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Abstract

Cancer stem cells (CSCs) are self-renewing cells that facilitate tumor initiation, promote 

metastasis, and enhance cancer therapy resistance. Transcriptomic analyses across many cancer 

types have revealed a prominent association between stemness and immune signatures, potentially 

implying a biological interaction between such hallmark features of cancer. Emerging 

experimental evidence has substantiated the influence of CSCs on immune cells, including tumor-

associated macrophages, myeloid-derived suppressor cells, and T cells, in the tumor 

microenvironment and, reciprocally, the importance of such immune cells in sustaining CSC 

stemness and its survival niche. This review covers the cellular and molecular mechanisms 

underlying the symbiotic interactions between CSCs and immune cells and how such heterotypic 

signaling maintains a tumor-promoting ecosystem and informs therapeutic strategies intercepting 

this co-dependency.

INTRODUCTION

The cancer stem cell (CSC) paradigm emerged from the study of acute myeloid leukemia 

(AML), which identified a subpopulation of less-differentiated CD34+/CD38− cells 

possessing stem-cell-like renewal capacity and robust tumor-initiating capacity (Lapidot et 

al., 1994). Cancer cells with these biological properties have since been detected in virtually 

all solid tumors, including melanoma and cancers of the brain, breast, colon, thyroid, 

pancreas, prostate, liver, lung, ovary, head and neck, and stomach (Turdo et al., 2019). The 

clinical and biological significance of CSCs has been reinforced by a positive correlation 

between stem cell signatures and poor survival (Ben-Porath et al., 2008). Although CSCs 
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share properties and surface markers with normal stem cells (Turdo et al., 2019), they 

maintain renewal capacity via specific altered signaling pathways with common and unique 

patterns across many tumor types (Figure 1). For instance, breast cancer CSCs show CD44 

standard splice isoform (CD44s)-activated platelet-derived growth factor receptor β 
(PDGFRβ)/signal transducer and activator of transcription 3 (STAT3), forkhead box C1 

(FOXC1)-activated sonic hedgehog (SHH), and sphingosine-1-phosphate (S1P)/S1PR3-

activated NOTCH pathways (Han et al., 2015; Hirata et al., 2014; Zhang et al., 2019b). In 

contrast, CSC stemness in other cancer types, such as glioma and colon, gastric, and prostate 

cancers, is maintained via CD133-mediated phosphatidylinositol-3-kinase (PI3K)/protein 

kinase B (AKT, leucine-rich G-protein-coupled receptor 5 (LGR5)-mediated WNT/β-

catenin and speckle-type POZ protein (SPOP)-mediated NANOG pathways (Morgan et al., 

2018; Wang et al., 2010b, 2019a; Wei et al., 2013; Zhang et al., 2019c). Such CSC-

associated patterns belie a high degree of biological complexity and tumor type specificity.

The hallmark traits of CSCs are well established and include self-renewal, clonal tumor 

initiation capacity, clonal long-term repopulation potential, and plasticity between stem and 

non-stem states (Plaks et al., 2015). This plasticity is particularly relevant because it enables 

CSCs to adapt and survive in the face of therapeutic perturbations as well as the ever-

changing biological stresses of the tumor microenvironment (TME) throughout tumor 

evolution (Agliano et al., 2017; Hatina, 2012; Müller et al., 2020; Plaks et al., 2015). 

Mechanistically, the role of CSCs in tumor initiation, metastasis, and therapy resistance has 

been shown to be driven by interactions between cancer cells and host cells in the TME 

(Ayob and Ramasamy, 2018; Plaks et al., 2015), where the molecules and pathways driving 

CSC biology often power multiple cancer hallmarks (Figure 1). For example, the tumor-

initiating capacity of CSCs relates to their stemness driven by the transcription factor sex-

determining region Y-box 2 (SOX2), which also upregulates genes governing the cancer 

hallmarks of proliferation, survival, and invasion (Boumahdi et al., 2014; Zhou et al., 2009). 

