) immune response, signal transduction interleukin4 receptor activity
protein binding, receptor
activity

STUB1 STIP1 homology and
Ubox protein 1

16p13.3 4 (1) protein polyubiquitination, regulation of
glucocorticoid metabolic process,
ubiquitindependent SMAD protein catabolic
process

Hsp70 protein binding,

HRH4 histamine receptor H4 18q11.2 14 (11) Gprotein coupled receptor protein signaling
pathway, signal transduction

histamine receptor activity,

TGFB1 transforming growth
factor, beta 1

19q13.2 5 (4) positive regulation of interleukin17 production,
induction of apoptosis, inflammatory response,
lymph node development

protein Nterminus binding type
II transforming growth factor

CDH26 cadherinlike 26 20q13.33 12 (8) integral to membrane, plasma membrane homophilic cell adhesion

IL13RA1 interleukin 13R1 Xq24 17 (14) receptor activity

IL13RA2 interleukin 13R2 Xq13 5 (4) extracellular space, integral to membrane cytokine receptor activity

*numbers in parentheses indicates number of SNPs that passed quality control and enter to statistical analysis.
doi:10.1371/journal.pone.0016522.t001

Table 1. Cont.
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disequilibrium test (TDT) described by Spielman and Ewens [15].

The TDT test evaluates the observed number of parent-offspring

transmissions of alleles, compared with the number of transmis-

sions expected by chance. Only parents heterozygous for the

polymorphism tested are informative for the test. Association was

tested using chi-square statistics. We applied imputation methods

to validate our initial association and expands the test to untyped

variants.

Results

Demographics of cases and controls
Basic descriptive statistics of the study populations by race is

provided in Table 2. The mean age of Caucasian children was

significantly less for asthmatic and allergic children compared to

the non-allergic controls (p,0.0001). For African American

children, there were significantly more males than females in the

asthma group compared to both the allergic control group

(p = 0.004) and non-allergic control group (p = 0.02). Therefore,

associations between asthmatics and non-allergic children and

between allergic children and non-allergic children were adjusted

for age and gender in addition to population stratification.

Allele frequencies vary by race
A comparison of allele frequency differences for 111 out of the

259 SNPs in Caucasian versus African Americans asthmatics (red)

and Caucasian versus African American non-allergic control

groups (blue) were statistically significant (Figure S1). The average

absolute allele frequency difference in asthmatic allele frequency

between Caucasian and African Americans was 0.12960.107 with

range from 0.0017 to 0.484. Non-allergic control children were

more similar between Caucasian and African American groups

than the asthmatic groups. Allele frequencies within the admixed

African American populations are intermediate between the

respective ancestral HapMap Phase 3 (European and African)

populations (data not shown).

Single SNP association, majority of SNP associations do
not overlap between European ancestry and African
American

Among children with European ancestry, significant single SNP

associations between asthmatics and non-allergic controls were

detected in 13 of the 230 SNPs in 5 of the 28 genes (p-

value = 0.05). These include SNPs in IL4, SPINK5, SERPINA1,

IL9 and IL13 (Table S1). To take into account the LD correlation

among SNPs, we used a modified Bonferroni adjustment cut-off

[10] to determine the significance with a p-value of 0.00085. With

this criterion, 4 SNPs in IL4 significantly increased the risk for

asthma by approximately twofold (Table 3). In fact, IL4 rs2243250

remained significant even after the traditional and highly

conservative Bonferroni adjustment (Figure 1). Considering the

number of assays performed, IL4 showed an excess number of

significant SNPs associated with asthma (4 out of 5), while a larger

gene such as CLCA1, with 23 SNPs, showed no significant SNP

associations.

In the African American children, 14 SNPs in 6 genes were

significantly associated with asthma (p-value = 0.05, Figure 1).

These included SNPs in the IL4, INSIG2, CHIA, ALOX5,

CLCA1 and CDH26 (Table S2). IL4 rs2243250 and rs2243274

were associated with asthma in both races (p-value ,0.05). In the

African American cohort, there were no significantly associated

SNPs after Bonferroni adjustment (cutoff p-value of 0.0005).

Interestingly, the minor allele frequency of these SNPs differs by

race.

