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ABSTRACT A symbiotic lifestyle frequently results in genome reduction in bacteria;
the isolation of small populations promotes genetic drift and the fixation of dele-
tions and deleterious mutations over time. Transitions in lifestyle, including host re-
striction or adaptation to an intracellular habitat, are thought to precipitate a wave
of sequence degradation events and consequent proliferation of pseudogenes. We
describe here a verrucomicrobial symbiont of the tunicate Lissoclinum sp. that ap-
pears to be undergoing such a transition, with low coding density and many identi-
fiable pseudogenes. However, despite the overall drive toward genome reduction,
this symbiont maintains seven copies of a large polyketide synthase (PKS) pathway
for the mandelalides (mnd), cytotoxic compounds that likely constitute a chemical
defense for the host. There is evidence of ongoing degradation in a small number of
these repeats—including variable borders, internal deletions, and single nucleotide
polymorphisms (SNPs). However, the gene dosage of most of the pathway is in-
creased at least 5-fold. Correspondingly, this single pathway accounts for 19% of
the genome by length and 25.8% of the coding capacity. This increased gene dos-
age in the face of generalized sequence degradation and genome reduction sug-
gests that mnd genes are under strong purifying selection and are important to the
symbiotic relationship.

IMPORTANCE Secondary metabolites, which are small-molecule organic compounds
produced by living organisms, provide or inspire drugs for many different diseases.
These natural products have evolved over millions of years to provide a survival
benefit to the producing organism and often display potent biological activity with
important therapeutic applications. For instance, defensive compounds in the envi-
ronment may be cytotoxic to eukaryotic cells, a property exploitable for cancer
treatment. Here, we describe the genome of an uncultured symbiotic bacterium that
makes such a cytotoxic metabolite. This symbiont is losing genes that do not endow
a selective advantage in a hospitable host environment. Secondary metabolism
genes, however, are repeated multiple times in the genome, directly demonstrating
their selective advantage. This finding shows the strength of selective forces in sym-
biotic relationships and suggests that uncultured bacteria in such relationships
should be targeted for drug discovery efforts.
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Microbes frequently associate with higher organisms, and under certain circum-
stances, such a relationship leads to genome erosion in the microbial partner (1,

2). Host restriction, where an organism is an obligate symbiont with no free-living
phase in its life cycle (such as in strict vertical transmission), reduces the need to
maintain functions required for independent life. Likewise, adaptation to an intracel-
lular lifestyle further reduces the need to synthesize metabolites available from the
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host. Sequence degradation and genome reduction occur in the absence of selection
pressure, often accompanied by a change in symbiont population structure. Isolated
populations of symbionts within hosts undergo frequent population bottlenecks at
host-cell division or vertical transmission. In this setting, slightly deleterious mutations
can easily become fixed, due to these bottlenecks and the unavailability of horizontal
gene transfer (HGT) processes (3). Such sequence degradation leads to weakening of
protein function until coding sequences (CDSs) become nonfunctional pseudogenes,
which tend to be deleted (1). Transitions to a symbiont lifestyle are therefore accom-
panied by a proliferation of pseudogenes and apparent lowering of coding density (4)
before intergenic sequences are deleted, resulting in vastly reduced genomes.

We have a longstanding interest in symbionts that make bioactive natural products
(secondary metabolites) and previously identified a tunicate symbiont that was the
source of the patellazoles (5, 6), potent cytotoxins that likely act as chemical defenses
for the host. The biosynthetic genes for the patellazoles showed an unusual degree of
fragmentation, whereas genes in secondary metabolite pathways tend to be clustered
(7). As more symbiont genomes have been sequenced, we have noted that fragmen-
tation of biosynthetic gene clusters (BGCs) appears to be common in symbionts (7).

As part of our efforts to discover novel biosynthetic pathways, we focused on the
mandelalides (8–10), which are cytotoxic compounds isolated from the marine tunicate
Lissoclinum sp. Given the propensity of this genus to have both intra- and extracellular
symbionts and the resemblance of the mandelalides to bacterial compounds made by
trans-AT polyketide synthases (PKS), we embarked on a metagenomic sequencing
campaign to characterize the mnd pathway and the genome of the producing symbi-
ont. Here, we describe a symbiont in the phylum Verrucomicrobia, the genome for
which contains a complete set of biosynthetic genes that likely produce the mandela-
lides. This genome shows signs of ongoing degradation, with numerous pseudogenes
and low coding density. To our surprise, the mandelalides gene cluster had much
higher coverage than the rest of the genome, and we found evidence that it is
connected to multiple parts of the otherwise well-assembled genome. The cluster is
repeated seven times and is likely under strong selective pressures to enhance man-
delalide production. We also found evidence that the mnd cluster is not a recent
acquisition and that it is undergoing degradation and sequence divergence. The repeat
structure may represent a paradigm for the ancestral state of older symbionts with
pathways formed from fragmented secondary metabolite genes.

RESULTS
Identification of a bacterial symbiont associated with mandelalide-containing

Lissoclinum sp. In an effort to investigate the biosynthesis of the mandelalides, we
recollected the Lissoclinum sp. tunicate that had previously yielded the mandelalides
(8), near the original collection site of Algoa Bay, South Africa. The individual animal
that we collected yielded mandelalides A to D (Fig. 1A), as well as eight new analog
mandelalides, E through L (9, 11). Tunicates in the genus Lissoclinum are colonial,
consisting of many tiny individual animals (zooids) enveloped in a protective coat or
“tunic.” The mandelalide-containing tunicate was dissected to separate the tunic from
the zooids, since we previously found a bacterial symbiont of the related tunicate
Lissoclinum patella to be localized to zooids (5). Unlike L. patella (12), the mandelalide-
containing animal appeared not to harbor Prochloron didemni or other photosynthetic
symbionts in the cloacal contents. Total DNA was extracted separately from each of the
tunic and zooid fractions and subjected to shotgun metagenomic sequencing (Illumina
101-bp paired end). Retrobiosynthetic analysis of mandelalide structures revealed
several features suggestive of synthesis via a trans-acyltransferase (AT) polyketide
synthase (PKS) pathway (13, 14). These included the presence of a cis double bond, a
�-methyl moiety, and multiple tetrahydrofuran (THF) and -pyran (THP) rings (Fig. 1B).
Therefore, we searched initial assemblies for fragments of trans-AT pathways. One
putative pathway was found; however, it was fragmented due to low coverage and
there was a general lack of bacterial contigs in the metagenome. Since coverage of this
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putative pathway was higher in the zooid fraction than in the tunic, additional
sequencing was obtained from the zooid extract.