In the case of the metastasis hallmark, stem cell signatures correlate positively with 

enhanced metastatic propensity (Ayob and Ramasamy, 2018); moreover, diverse CSC 

pathways and associated biological processes contribute to each step of the metastatic 

process—from dissemination to metastatic niche formation to distant organ growth—by 

inducing epithelial-mesenchymal transition (EMT), stimulating exosome production from 

myeloid cells and upregulating niche-derived factors, such as insulin-like growth factor-1 

(IGF-1) and interleukin (IL)-6, respectively (Agliano et al., 2017; Ayob and Ramasamy, 

2018; Shiozawa et al., 2013). Indeed, experimental and clinical evidence demonstrates that 

CSCs in primary tumors disseminate and colonize to distal sites (de Sousa e Melo et al., 

2017) and that their location at the invasive front correlates negatively with patient survival 

(Kodama et al., 2017). Finally, with respect to therapy resistance, CSC pathways alter 

signaling molecules governing drug metabolism (e.g., high expression of ATP-binding 

cassette transporter proteins that increase drug efflux rate), EMT (e.g., increased SOX2, 

octamer-binding transcription factor 4 [OCT4], and NANOG expression), and metabolic 

reprogramming (e.g., enhanced glucose transporter 1, oxidative phosphorylation, and 

reactive oxygen species activity; Ayob and Ramasamy, 2018).

The phenotypic plasticity of CSCs can contribute to additional cancer hallmarks via their 

capacity to transdifferentiate into pericytes, endothelial cells, and fibroblasts, thus 
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contributing to tumor angiogenesis, stem cell niche development, and inflammation (Figure 

1; Cheng et al., 2013; Dongre and Weinberg, 2019; Hu et al., 2016; Nair et al., 2017; Ricci-

Vitiani et al., 2010; Wang et al., 2010a). This plasticity is also reflected in the capacity of 

“differentiated” cancer cells to re-adopt an immature CSC state, a dedifferentiation process 

that can be stimulated by signals emanating from the TME, including tumor-associated 

macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), T cells, cancer-

associated fibroblasts (CAFs), and other immune cells (Plaks et al., 2015). Most notably, the 

strong CSC-immune cell connection was evidenced by unbiased profiling studies, showing a 

strong negative correlation between cancer cell stemness and anti-tumor immunity 

signatures across 21 types of solid tumors (Miranda et al., 2019). Specifically, increased 

stemness was associated with reduced anti-cancer immune cells, including CD8+ T cells, 

natural killer (NK) cells and B cells, and enhanced polarization of infiltrating macrophages 

(Miranda et al., 2019). Similarly, the cancer genome atlas (TCGA) and tissue microarray 

analyses have revealed that cancer cell stemness correlates negatively with activated CD4+ 

and CD8+ T cells in solid tumors (Hou et al., 2019; Malta et al., 2018).

These in silico findings in human cancer align well with emerging experimental findings 

from studies of various mouse models of human cancer. It has been shown that the 

proportion of CSCs in melanoma is dependent on the specific immune-compromised mouse 

strain employed, suggesting an important role of immune system in regulation of CSCs 

(Quintana et al., 2008). On the other hand, CSCs can shape a specific TME by their 

regulation of immune cells. For instance, the expression of CSC marker and regulator 

doublecortin-like kinase 1 (Westphalen et al., 2014) correlates positively with abundance of 

TAMs and regulatory T cells (T-reg cells) and elevated expression of factors that inhibit 

CD8+ T cell activity (Wu et al., 2020). CKLF-like MARVEL transmembrane-domain-

containing 6, which is expressed on cancer cell plasma membranes, can enhance CSC 

stemness via the WNT/β-catenin pathway, suppress anti-tumor immunity via programmed 

death-ligand 1 (PD-L1) upregulation, and reduce CD8+ and CD4+ T cells in many types of 

cancer, including squamous cell carcinoma of the head and neck (SCCHN) (Chen et al., 

2020a), melanoma, and breast cancer (Burr et al., 2017; Mezzadra et al., 2017). Fat-mass- 

and obesity-associated protein (FTO) is an m6A demethylase and overexpressed in AML. 