To investigate if the strong single SNP association of IL4 gene is

independent of IL13, linkage disequilibrium (LD) analyses were

performed. IL13 is an adjacent cytokine gene, which lies 200 kb

away from IL4 on chromosome 5q31 and has many structural and

functional similarities with IL4 including a shared receptor

(IL4Ra). All the genotyped IL4 SNPs in Caucasians and African

Americans were studied for LD patterns. In both populations, LD

within the IL4 gene was strong. However, LD was not observed

between IL13 and IL4 in the African American population, while

weak LD was observed between IL13 and IL4 genes in Caucasians

(Figure 2). As LD is known to be highly influenced by ancestry, the

observed patterns of LD and SNP relationships indicate that these

populations are genetically different. There was no significant

difference in LD pattern between cases and control subjects in

either population (data not shown).

Replication for IL4 in both races, and discovery of
additional IL4 variants through imputation

Analysis of SNPs imputed from Affymetrix data revealed similar

significant associations with asthma. In fact, for Caucasians, the

effect sizes for the replication studies were greater than those

observed in the discovery analyses. For example, the odds ratio of

asthma for IL4 promoter SNP rs2243250 was 2.00 (95% CI 1.18–

2.75) in our discovery analysis compared with the imputed GCC/

CCC OR of 3.86 (95% CI 1.58–9.41). Further, additional SNPs

were identified through imputation studies. Notably IL4 SNPs

rs2227284 and rs2227282 increased the odds of asthma in

Caucasian children by 5.2 (95% CI 2.68–10.0 p = 1.04E-06)

(Table 3, Table 4). Although the replication control cohort was

composed of adult asthmatic and non-asthmatic subjects, IL4

SNPs were significantly associated with asthma (Table 4). The

Table 2. Sample size and covariates in both Caucasian and African American population.

Variable Asthmatic Group Allergic Group Non-Allergic Controls

Caucasian African Am. Caucasian African. Am. Caucasian African Am.

Total children (n) 420 330 269 150 298 51

Children after exclusions (n)a 413 315 261 147 298 51

Mean age (years) 10.1b 10.3 10.3b 10.8 12.0 11.4

Percent male 55.2% 63.2%b,c 56.3% 48.3% 48.0% 45.1%

aIndicates the number children after children with missing call rates above 20% were removed.
bIndicates significant differences (p,0.05) with similar race non-allergic normal control children.
cIndicates significant differences (p,0.05) with similar race allergic children. African Am. indicates African American race.
doi:10.1371/journal.pone.0016522.t002

Racial Differences in Childhood Asthma
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replication of IL4 gene in children and adult cohorts implies its

broader implication in asthma independent of development stages.

Similarly, in the African American population, the odds of

asthma for IL4 SNP rs2243250 increased from 1.75 (95% CI

1.16–2.70) in the discovery analysis to 2.15 in the replication

analysis (Table 3, Table 4). In addition, two IL4 promoter SNPs

rs2243240 and rs2243246 discovered through imputation were

also significantly associated with asthma (p-value ,0.05) (Table 4).

Gene- gene interactions and gene networks differ by
race

To identify the SNP combination that best discriminates

between asthma cases and non-allergic controls, we explored the

gene-gene interactions (epistasis) among all 259 SNPs across the 28

candidate genes using RP.

For the Caucasian population, a total of 6 SNPs from the total

of 259 SNPs (in genes IL4, STUB1, ADRb2, IL4Ra, IL13Ra2

and CHIA) remained in the final tree from the RP process (see

Figure 3a). At the top of the tree, the most asthma predictive SNP

was rs2243250, an extensively studied IL4 promoter variant

[16,17,18,19,20,21,22,23,24,25]. Interestingly, other SNPs were

not significantly associated with asthma in univariate SNP

association analysis, but appeared to be discriminative between

asthmatic and non-allergic children in the multivariate model.

In the African American children, 5 SNPs in 5 genes together

significantly discriminate between asthmatic and non-allergic

children. INSIG2 rs4848492 was the most predictive gene

following by IL4, CHIA, ADIPOQ and ALOX5 (see Figure 3b).

Only two genes (IL4 and CHIA) were common in both races.