With the additional sequencing data in hand (Table 1), a new metagenome assem-
bly was constructed from all zooid-derived sequence reads, with tunic-derived reads
excluded. Predicted open reading frames (ORFs) within the contigs were used to infer

Mandelalide A Mandelalide B

Mandelalide C
R1 = COCH2CH2CH3

R2 = H

Mandelalide D
R1 = R2 = COCH2CH2CH3
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FIG 1 (A) Structures of mandelalides A to D. (B) Retrobiosynthetic analysis of the two types of mandelalide carbon skeleton, showing probable building blocks
and features suggestive of trans-AT-type polyketide synthases (PKS). (C) Visualization of the metagenomic assembly obtained from the zooid fraction, where
each point represents a contig of �3,000 bp in length. Points are colored based on taxonomic group, and their size is proportional to contig length. The contig
bearing the mnd pathway is outlined in black. (D) Approximately maximum-likelihood tree based on 16S rRNA gene sequences from “Candidatus Didemnitutus
mandela” and 100 other bacteria in the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum obtained from the Ribosomal Database Project (RDP) (83),
showing the placement of “Ca. Didemnitutus mandela” in the family Opitutae in the phylum Verrucomicrobia. Bootstrap proportions greater than 70% are
expressed to the left of each node as a percentage of 1,000 replicates. (E) Amplicon analysis of ketosynthase (KS) domains in Lissoclinum sp. zooid and tunic
fractions. mnd accounts for the vast majority of KS domains in the zooid fraction and for trans-AT KS domains in both fractions.
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probable taxonomy based on the lowest common ancestor of BLASTP hits in the NCBI
nr database (15, 16). In visualizations of the assembly, a discrete cluster in the bacterial
phylum Verrucomicrobia was observed, comprised of contigs with low coverage and
high GC content (Fig. 1C). This set, termed Ver_v1 here, consisted of 15 contigs that we
predicted to represent a bacterial genome that was 94.2% complete and 100% pure,
based on analysis of single-copy markers (Table 2) (17). This assembly included a large
108-kbp contig containing a complete trans-AT PKS pathway that we termed mnd.
Unexpectedly, this large contig showed much higher coverage than the other contigs
in Ver_v1, suggesting either a sequence misassembly or that the mnd pathway is
repeated within the symbiont genome.

To obtain greater coverage of the symbiont genome and potentially achieve a
better assembly, the subset of reads from both zooid and tunic DNA extracts that
aligned to Ver_v1 contigs was segregated and reassembled. The lower-coverage con-
tigs from Ver_v1 did indeed coalesce into fewer contigs, although the higher-coverage
contig, including the section containing the mnd genes, became fragmented. We
hypothesize that in the single-genome setting and with higher coverage, the repeat
structure of mnd was more apparent to the assembler (see below), resulting in
fragmented contigs that could not be resolved automatically. By alignment of paired-
end reads, we confirmed that the original mnd sequence obtained from Ver_v1 was
consistent with most of the repeats. We combined the genomic contigs obtained from
the new assembly, along with the original mnd contig, in Ver_v2 (Table 2). This genome
assembly is 2.17 Mbp in total length and estimated to be 94.2% complete and 100%
pure. Phylogenetic analysis of the full-length 16S rRNA gene places the symbiont, which
we termed “Candidatus Didemnitutus mandela,” in a clade with the family Opitutaceae
in the phylum Verrucomicrobia (Fig. 1D), and this placement is consistent with a
phylogenetic tree derived from concatenated protein markers (see Fig. S1 in the
supplemental material). In a similar vein as the naming of Opitutus (“protected by the
Roman Earth and harvest goddess Ops” [18]), “Didemnitutus” denotes a bacterium
protected by a member of the family Didemnidae, and “mandela” is an allusion to the
collection site, near the Nelson Mandela Bay municipality in South Africa. The closest
relative to the symbiont that has a publicly available genome sequence is Opitutus sp.
strain GAS368 (92% 16S rRNA sequence identity). According to the sequence cutoffs
proposed by Yarza et al. (19), this level of identity would be consistent with a new
genus in the family Opitutaceae.

TABLE 1 Sequence data used in this study

Method of sequencing and type of value Tunic Zooids

Whole metagenome
Illumina HiSeq reads (2 � 101 bp), millions 96.2 279.1
Assembly, thousands of contigs 2,575
Assembly, Mbp 1,009
Assembly, N50, bp 2,453

KS PCR, Illumina MiSeq reads (2 � 251 bp), thousands 545.3 57.3
16S PCR, Illumina MiSeq reads (2 � 251 bp), thousands 92.6 0.53

TABLE 2 Assembly characteristics

Characteristic

Value for assembly:

Ver_v1 Ver_v2

Size (Mbp) 2.17 2.17
No. of contigs 15 10
N50 (kbp) 224.8 319.6
GC content (%) 51.93 51.93
Completeness (%) 94.2 94.2
Purity (%) 100 100
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Given that the symbiont “Ca. Didemnitutus mandela” 16S rRNA sequence could not
be amplified with standard MiSeq universal primers, we were not able to directly
quantify the abundance of “Ca. Didemnitutus mandela” relative to other bacteria
represented in the metagenome of the tunicate consortium. We obtained a relatively
low number of 16S reads from the zooid amplification product, compared to that of the
tunic, potentially due to a low copy number of amplifiable 16S genes in the zooids
(Table 1). Degenerate ketosynthase (KS) primers targeted to polyketide synthase (PKS)
genes were then used to quantify the levels of the mnd BGC and other pathways. This
revealed that 96.8% of reads in the zooid fraction originated from mnd, as well as 50.5%
of reads from the tunic. A very low number of the non-mnd reads were identified as
being from trans-AT-type PKS pathways (Fig. 1E), and therefore, mnd is the only
detectable pathway capable of making the mandelalides (see also details of the
proposed biosynthetic scheme, below).