Inhibition of FTO impairs leukemia stem cell stemness and reprograms immune response by 

suppressing immune checkpoint genes, such as LILRB4 (leukocyte immunoglobulin-like 

receptor subfamily B member 4), thus sensitizing AML cells to T-cell-mediated cytotoxicity 

(Su et al., 2020). Similarly, single-cell RNA sequencing (scRNA-seq) analyses of AML 

revealed a subpopulation of stem-like AML cells that co-express stemness-related and 

myeloid-priming genes (van Galen et al., 2019). In addition, CSC-derived exosomes, which 

transfer cargo between cells (Mathieu et al., 2019), can enhance the survival of suppressive 

neutrophils to promote colon cancer growth (Hwang et al., 2019). This shared stemness and 

immune transcriptional profile aligns with the recent finding that lack of natural killer group 

2 member D ligands, which defines leukemia stem cells, contributes to their selective escape 

from NK-cell-mediated immune surveillance (Paczulla et al., 2019). In addition to these 

immune cells, CAFs and their interactions with CSCs are also important for tumorigenesis 

and therapy resistance (Chan et al., 2019). Together, these findings highlight an intimate link 
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between the molecules and mechanisms governing CSC biology and tumor immunity across 

many tumor types.

In summary, mounting translational and experimental evidence underscores the myriad 

interactions and intertwined tumor biological roles of CSCs and immune cells, particularly 

myeloid cells (TAMs and MDSCs) and T cells. This review summarizes the current 

knowledge of the molecular crosstalk and functional impact of these symbiotic interactions 

on the hallmarks of cancer. With respect to myeloid cells, we highlight TAM and MDSC 

individually, although they share the same cell of origin and similar function to suppress T-

cell-mediated anti-tumor immunity (Engblom et al., 2016). These emerging insights provide 

a roadmap for the development of novel anti-cancer therapeutic strategies that disrupt this 

dynamic circuit in specific tumor types.

CSC-TAM Crosstalk

Impact of CSCs on Macrophage Biology—Factors secreted by various cell types in 

the TME, including CSCs, are known to recruit and polarize TAMs (Chen et al., 2017, 

2019a, 2020b; Colegio et al., 2014). These TAMs are sourced from bone-marrow-derived 

macrophages (BMDMs) and local tissue-resident macrophages (e.g., microglia in the brain, 

Kupffer cells in the liver, and alveolar macrophages in the lung), which originate from 

hematopoietic stem cells and progenitors seeding in embryonic tissues (e.g., the yolk sac for 

microglia and the fetal liver for Kupffer cells and alveolar macrophages), respectively 

(Figure 2; Pathria et al., 2019). TAM recruitment is driven by a variety of chemokines, 

including C-C motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 14 

(CXCL14), and lysyl oxidase (LOX), which are secreted by cancer cells, macrophages, and 

other stromal cells in the TME (Chen et al., 2019a; Pathria et al., 2019; Wei et al., 2020). 

Increasing evidence shows that CSCs also contribute to the infiltration of macrophages and 

microglia via distinct molecules and mechanisms in various cancers (Figure 2; Table 1). Of 

note, some of these chemokines are specifically produced by CSCs, which highlight a 

unique role of CSCs in regulation of TAM infiltration. For example, periostin (POSTN) is 

preferentially expressed and secreted by CSCs in glioblastoma (GBM) and 

cholangiocarcinoma (CCA), which in turn recruits BMDMs through binding with αvβ3 

integrin (Zeng et al., 2018; Zhou et al., 2015).

Genetic and epigenetic changes in CSCs regulate chemokine production. For example, 

PTEN deficiency or AKT overexpression in GSCs and neural stem cells upregulates LOX 

and CXCL12B, which recruits TAMs through β1 integrin (Chen et al., 2019a) and C-X-C 

motif chemokine receptor 4 (CXCR4) (Chia et al., 2018), respectively. Optic GSCs isolated 

from the Nf1flox/neo;GFAP-Cre low-grade glioma mouse model secrete CX3CL1 and CCL5 

to recruit microglia, and this effect is further amplified by loss of Pten (Guo et al., 2019b). 

Similarly, NF1 deficiency in human GSCs can promote the infiltration of macrophages and 

microglia, although the NF1-regulated chemokines are not known (Wang et al., 2017). In 

many tumor types, epidermal growth factor receptor (EGFR) amplification and mutation can 

promote CSC stemness and macrophage recruitment (An et al., 2018; McCann et al., 2018; 