Ingenuity Pathways Analysis (IPA) demonstrated that RP based

interacting genes are part of an interconnected gene network that

involved in related biological activities and functional common-

alities. In Caucasian, the most enriched IPA canonical pathways in

the 6 genes (p,3.21*1024) were IL4 signaling and T helper cell

differentiation. In African Americans, airway inflammation in

asthma and role of cytokines in mediating communication

between immune cells were the most enriched pathways among

the 5 genes (p,1.89*1022). Gene ontology analysis of the African

American network showed enrichment for specific biological

functions, including arachidonate 5-lipoxygenase activity

(p = 2.261026), mevalonate kinase activity (p = 1.561023) and

interleukin-4 receptor binding (p = 1.561023). Gene ontology

analysis of the Caucasian based Network showed cytokine binding

(p = 1.9610212), cytokine receptor activity (p = 1.4610210). And

transmembrane receptor activity (p = 3.761026). Enriched bio-

logical process includes production of molecular mediator involved

in inflammatory response (p = 9.761029) for AA and immune

response (p = 1.0610220) for CEU.

Discussion

To our knowledge, this is the largest candidate genes association

study that has examined racial differences in childhood asthma.

Through this systematic study, we have simultaneously studied

both Caucasian and African American asthmatic children and

demonstrated that these populations predominantly exhibit

different patterns of association between genetic variants and

asthma. To accomplish this goal we used well characterized

European ancestry and African American children who live in the

same geographic region of the greater Cincinnati area. Using both

cohorts we have shown that only 1 of 28 genes had associations in

both populations, as well as only 2 genes were common across the

two races in the recursive partitioning analysis. Indeed, different

gene networks were associated with asthma in children with

European ancestry versus African Americans suggesting that there

may be distinct mechanisms underlying the pathogenesis and

expression of asthma in these 2 subgroups. Simultaneous

investigation of risk variants across European and African

American populations enabled the identification of population

specific risk alleles and disease pathways, which may contribute to

health disparity. The results from this study may also assist in fine-

mapping of genetic associations by exploiting the differences in

linkage disequilibrium between populations to narrow the range of

marker alleles demarking regions that contain a true biologically

relevant variant.

These analyses revealed two major findings. First, we confirmed

the importance of IL4 genetic variation in the risk of pediatric

asthma, and present evidence of replication among the African-

American population. While IL4 has been consistently reported to

be associated with asthma in Caucasian, Asian, and Hispanic

Table 3. IL4 gene single locus association in Caucasian and African American population.

IL4 Asthmatics vs. Non-Allergic Controls

Caucasian African American

Frequency cases/controls = 413/298 315/51

SNP (major/minor) Function MAF MAF

Asthmatics controls OR P-value Asthmatics controls OR P-value

rs2243250 (C/T)a Promoter 0.195 0.116 2.00 (1.45,2.75) 0.00002 0.332 0.471 0.56 (0.37,0.86) 0.008

rs2243282 (C/A) Intronic 0.180 0.117 1.81 (1.31,2.50) 0.0003 0.336 0.294 1.26 (0.79,2.02) 0.34

rs2243274 (G/A)a Intronic 0.188 0.126 1.74 (1.27,2.38) 0.0006 0.389 0.500 0.64 (0.42, 0.96) 0.03

rs2243268 (A/C) Intronic 0.178 0.116 1.81 (1.32,2.50) 0.0003 0.250 0.220 1.22 (0.73,2.06) 0.45

rs2243263 (G/C) Intronic 0.113 0.135 0.77 (0.55,1.08) 0.13 0.167 0.265 0.54 (0.32,0.89) 0.016

rs2243248 (T/G) Promoter 0.146 0.245 0.47 (0.27,0.82) 0.008

rs2243283 (C/G) Intronic 0.152 0.039 4.4 (1.34,14.44) 0.015

Associations between asthmatic and non-allergic controls, and between allergic and non-allergic controls were tested independently and odds ratios (OR) were
determined using logistic regression based on the minor allele after adjusting for age, gender and population stratification.
aIndicates major and minor alleles are reversed in African American children. Confidence intervals are indicated in parenthesis, MAF stands for minor allele frequency.
doi:10.1371/journal.pone.0016522.t003
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populations, two of the four SNPs, which reached Bonferroni