Multiple copies of the mnd biosynthetic gene cluster are maintained in the
symbiont genome despite streamlining. In order to resolve the repeat structure

within Ver_v2, we examined the read coverage of all contigs in the assembly. We
aligned paired-end reads from both the zooid and tunic metagenomes to Ver_v2
contigs, to detect joins suggested by read pairs that aligned to different contigs. Joins
were considered between the ends of contigs and also to middle regions, especially
where abrupt changes in read coverage suggested that the assembler had joined two
repeats of differing copy number (Fig. 2A). The high-coverage region of the genome
includes the mnd pathway except for mndR, which has a relative coverage of 1� and
resides on contig CD822_6. Sections of the repeat region range in relative coverage
from 3� to 8� because the ends of these regions are variable, with several relatively
rare deletions within the mnd cluster. The deleted regions have 5� coverage, and the
rest of the mnd pathway has 7� coverage, suggesting either that there are two mnd
repeats with three deletions each or that these deletions are evenly distributed among
each of the seven repeats, each occurring twice. There is evidence of multiple alternate
connections between both ends of the repeat region and 1� contigs, supporting the
notion that the mnd pathway is repeated multiple times in the genome and not simply
embedded in a different genome. A number of connections could also be made
between 1� contigs, suggesting five 1� scaffolds, several of which are joined to mnd
at both ends (Fig. 2A). With only two loose ends in the connection map, it appears that
the majority of the genome is represented in the assembly. Our estimation of 94.2%
completeness from single-copy marker genes, therefore, might be due to a bona fide
absence of a small number of markers, potentially due to genome reduction. We have
observed much lower apparent completeness values in the complete chromosome of
a more extensively eroded genome (15). If the genome consists of a single circular
chromosome, our findings mean that there are five repeat regions in the genome, with
some adjacent mnd repeats. Consistent with this notion, paired-end alignments
showed evidence of head-to-head connections at least two mnd repeats.

Factoring in the copy number of repeat regions, the intact chromosome of “Ca.
Didemnitutus mandela” was calculated to be 2.68 Mbp in size. The coding density of
the repeat region is 84.9%, with an average gene size of 1,574 bp, whereas the coding
density of the 1� contigs is 64.3%, with an average gene size of 470 bp. The copy
number of each mnd gene was calculated from the total number of repeats in which
the respective gene is not truncated, and such intact genes should occupy 514,374 bp,
accounting for 19.2% of the genome and 25.8% of its entire coding capacity. We
analyzed a set of symbiont genomes and genomes of free-living bacteria (Table S1) and
found that several facultative and transitional symbionts have a similar or higher
fraction of repeats. However, in all other cases, there seemed to be a general prolifer-
ation of many repeat loci, with few long repeats, and “Ca. Didemnitutus mandela” is
unique in having repetition of genes from an entire pathway. The lower coding density
within the 1� regions of the “Ca. Didemnitutus mandela” genome suggested sequence
degradation characteristic of symbionts shortly after a change in lifestyle such as
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restriction to a particular host or a switch to an intracellular habitat (4). Therefore, we
examined the gene inventory beyond mnd.

Out of 2,864 predicted protein-coding genes in “Ca. Didemnitutus mandela,” only
780 were found to have homologs in Opitutus sp. GAS368. A further 162 genes had
BLAST hits in the NCBI NR database, and the remainder (n � 1,922) were found to have
much shorter average length and slightly lower GC content (Table 3). Of the “Ca.
Didemnitutus mandela” genes found to be homologous to genes in Opitutus sp.
GAS368, 133 were significantly truncated (�20%), suggesting that they are pseudo-
genes (20) (Fig. 2B). Of the remaining genes with BLAST hits, 93 of them were truncated
more than 20% compared to their best BLAST hit and are counted here as putative
pseudogenes (Fig. 2C). The genes that are truncated may reflect functions that are
under reduced selection for retention in the symbiotic relationship (Table S2); for
example, there are many putative pseudogenes involved in lipopolysaccharide (LPS)
biosynthesis. Key enzymes involved in the biosynthesis of the amino acids isoleucine,
valine, leucine, proline, and tryptophan are also truncated. All but one of these amino
acids cannot be synthesized by eukaryotic organisms (21). Consequently, it is unlikely
that “Ca. Didemnitutus mandela” serves a nutritional function for the host organism.
Putative pseudogenes were also found in the pathways for some cofactors, including
riboflavin and folate.

The number of genes with annotated functions in “Ca. Didemnitutus mandela” is on
a par with “Ca. Endolissoclinum faulkneri,” an intracellular symbiont of L. patella and
source of the patellazoles, cytotoxic polyketides (5, 6) (Fig. 2D). However, a number of
factors suggest that “Ca. Endolissoclinum faulkneri” is in a more advanced state of
genome reduction than “Ca. Didemnitutus mandela.” “Ca. Endolissoclinum faulkneri”
has a lower coding density than “Ca. Didemnitutus mandela” (Table 4), and the intergenic
regions of the former are degraded to the point that there are few recognizable pseudo-
genes and there is a pronounced AT-skew compared to coding regions (5, 6) not seen
in “Ca. Didemnitutus mandela.” “Ca. Didemnitutus mandela” also possesses some key
genes that “Ca. Endolissoclinum faulkneri” has lost, including dnaA and ftsZ, which are
central to chromosome replication and cellular division, respectively. This suggests that
“Ca. Didemnitutus mandela” maintains more control over these processes than “Ca.
Endolissoclinum faulkneri.”