Rutkowska et al., 2019). In liver cancer, EGFR/AKT activation activates the yes-associated 

protein (YAP)/TEA domain family member (TEAD) transcription factor complex in CSCs, 
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which in turn upregulates macrophage recruitment factors CCL2 and macrophage colony 

stimulating factor (M-CSF) (Guo et al., 2017). In non-small cell lung cancer (NSCLC), 

increased ubiquitin-specific protease 17, a deubiquitinase required for trafficking and 

oncogenic activity of mutant EGFR (McCann et al., 2018), increases cancer cell stemness, 

which in turn upregulates macrophage infiltration by augmented production of cytokines, 

including tumor necrosis factor (TNF)-α, IL-1β, and IL-6 (Lu et al., 2018). In bladder 

cancer, loss-of-function mutations of the histone modifier gene lysine (K)-specific 

demethylase 6A (KDM6A) promote CSC stemness and secretion of IL-6 and CCL2, which 

in turn increase macrophage recruitment (Kobatake et al., 2020). In GBM, circadian 

locomotor output cycles kaput (CLOCK), an epigenetic and circadian regulator amplified in 

5% of cases, enhances GSC stemness and secretion of the chemokine olfactomedin-like 

protein 3 (OLFML3), which recruits microglia into the TME (Chen et al., 2020b). Finally, 

caveat emptor, although many studies have established the involvement of CSC-derived 

factors in macrophage infiltration, the converse has also been observed due to the specific 

CSC genotype and its unique TME. For example, TP53-mutated and cisplatin-resistant 

CSCs from lung cancer inhibit macrophage infiltration into the TME (Xu et al., 2019).

In addition to stimulating TAM recruitment, CSCs can influence the biological state of these 

macrophages. Macrophages are known to exhibit a spectrum of phenotypes, ranging from an 

anti-tumor to pro-tumor phenotype (formerly referred to as M1 and M2; Pathria et al., 2019). 

Once macrophages infiltrate into tumors, they typically undergo polarization toward a pro-

tumor phenotype, a process driven by chemokines (e.g., IL-4 and IL-13) and metabolites 

(e.g., lactate), which are derived from both cancer cells and host cells in the TME (Chen et 

al., 2017; Colegio et al., 2014; Qian and Pollard, 2010). Several lines of evidence 

demonstrate that CSCs can further provoke anti- to pro-tumor polarization of macrophages. 

First, upon co-culture with CSCs, pro-tumor macrophage markers (e.g., CD206, IL-10, and 

arginase 1) are upregulated, whereas anti-tumor macrophage markers (e.g., TNF-α, nitric 

oxide synthase 2 [NOS2], and CD86) are downregulated (Deng et al., 2015). Second, CSCs 

can secrete various soluble factors known to induce polarization toward a pro-tumor 

phenotype (Figure 2; Table 1). For example, Wnt-induced signaling protein 1 (WISP1) is 

preferentially secreted by GSCs in GBM, which promotes the survival of pro-tumor TAMs 

through activation of the α6β1 integrin/AKT pathway on macrophages (Tao et al., 2020). 

Similarly, CSC-derived IL-6 and IL-10 can skew TAMs toward a pro-tumor phenotype in 

ovarian cancer (Raghavan et al., 2019), bladder cancer (Kobatake et al., 2020), GBM (Wu et 

al., 2010; Yao et al., 2016), and breast cancer (Weng et al., 2019). In addition to secreted 

factors, GSCs release exosomes containing eukaryotic initiation factor 2, mammalian target 

of rapamycin (mTOR), and ephrin B signaling pathways that home to the monocyte 

membrane and promote macrophage pro-tumor polarization (Gabrusiewicz et al., 2018). 

Finally, in the context of tumor necrosis in GBM, GSC-derived particles, defined as 

“autoschizis-like products,” can be engulfed by TAMs, which in turn upregulate IL-12 to 

polarize these TAMs toward an anti-tumor phenotype (Tabu et al., 2020). Thus, CSCs 

secrete a variety of products that encourage macrophage polarization.

In multiple cancer types, macrophage and microglia pathways and/or factors involved in 

pro-tumor polarization include STAT3, nuclear factor (NF)-κB, and PI3Kγ pathways 

(Kaneda et al., 2016; Qian and Pollard, 2010). Among these, the STAT3 transcription factor 
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plays a prominent role. Macrophage STAT3 is activated by CSC-derived IL-6, IL-10, and/or 

exosome cargo, resulting in the upregulation of genes promoting pro-tumor programming 

and inhibition of genes encoding anti-tumor cytokines (Malyshev and Malyshev, 2015). 