corrected significance in the Caucasian children (rs2243250 and

rs2243274) replicated (p,0.05) in the African American children

(Table 3). While non-coding IL4 rare variants have been

associated with asthma susceptibility in African Americans [26],

the association of these two SNPs is novel to this population. This

result suggests that some common immunological mechanisms (at

these variants) may underlie childhood asthma across different

ethnic backgrounds. However, most studied SNPs showed no

evidence of replication between Caucasian and African American

children. For example, IL4 SNPs, which are highly significant in

the Caucasian group such as rs2243282 and rs2243268 didn’t

reach 5% significance level in African American population. In

contrast, SNP rs4448492 in the INSIG2 gene was associated

(P = 0.002) with asthma in African American population. Howev-

er, this SNP was not significant even without adjustment (at 5%) in

Caucasian population. Several SNPs have shown different allele

frequencies between the two races (Figure S1). This result suggests

that these genes do not harbor susceptibility variants common to

both races due to a) variation in signatures of natural selection

resulting in differences in allele frequencies; b) varying linkage

disequilibrium patterns at causal loci across different populations

(as shown for IL4 – Figure 2); and/or (c) there may be common

and distinct pathways that contribute to the development and

expression of asthma phenotypes between these two groups. It also

remains possible that we do not have sufficient statistical power

with the current sample size to detect statistical significance,

although this is unlikely for the observed lack of association of

INSIG2 in the Caucasian subset. To determine the power of this

to detect expected ORs for IL4 coding SNPs in both Caucasian

and African American population, we conducted an ad-hoc

analysis with the software Quanto [27]. With our sample size, we

have 96% and 71% power to detect the association of rs2243250

with asthma in Caucasian and African ancestry population,

respectively. This ad-hoc power analysis provides sufficient

evidence that we have high power in Caucasian and moderate

Figure 1. Associations between European and African Ancestry asthmatics vs. non-allergic controls. Associations between the 230 total
SNPs within the 28 candidate genes were tested using the additive model after adjusting for age, gender and population stratification. The upper line
corresponds to the conservative Bonferroni adjusted p value 0.00022. The middle line corresponds to the Bonferroni adjusted p value 0.00085
considering a LD correlation of 0.25. SNPs significant at this level (all in IL4) include rs2243250, rs243268, rs2243274 and rs43282. The lower line is a
nominal significance p value = 0.05. SNPs are plotted on the x-axis according to their position on each candidate gene across the chromosome
against association with asthma on the y axis (shown as log10 p value).
doi:10.1371/journal.pone.0016522.g001

Racial Differences in Childhood Asthma

PLoS ONE | www.plosone.org 7 February 2011 | Volume 6 | Issue 2 | e16522



Figure 2. Pair-wise LD statistics. Pairs of common SNPs in genomic regions containing IL4 and IL13 in the Caucasian (A) and African American (B)
population. The positions of SNPs within the IL4 and IL13 genes are shown above the plot. Values in boxes are r2 measures on a decimal scale (i.e. 97
represent r2 = 0.97), indicating extent of LD between two SNPs. Box without numbers have r2 = 1. The shade of each square indicates the strength of
the LD relationship between pairs of SNPs.
doi:10.1371/journal.pone.0016522.g002

Table 4. IL4 gene imputation based association/replication in Caucasian and African American population.

IL4

Asthmatic (GCC) Vs. non-asthmatic
controls (CCC)
Caucasian

Childhood Asthma Management
Program, CAMP (dbGaP)
African American

Frequency cases/controls = 74/211 42 trios

SNP ID Function OR* P-value OR** P-value

Replication association rs2243250 Promoter 3.86 0.003 2.15 0.019

rs2243282 Intronic 3.86 0.003 1.3 0.53

rs2243274 Intronic 2.97 0.0076 1.73 0.086

rs2243268 Intronic 3.86 0.003 1.08 0.84

rs2243263 Intronic 2.22 0.04

rs2243248 Promoter 1.38 0.49

rs2243283 Intronic 1 1

Discovery of untyped
SNP association

rs2070874 Promoter 3.86 0.003

rs734244 Intron 3.86 0.003

rs2227284 Intron 5.17 1.04E-06

rs2227282 Intron 5.17 1.04E-06

rs2243266 Intron 3.86 0.003

rs2243267 Intron 3.86 0.003

rs2243288 Intron 2.97 0.0076

rs2243289 Intron 3.86 0.003

rs2243290 Intron 3.86 0.003

rs2243240 Promoter 0 0.0455

rs2243246 Promoter 0.3571 0.03895

rs2243252 Intron 0 0.0455

doi:10.1371/journal.pone.0016522.t004
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power in African American to detect true effects. The lack of SNP