We did, however, find that several DNA repair pathways have deficiencies in the “Ca.
Didemnitutus mandela” genome. The nucleotide excision repair pathway is complete,
as is the mismatch repair pathway (in contrast to “Ca. Endolissoclinum faulkneri”).
However, the base excision repair pathway is missing two DNA glycosylases (alkA and
tag) responsible for removing 3-methyladenine adducts, one of which is still present in
“Ca. Endolissoclinum faulkneri.” Additionally, the homologous recombination system is
missing several key genes (recB, recF, recN, and recQ). The loss of these genes should
preclude both RecBCD-dependent and RecBCD-independent homologous recombina-
tion, as well as incorporation of horizontally transferred DNA into the chromosome (22).
Taken together, this pattern of maintenance and loss suggests that “Ca. Didemnitutus

FIG 2 Legend (Continued)
Didemnitutus mandela” and Opitutus sp. GAS368. Genes �80% of the length of the Opitutus sp. GAS368 homolog are putative pseudogenes. (C)
For genes without a homolog in Opitutus sp. GAS368, length is compared to their closest BLASTP hit. (D) Analysis of COG gene categories in “Ca.
Endolissoclinum faulkneri,” “Ca. Didemnitutus mandela,” and Opitutus sp. GAS368, for genes that are not putative pseudogenes.

TABLE 3 Characteristics of genes and intergenic sequences in the “Ca. Didemnitutus
mandela” genome

Type of sequence in “Ca. Didemnitutus mandela”
Avg
length (bp) GC% n

Gene with homolog in Opitutus sp. GAS368 981 53.9 780
Gene with no homolog in Opitutus sp. GAS368 but BLAST hit in NR 993 55.0 162
Gene with no homolog in Opitutus sp. GAS368, no BLAST hit in NR 259 51.1 1,922
Intergenic sequence 295 49.0 2,794
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mandela” is still able to copy its genome with fidelity but is likely vulnerable to strand
breaks due to impaired homologous recombination systems. No transposases, inte-
grases, or restriction-modification or phage genes (3) were annotated, and “Ca. Didem-
nitutus mandela” does not have a nonhomologous end-joining system. Therefore,
it would appear that further genome rearrangement is possible only through RecA-
independent “illegitimate recombination” (3) during chromosome replication.

Secondary metabolism is by definition more variable among close relatives than are
central functions (23), and it is thought that BGCs are often disseminated via HGTs (24).
Since HGTs are likely no longer possible in “Ca. Didemnitutus mandela,” and genome
rearrangements are probably rare at this stage, the mnd cluster was probably obtained
before homologous recombination was lost, with duplication occurring shortly after
acquisition. Notably, the cluster repeats have been present long enough to allow
divergence through deletions and the accumulation of a small number of single
nucleotide polymorphisms (SNPs) (Fig. S2). Consistent with this timeline, we found that
the codon adaptation index (CAI) (25) of mnd genes is not significantly different from
those of other genes with annotated function (Fig. S3). Interestingly, we found that the
CAIs of both pseudogenes and hypothetical genes are significantly different from those
of genes with annotated functions, suggesting that these ORFs are degraded with
concomitantly reduced codon selection.

Model for mandelalide biosynthesis by mnd. Our model for the biosynthesis of
mandelalides is shown in Fig. 3. The pathway consists of three large PKS proteins and
15 accessory proteins. These accessory proteins include a phosphopantetheinyltrans-
ferase (PPT, MndF), required to postranslationally modify acyl carrier protein (ACP)
domains within the PKS with a phosphopantetheine arm (26, 27), and a trans-acting
acyltransferase (AT, MndO), which is responsible for loading malonyl-S-coenzyme A (CoA)
extender units onto these phosphopantetheine arms (13, 14). The mnd cluster also contains
a suite of proteins predicted to install the �-methyl at carbon 11 (MndIJKLMP) (28); a
glycosyltransferase (GT, MndG), which may attach a sugar unit to the polyketide core
structure; and a methyltransferase (MT, MndH), which could supply the O-methyl group to
the sugar units observed in the known mandelalide structures (8, 9).

Type I PKS proteins, such as MndACD, cause the synthesis of specific structures
through the presence or absence of specific enzymatic domains within “modules,”
which each add a C2 unit, analogous to an assembly line (29). This process results from
repeated Claisen condensation of a ketosynthase (KS)-bound thioester intermediate
onto ACP-bound malonate to make a �-keto thioester with the loss of CO2. If the
module additionally contains a ketoreductase (KR) domain, then the �-position is
reduced to a hydroxyl moiety. Inclusion of a dehydratase (DH) domain in addition to a
KR results in an �-� double bond, and the presence of an enoylreductase (ER) domain
with DH and KR results in complete reduction of the �-position to give an alkyl chain.
Many other exotic variants of module structure are known in trans-AT systems (13, 14),
and KS domains in these pathways have diversified to accept specific substrate
structures (30–32). Through phylogenetic analysis, substrate specificity was predicted
for the majority of mnd KS domains (Fig. S4) and found to be almost completely

TABLE 4 Comparison of “Ca. Didemnitutus mandela,” Opitutus sp. GAS368, and “Ca. Endolissoclinum faulkneri” L2 genomes

Characteristic

Value for genome:

“Ca. Didemnitutus mandela” Opitutus sp. GAS368 “Ca. Endolissoclinum faulkneri” L2

Genome length, Mbp 2.68 4.15 1.48
% coding (length) 69.0a 89.4 57.2
GC% 51.9 65.7 34.1b

No. of nonhypothetical genes 654 2,016 688
No. of hypothetical genes 2,031 1,389 95
No. of pseudogenes 226 183 5
% secondary metabolism (fraction of coding length) 25.8 3.2 10.2
aRepeat region density, 84.9%; 1� contigs, 63.4%.
bCoding regions are 40.9% GC, whereas noncoding regions are 24.7% GC.
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congruent with our proposed biosynthetic scheme (Fig. 3). In this case, the order of PKS
proteins appears to be colinear with the gene order, as the first KS of MndA is closely
related to others in starter modules of trans-AT PKS pathways and because MndD
contains a thioesterase (TE) domain for cleaving and macrocyclization of the final PKS
product.

Similar to other trans-AT pathways, several domains in MndACD were predicted to
be nonfunctional due to disrupted catalytic residues or truncated sequences (Fig. S5).
However, the three PKS proteins still contain 14 extending modules—three more than
would be needed to make the mandelalides (Fig. 1B). We rationalize this discrepancy
by proposing that the monooxygenase (MOX) domain in MndA carries out a Baeyer-
Villiger-type oxidation, thereby effecting oxidative cleavage of the intermediate. The
following KS is related to amino-acid-accepting KSs, even though it does not follow a
nonribosomal peptide synthetase (NRPS) module. The predicted intermediate accepted
by this KS is a hydroxy acid (glycolic acid), similar to the amino acid glycine except that
the glycine nitrogen is replaced by an oxygen. A similar mechanism of chain cleavage
is thought to occur in the pederin (33) and diaphorin (34) pathways. This mechanism
would also generate the apparent starter unit for mandelalide A, 3,4-dihydroxybutanoic
acid. There are a number of other features that are consistent with the final mandelalide
structures. In particular, there are two modules containing pyran synthase (PS) domains
(35) (modules 7 and 12, Fig. S6), which are the correct distance apart to install both the
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FIG 3 Proposed mandelalide biosynthetic pathway. The trans-AT PKS pathway consists of 14 modules with proposed chain shortening mediated by a
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tetrahydrofuran (THF) and tetrahydropyran (THP) rings in mandelalide A. Module 10
also contains a specialized �-branching ACP (36), which would cause the installation of
a �-methyl in the expected location next to the THP (Fig. S5). Additionally, based on
previous findings (37), KR domains were analyzed to predict the configuration of
installed hydroxyl groups (Fig. S5). In all cases, the predicted configurations match
configurations confirmed in mandelalide A by total synthesis (10, 38–42).

Often, trans-AT PKS proteins deviate from strict gene and domain colinearity (13, 14);
for example, in the mnd pathway modules 8 and 13 lack DH domains even though they
should introduce double bonds. These modules may utilize DH domains in the follow-
ing module, similar to many other trans-AT pathways, such as those that produce
bacillaene, calyculin, and oxazolamycin (13, 14). Module 13 contains a PS domain, which
is related to dehydratases but lacks key catalytic residues (35). This pattern is consistent
with the structures of the mandelalides, but the reaction requires the installation of an
�-� double bond, which could be installed by the DH in module 14. We also found that
the KR domain in module 5 has a noncanonical catalytic triad—KSH instead of KSY (43)
(Fig. S5). This mutation appears to be rare; the only other example that could be found
is the KR domain of the ena5920 protein within the pathway for enacycloxin (44). This
KR domain is annotated as functional, and we propose that histidine likely fulfills the
same proton source role as tyrosine during generation of the �-keto group of the
substrate (Fig. S7).

A compelling mystery in the biosynthesis of mandelalides is the mechanism by which
a butyrolactone is installed in mandelalides B to K at the point of macrocyclization, which
would require both ester and C–C bond formation. A further question is how the pathway
produces butyrolactone-containing mandelalides alongside mandelalide A, which lacks this
moiety. We propose that the butyrolactone is generated by MndR, a homolog of crotonase
superfamily member MenB. For both mandelalide A-type and B-type compounds, we
predict that the thioesterase of MndD produces an initial macrocycle. MenB catalyzes
a Dieckmann cyclization to produce dihydroxynaphthoyl-CoA in the vitamin K biosyn-
thesis pathway (45, 46), and we predict that MndR could analogously form the lactone
C–C bond in a Dieckmann reaction (Fig. 3). In order to allow for the action of MndR, we
propose that the terminal hydroxyl is oxidized to a carboxylic acid, which is then
phosphorylated by kinase MndQ, so as to activate the carbonyl to nucleophilic attack.
Additionally, the �-� double bond could be removed by trans-acting ER MndM, to allow
the formation of an enolate which can attack the phosphoester.

The mandelalide-containing Lissoclinum sp. is a novel species of tunicate. A

BLAST search using L. patella cytochrome c oxidase 1 (COX1) protein sequences as
queries identified a contig in the metagenomics assembly that appeared to represent
the majority of the host mitochondrial genome (Fig. 4). This contig is 20.7 kbp in length
and contains all the protein-coding genes previously identified in the L. patella mito-
chondrial genome (47). Comparison of the coding sequences in Lissoclinum sp. and L.
patella L2 (Fig. 4A) revealed several genes that appeared to be shorter in L2. The NADH
dehydrogenase subunit 4 (ND4) gene appears to be disrupted by a frameshift in
Lissoclinum sp., but this disruption could be an artifact of sequencing errors due to low
sequence complexity and prevalent homopolymers within the contig. Assuming a
circular chromosome, the gene order in Lissoclinum sp. is very similar to the gene order
in the L. patella L2 mitochondrial genome, except for a swap in the positions of ATP
synthase Fo subunit 6 (ATP6) and cytochrome c oxidase subunit 2 (COX2). Both the
mitochondrial genomes of Lissoclinum sp. and L. patella L2 are very low in GC content
(12.4% and 21.2%, respectively). The resulting low complexity of the sequences makes
it difficult to detect rRNA genes. Previously, we suggested that the rRNA genes are in
the space between the CYTB and ATP6 genes in L. patella L2 (47). A corresponding
space without detectable CDSs is present in the Lissoclinum sp. mitochondrial genome,
after the ND2 gene, potentially signifying a second rearrangement (Fig. 4A). It has been
suggested previously that gene order in tunicate mitochondrial genomes could be
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used as a phylogenetic signal (48). The gene rearrangements observed therefore
suggest that Lissoclinum sp. is phylogenetically distinct from Lissoclinum patella.