replication in these two populations emphasizes the need to

consider ancestry background and detailed examination of

population SNPs allele frequency across populations of different

and mixed ancestry as well as non-genetic factors.

Secondly, Using RP, we report for the first time an interaction

of six genes affecting European ancestry pediatric asthma:

rs2243250 (IL4), rs6597 (STUB1) rs11168070 (ADRb2),

rs3024676 (IL4Ra), rs638376 (IL13Ra2) and rs3806446 (CHIA).

These SNPs resulted in 62% accuracy of asthmatic and non-

allergic classification. Similarly seven SNPs in five genes rs4848492

(INSIG2), rs2243283 (IL4), rs4423003 (CHIA), rs2243283 (IL4),

rs12495941 (ADIPOQ), rs2243268 (IL4), and rs2291427

(ALOX5) in African American children had 77% discriminate

power between asthmatic and non-allergic individuals. The

combination of genotypes in these interactive SNPs can help to

pin-point individuals with greater asthma risk (Figure 3). Impor-

tantly, the RP method may elucidate associations, which may be

missed using single SNP association. For example, variants in

STUB1 and ADRb2 genes in Caucasian and variants in CHIA

and ADIPOQ genes in African American were not associated with

asthma in the single SNP analysis; however, in conditional

inference framework taking rs2243250 and rs4848492 as a major

discriminatory SNPs in Caucasian and African American

respectively, variation in these genes is highly associated with

asthma (p,0.01). Kabesch et al. [17] reported strong gene-gene

interactions among genes involving Th3-cell differentiation and

signaling pathways. Our study showed that using the RP

approach, SNPs that are weakly or not associated in the univariate

analysis could discriminate between asthma and non-allergic

control individuals in both races. This finding clearly indicates that

the effect of one gene may not be disclosed if the effect of another

gene is not considered [28], suggesting that the true effect may be

driven by gene-gene interaction, rather than by the main effect of

each gene by itself.

Further analysis using Ingenuity Pathways Analysis (IPA)

revealed that these RP based interactive genes belong to an

interconnected and interactive gene network, indicating that they

are involved in related biological activities and have functional

commonalities (Figure 4a, b). We also used IPA to characterize the

enrichment of specific pathway components into functionally

differentiated gene groups [29]. The most enriched (p#3*1024)

canonical pathway in Caucasian population was IL4 signaling

whereas airway inflammation in asthma was the most enriched

(p,1.36*1023) pathway in African American (data not shown).

Differences in the genetic architecture of individuals may have

affected determinant pathways in different ways. However, both

enriched IPA pathways in both races have essential roles in asthma

pathogenesis [30]. In network analysis, IL4 was the major hub

gene in both Caucasian and African American (Figure 4a, b).

These results were not unexpected given that IL4 is a critical

effector in the generation of allergic inflammation and IgE

Figure 3. RP based gene-gene interactions of asthmatics vs. non-allergic controls. Using the program PARTY (implemented in R), non-
parametric recursive partitioning was performed to identify combination of SNPs that together had the greatest ability to discriminate between
asthmatic and non-allergic controls. All the 257 SNPs within the 28 candidate genes were evaluated in the process. For the stopping criterion we use
the nominal level of the conditional independence test of a= 0.05. The final trees were enough to achieve 62% discrimination accuracy between the
asthmatic and non-allergic control individuals for Caucasian population and 77% for African American population. The number of subgroup is
indicated below each terminal node.
doi:10.1371/journal.pone.0016522.g003
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production, and is one of the most relevant genes in regulating the

Th2 profile of allergic subjects [31]. IL4 is central to B cell heavy

class switching from immunoglobulin M (IgM) to IgE, and to the

maturation of T helper (Th) cells towards the Th2 phenotype [32].

One of the variants (rs2243250), which was most strongly

associated with asthma, lies in the IL4 promoter region which

has been implicated and replicated in more than 11 studies

[17,19,20,21,22,23,25,33,34]. IL4 rs2243250 is a C-to-T mutation

that lies upstream from the open reading frame of the gene. It has

previously been shown to increase promoter activity of IL4

transcription and was associated with elevated levels of serum IgE

in asthmatic families [25].

In critically evaluating our results, it is important to note that

our analyses, and hence interpretations, are subject to several

limitations. First, SNP allele frequencies and association were

determined by using relatively small sample sizes (see Methods).

However, it should be noted that large sample sizes may not help

powering genetic studies and improve our understanding of the

genetic underpinnings of allergy phenotypes as much as precise

phenotyping [35]. In the present study we show that use of well-

characterized control populations (see Methods) in genetic

association studies can overcome relatively small sample sizes to

identify risk variants. Further, in order to overcome the relatively

small sample size in the AA cohort, we sought to replicate our

findings using publically available datasets but found similarly

small AA cohorts. Thus, there is a clear need for larger AA cohorts

in future studies. Second, to reduce the chance of potential false

positive results from multiple testing, we corrected the p-values

using Bonferroni adjustment which accounted for the LD among

SNPs. As the Bonferroni adjustment is notably conservative, the

LD adjustment provides minimization of false positives. We

believe that this approach provides a reasonable balance between

type I and type II error. Nonetheless, it is likely that we are missing

true associations, which may provide insight into racial differences

and similarities. Third, the environmental influences between our

case and control groups may be different, especially between

adults and children. Fourth, our study showed a positive

association, but it does not always imply causality. Hence, further

studies are needed to confirm the findings and to identify

functional variants causally linked to asthma risk. The present

study has notable strengths. First, we were able to conduct the

analyses separately in each race, and were therefore able to

account for the differences in allele frequencies, disease preva-

lence, and linkage disequilibrium patterns between these subpop-

ulations. Second, our study used a custom designed array that

includes more coverage of candidate genes/SNPs of interest and

the inclusion of ancestry informative markers (AIMs) to account

hidden ethnic variations.

In summary, through our systematic and comprehensive screen

of variants in asthmatic children who live in the same geographic

Figure 4. Ingenuity Pathway Analysis (IPA) Interactive network. IPA network for recursive partitioning prioritized genes. Genes with red node
are focused genes in our analysis, others are generated through the network analysis from the Ingenuity Pathways Knowledge Base (http://www.
ingenuity.com). Edges are displayed with labels that describe the nature of the relationship between the nodes. All edges are supported by at least
one reference from the literature, or from canonical information stored in the Ingenuity Pathways Knowledge Base. Edges are displayed with labels
that describe the nature of the relationship between the nodes. The lines between genes represent known interactions, with solid lines representing
direct interactions and dashed lines representing indirect interactions. Nodes are displayed using various shapes that represent the functional class of
the gene product. Nodes are displayed using various shapes that represent the functional class of the gene product (see legend).
doi:10.1371/journal.pone.0016522.g004
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region, we have demonstrated the importance of IL4 genetic

variation in both Caucasians and African American. Variants

found in populations of both African and European ancestry may

represent more universally important genes to the disorder [36].

The replication of IL4 SNPs in African ancestry can also

potentially aid in refining and fine mapping associations due to

the unique short range LD in this ethnicity. The use of a

population with short LD will result in the greatest localization

success rate in distinguishing the causal SNP from its neighbors.

Based on the overall lack of SNPs concordance in association

between European and African American asthmatic children, we

suspect that rare and/or population-specific risk alleles may

explain some of the associations in asthma, pointing to genetic

heterogeneity in susceptibility alleles. These results also underline

the importance of understanding differences in biologic and

genetic factors driving asthma in different ancestral populations.

Future fine-mapping and deep sequencing studies are needed to

determine whether or not other SNPs can be found associated in

African Americans as well as to identify both common and/or rare

risk-causing alleles in the associated regions.
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