Sections of the COX1 gene have been used for molecular barcoding in tunicates,
but unfortunately, two nonoverlapping regions of the gene have been employed (47).
In two phylogenetic trees based on COX1 protein sequence (Fig. 4B and C), the
mandelalide-containing Lissoclinum sp. appears to be a divergent Lissoclinum, distinct
from a major group that includes L. patella, Lissoclinum bistratum, and Lissoclinum timo-
rense. The closest relatives to Lissoclinum sp. are Lissoclinum punctatum and Lissocli-
num verrilli. The Lissoclinum sp. COX1 protein sequence has 72 to 75% identity to L.
patella specimens, 76 to 78% identity to L. bistratum and L. timorense, and 82% identity
to its closest relative, L. punctatum (Fig. S8). The divergence of Lissoclinum sp. and
L. punctatum is on par with the evolutionary distance between different subpopulations
of L. patella that we believe represent multiple cryptic species with a common ancestor
that existed 6 to 31 million years ago (6). Therefore, the mandelalide-containing
Lissoclinum sp. may be a novel species of tunicate in the family Didemnidae.

DISCUSSION

Culture-independent sequencing has revealed evidence of the phylum Verrucomi-
crobia in a variety of terrestrial and marine environments, although relatively few
species have been isolated and/or sequenced (49). However, both free-living and
symbiotic verrucomicrobial species are known. For instance, Akkermansia muciniphila is
a prevalent member of the human gut microbiota that degrades mucins (50). Intracel-
lular and genome-reduced Verrucomicrobia members are also known, such as “Candi-
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datus Xiphinematobacter” in nematodes (51) and “Candidatus Nucleococcus,” which
lives inside the nucleus of protists in the termite gut (52). In contrast to “Ca. Didem-
nitutus mandela,” these and related symbionts have yet to be associated with what
appears to be highly defensive functions by virtue of toxin biosynthesis. Secondary
metabolite pathways have been noted in the genomes of Verrucomicrobia (53, 54), but
to the best of our knowledge “Ca. Didemnitutus mandela” is the only species in this
phylum that has been linked to secondary metabolites that have been isolated,
structurally characterized, and shown to be potently cytotoxic. Our findings here
reiterate the sentiment that uncultured bacterial lineages may be a prolific source of
bioactive natural products for drug discovery.

The mandelalides were previously found to be potent cytotoxins (8, 9) and may
therefore serve as chemical defenses for the tunicate host, similar to what has been
noted for the patellazoles in L. patella (5). The structures of mandelalides B to K are
unique among cyclic polyketides, which invariably are cyclized through formation of an
ester bond (29). The macrocycles of mandelalides B to K are formed through both an
ester and C–C bonds that constitute a butyrolactone not found in mandelalides A and
L. To the best of our knowledge, the only comparable macrocyclization occurs in the
biosynthesis of lankacidin, in which an amine oxidase produces an imine for attack by
an acidic carbon between two carbonyl groups, thus forming a C–C bond (55). In both
cases, the resulting C–C macrocycle may be more pharmacokinetically stable by virtue
of its resistance to circulating esterases in vivo, which break down ester-containing
drugs and thus limit efficacy and duration of action (56). Accordingly, further study of
the biochemical mechanisms of these macrocyclizations is likely to aid the design of
pharmacokinetically stable polyketide drugs. In the case of the mnd pathway, confir-
mation of the mechanism of butyrolactone production would require heterologous
expression of mnd genes and characterization of their biochemical activities in vitro.

The duplication of a very long gene cluster such as mnd in “Ca. Didemnitutus
mandela” has not been observed in nature, to the best of our knowledge, especially in
a genome-reduced symbiont. As gene amplification is a rapid and common process
(57), it is reasonable to suppose that such duplications of secondary metabolite
pathways do occur in nature given the right selective environment. Indeed, the
duplication or amplification of pathways has been observed in industrial actinomycete
strains that have been heavily mutagenized and selected for higher-level production
(58, 59). A similar effect has been achieved in actinomycetes through purposeful
pathway amplification (60, 61). This suggests that mnd is under strong selection, in a
manner similar to the trpEG genes in the aphid endosymbiont Buchnera aphidicola,
which provide tryptophan to the host (62). B. aphidicola has been an endosymbiont for
~150 million years (63) and now has a very small genome (~640 kbp). Remarkably,
despite extreme genome reduction, some strains harbor a plasmid with multiple copies
of trpEG, although there are often pseudogenes among the copies (64). In the early
stages of the symbiosis, the plasmid location of these genes may have increased gene
dosage and tryptophan production. However, at some later point, the Buchnera chro-
mosome became polyploid, and there is evidence of back-transfer of these genes to
the chromosome in some lineages (65). These back-transfers and trpEG copy number
variants are the only recombination events known to have occurred since the diver-
gence of extant Buchnera strains, which lack RecA but maintain RecBCD (65).

The genome of “Ca. Didemnitutus mandela” shows signs of degradation and
reduction consistent with host restriction, although this change in lifestyle is likely to
have happened relatively recently. With only one sequenced strain of “Ca. Didemnitu-
tus mandela” and the paucity of known close relatives to either the symbiont or host,
it is difficult to date the symbiosis, except through loose comparisons to unrelated
symbiotic systems. Mandelalide-producing tunicates have been found in only one place
on Earth, and so, more complete investigation of the evolution of “Ca. Didemnitutus
mandela” is currently very challenging. The erosion of the “Ca. Didemnitutus mandela”
genome is not as severe as in B. aphidicola (~150 million years) (63) or “Ca. Endolisso-
clinum faulkneri,” which has been an intracellular symbiont for at least ~6 to 31
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million years (6). However, the “Ca. Didemnitutus mandela” genome contains fewer
recognizable pseudogenes relative to a very recent symbiont such as Sodalis glossin-
idius, which diverged from a close free-living relative ~30,000 years ago (66) and has
972 pseudogenes in its genome (67). The current repeat structure of mnd in the
chromosome is also likely not recent, as we predict “Ca. Didemnitutus mandela” to be
recombination deficient, and at this point, the gene order is likely fixed. Accordingly, we
found the codon usage in mnd to be consistent with the rest of the genome. We found
that only a small number of mutations had accumulated in mnd since duplication,
perhaps because DNA repair pathways remain largely intact. Nevertheless, with the
cessation of recombination and the segregation of small populations within individual
hosts, degradation continues through a process known as “Muller’s ratchet” (68).
Mutations and deletions that are not outright lethal tend to become irreversible
through population bottlenecks and the inaccessibility of HGT or recombination events.
Due to the deletion and AT mutation bias of bacteria, along with weakened selection
caused by small effective populations (1), nonfunctional pseudogenes and intergenic
sequences will be lost quickly and the sequence of essential genes will drift. This
process will accelerate when DNA repair pathways become compromised. The copies
of mnd are likely to continue diverging from each other as their sequences degrade,
before individual gene copies become nonfunctional pseudogenes and are deleted.
The result of such a process would appear similar to the genome of “Ca. Endolissocli-
num faulkneri,” where genes from a single pathway are fragmented across many loci in
the chromosome. In nonsymbiotic bacteria, there is a strong tendency for the genes
of secondary metabolite pathways to remain clustered on a contiguous region of a
chromosome or plasmid (7), and it is thought that this colocalization is advantageous
in coregulating genes and operons (69). It has been suggested that clustering aids HGTs
in the “selfish operon” hypothesis (70). However, such events may be quite rare (24) and
therefore have little influence on selective pressures to maintain clustering. We have
observed that secondary metabolite BGCs in symbionts tend to be fragmented more
often than expected (7). A potential explanation for this fragmentation is a reduced
need for fine regulation of a product that is always needed (e.g., for defense), in an
environment where production has little survival cost since nutritional needs are
met by the host. Our results here suggest that biosynthetic pathway fragmentation in
symbionts could also arise through strong selection for high production at the onset of
symbiosis, causing pathway duplication prior to genome degradation.

MATERIALS AND METHODS
Tunicate collection, preservation, and DNA extraction. A specimen of Lissoclinum sp. was col-

lected at 33°59=55�S, 25°42=43�E on 7 July 2013 from White Sands Reef in Algoa Bay, Eastern Cape
Province, South Africa, by scuba at an approximate depth of 18 m. A voucher specimen is maintained
with the designation TIC-2013-079 at the South African Institute for Aquatic Biology (SAIAB), Graham-
stown, South Africa. Part of the animal was preserved in RNAlater at �80°C. The remainder was used for
natural product isolation studies reported elsewhere (9). The preserved tissue was later dissected to
separate zooids from the tunic, and DNA was extracted as previously described (5).

Illumina sequencing and metagenome assembly. Illumina TruSeq libraries were prepared with
~300-bp inserts from DNA obtained from zooids and tunic of Lissoclinum sp. Libraries were sequenced
using an Illumina HiSeq 2000 sequencer in multiple 101-bp paired-end runs. Sequence yields are shown
in Table 1. Contaminating adaptor sequences were removed with Trimmomatic (71), and the trimmed
reads were assembled with metaSPAdes (72).

Construction of the draft “Ca. Didemnitutus mandela” genome. Contigs in the metagenomic
assembly were classified taxonomically from their predicted ORFs as previously described (15, 16). All
contigs classified as belonging to the phylum Verrucomicrobia were separated. Trimmomatic-filtered
reads from both zooid and tunic fractions were aligned to these contigs with Bowtie 2 (73) (using the
--very-sensitive option), and the aligned reads were assembled separately with SPAdes (74), using the
--careful parameter. To identify potential connections between contigs and repeats, reads were realigned
to contigs or derived sequences using Bowtie 2 (73) and the cytoscapeviz.pl script, part of the
Multimetagenome package (75), was run on the alignment. Connections were visualized in Cytoscape
(76). The Ver_v2 assembly was annotated with Prokka (77).

Single-copy marker gene analysis. A set of 139 single-copy marker genes was identified using
HMM profiles and cutoffs determined by Rinke et al. (17). The number of different marker genes,
expressed as a percentage of 139, was used to estimate bacterial genome completeness. The number of
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different marker genes unique in a bin, expressed as a percentage of 139, was used to estimate genome
purity.

Amplicon sequencing. An ~430-bp section of 16S rRNA genes was amplified from DNA extracts
using primers S-D-Bact-0341-b-S-17 and S-D-Bact-0785-a-A-21 (78), and an ~700-bp section of ketosyn-
thase domains was amplified using primers KS-F and KS-R (79). In both cases, additional custom 5= ends
were added to primers, specific to each sample, including MiSeq adaptor sequences and a sample-
identifying barcode sequence. Pooled amplicons were sequenced on an Illumina MiSeq instrument in a
251-bp paired-end run. For each sample, 16S and KS amplicons were dereplicated by identifying the
respective primer sequences in the reads. The forward KS reads were used as queries in BLASTN searches
against the mnd pathway, and reads with �97% identity and alignment of �90% of the read length were
counted as mnd reads. To determine which KS reads were likely part of trans-AT PKS pathways, the
forward reads were used as queries in a BLASTX search against the NCBI NR database, using the
accelerated BLAST implementation DIAMOND (80). A list of proteins from trans-AT PKS pathways
containing KS domains was compiled, and the accession numbers from this list were used to identify KS
reads where one or more of the first 500 BLASTX hits were in the trans-AT list. These reads were counted
as trans-AT KS reads.

Construction of phylogenetic trees. Sequences used to make phylogenetic trees were aligned with
either ClustalX (81) (small data sets) or Clustal Omega (82) (large data sets), except for the 16S rRNA tree,
which used aligned sequences downloaded from the Ribosomal Database Project server (83). Alignments
were inspected manually and trimmed before trees were constructed with FastTreeMP (84). The
parameters “-slow -spr 5 -mlacc 3 -gamma -gtr -nt” and “-slow -spr 10 -mlacc 3 -bionj -gamma” were used
to produce the nucleotide and protein trees, respectively. Trees were visualized on the Interactive Tree
of Life server (85). To make the concatenated protein marker tree (see Fig. S1 in the supplemental
material), marker protein sequences from the “Ca. Didemnitutus mandela” and Opitutus sp. GAS368
genomes were extracted with AMPHORA 2 (86). AMPHORA 2 was then used to make protein alignments
with its reference database, and the corresponding tree was generated by concatenating the alignments,
using only those genomes where all of the 31 markers shared by “Ca. Didemnitutus mandela” and
Opitutus sp. GAS368 were present.

Repeat analysis. Representative genomes of bacteria with different lifestyles were assembled from
examples listed in the work of Lo et al. (4), using only complete genomes, which should give a more
accurate quantification of repeats versus draft genomes (Table S1). Additionally, Opitutus sp. GAS368 and
“Ca. Endolissoclinum faulkneri” were included in the analysis. For each genome, repeat regions of �50 bp
were identified by using Nucmer (87) to align the genome to itself. Duplicate and self-hits were removed
before repeat regions were extracted for quantification of total length and number of loci, etc.

Homolog analysis and identification of pseudogenes. Predicted genes in the Ver_v2 assembly
were used as queries in a BLASTP search against the NCBI NR database, using the accelerated BLAST
implementation DIAMOND (80). The accession numbers of all annotated proteins in the Opitutus sp.
GAS368 genome were obtained from NCBI, and the BLASTP table was searched for hits from this
genome. If a protein from Opitutus sp. GAS368 was found in the first 100 hits, then the query protein was
counted as having a homolog in this genome. R (88) was used to plot the comparison of homolog
lengths (Fig. 2B). For proteins that did not have homologs in Opitutus sp. GAS368, the best BLASTP hit
was instead used for comparison (Fig. 2C). To compare the Opitutus sp. GAS368 genome to that of “Ca.
Didemnitutus mandela” (Table 4), the nucleotide sequence was reannotated in the same manner, with
Prokka (77). To identify pseudogenes, predicted protein sequences were used as queries in a BLASTP
search against the NCBI NR database, and then the annotated Opitutus sp. GAS368 proteins were
removed from the results. Protein lengths were then compared to the respective best hit, and genes
truncated by �20% compared to their best BLASTP hit were counted as putative pseudogenes. The
secondary metabolite fraction of the Opitutus sp. GAS368 genome was calculated after searching for
biosynthetic pathways with antiSMASH (89).

Functional gene analysis. The functional analysis shown in Fig. 2D was carried out as previously
described (4, 90). Briefly, the protein sequences of nonpseudogenes from “Ca. Didemnitutus mandela,”
“Ca. Endolissoclinum faulkneri,” and Opitutus sp. GAS368 were classified with the KEGG Automatic
Annotation Server (KAAS) (91). The resulting KEGG classifications were converted to Cluster of Ortholo-
gous Group (COG) categories using mappings supplied through the KEGG database. Bar plots were
created using R (88). The presence of specific functions was also assessed through analysis of BLASTP
results in MEGAN (92) and with reference to the EcoCyc database (93).

SNP detection. Trimmed Illumina reads were aligned to the contig containing mnd (CD822_1), using
Bowtie 2 (73) with the --very-sensitive parameter. The alignment was then loaded into Geneious (94) for
SNP detection.

CAI calculation. Codon adaptation index (CAI) values were calculated according to the formula of
Sharp and Li (25), using the mnd genes to calculate relative synonymous codon usage (RCSU) and w
values (Fig. S3). The CAI values were separated into different gene categories and plotted as box plots
in R, using the ggplot2 package (95). To test for statistically significant differences between groups,
one-way analysis of variance (ANOVA) was carried out in R, using the aov function, followed by Tukey’s
honest significant difference (HSD) test for significance.

Mitochondrion genome annotation and comparison to the Lissoclinum patella L2 mitochon-
drion. An initial annotation was produced using Prokka (77) and manually inspected before additional
genes were added, where appropriate, based on protein sequence similarity to other tunicate mito-
chondrial genes. Attempts were made to detect RNA genes with Rfam (96); however, none were found.
Each gene was aligned to its counterpart in the Lissoclinum patella L2 mitochondrion genome using
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Clustal W (81), and the respective coordinates of the aligned regions were used to produce the diagram
in Fig. 4A. The R library genoPlotR (http://genoplotr.r-forge.r-project.org) was used to plot both mito-
chondrial genomes to scale and the alignments.

Accession number(s). Raw Illumina reads were deposited in the Sequence Read Archive (SRA) under
accession numbers SRR5712450 to SRR5712457. The draft assembly Ver_v2 of the “Ca. Didemnitutus
mandela” genome was deposited in GenBank under accession number NJAL00000000. The mitochon-
drial genome of Lissoclinum sp. was deposited in GenBank under accession number MF573328.
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