Moreover, STAT3 inhibition abolishes CSC-induced pro-tumor macrophage polarization in 

GBM (Gabrusiewicz et al., 2018; Wu et al., 2010; Yao et al., 2016), bladder cancer 

(Kobatake et al., 2020), and breast cancer (Weng et al., 2019). The NF-κB pathway is 

essential for CSC-induced pro-tumor macrophage polarization in ovarian cancer (Deng et 

al., 2015). In summary, the study of CSC-induced macrophage polarization has identified 

prominent and therapeutically actionable macrophage pathways in specific cancers (Table 

1).

TAMs Promote Cancer Cell Stemness and the CSC Niche—Mirroring CSC 

actions, TAMs can support CSC stemness and the CSC niche (Figure 3). The niche is 

particularly important in the maintenance of CSC self-renewal, repopulation potential, and 

tumor initiation. This supportive microenvironment is composed of cancer cells, immune 

cells, mesenchymal stem cells (MSCs), fibroblasts, endothelial cells, and extracellular 

matrix (ECM) components (Figure 3; Plaks et al., 2015). Paracrine factors derived from 

these diverse stromal cell types play prominent roles in promoting CSC stemness in the 

niche. Specifically, in breast and colon cancers, MSCs contribute to CSC niche formation by 

secreting prostaglandin E2 (PGE2), IL-6, IL-8, and CXCL1 (Li et al., 2012). Fibroblasts can 

induce a metastatic niche for breast cancer CSCs via secretion of POSTN (Malanchi et al., 

2011). TAMs produce factors to enable “differentiated” cancer cells to acquire CSC-like 

features and to maintain CSC stemness in breast cancer (Lu et al., 2014), oral squamous cell 

carcinoma (Li et al., 2019), renal cell carcinoma (Yang et al., 2016), hepatocellular 

carcinoma (HCC) (Wang et al., 2016), and pancreatic cancer (Mitchem et al., 2013). 

Correspondingly, depletion of TAMs via inhibition of colony-stimulating factor 1 receptor 

(CSF1R) and C-C motif chemokine receptor 2 (CCR2) diminishes the tumor-initiating 

properties of CSCs in mouse models (Mitchem et al., 2013). In GBM, TAM support of the 

CSC niche depends on its pro-tumor phenotype, and reprogramming to an anti-tumor 

phenotype (using amphotericin B or vitamin B3) attenuates cancer cell stemness and 

tumorigenicity in vitro and in vivo and sensitizes these tumors to chemotherapy (Sarkar et 

al., 2014, 2020). These findings highlight the therapeutic potential of disrupting CSC niche 

via reprogramming TAMs toward an anti-tumor phenotype.

The important of TAMs in CSC biology is reinforced by a growing list of TAM-derived 

factors implicated in the maintenance of CSC stemness. Table 2 summarizes such factors 

and their purported mechanisms in different cancer models. EMT is an important process 

that enables cancer cells to acquire CSC-like features and maintain CSC stemness (Biddle 

and Mackenzie, 2012). In breast cancer cells, EMT is associated with upregulation of CD90 

and EphA4, which mediate physical interactions between CSCs and TAMs (Lu et al., 2014). 

As a result, TAMs can further accelerate breast cancer cell EMT, thus inducing a positive 

feedback loop to reinforce CSC stemness via secreting a panel of CSC-supporting cytokines, 

such as IL-6, IL-8, and IL-1b (Guo et al., 2019a; Lu et al., 2014; Valeta-Magara et al., 2019). 

Similarly, accumulating evidence shows that TAMs in GBM (Hide et al., 2018), HCC (Fan 

et al., 2014; Wan et al., 2014), pancreatic cancer (Nomura et al., 2018; Sainz et al., 2015; 
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Zhang et al., 2019a), and ovarian cancer (Raghavan et al., 2019) can promote cancer cell 

EMT and/or secrete a variety of CSC-supporting cytokines (including IL-1β, IL-6, and TGF- 

β), thus promoting CSC stemness, tumor progression, and therapy resistance. In addition to 

cytokines, TAMs can specifically produce unique factors to support CSC stemness. For 

example, CCL5, pleiotrophin (PTN), globule-epidermal growth factor-VIII (MFG-E8), and 

CCL8 are preferentially expressed and secreted by TAMs in prostate cancer (Huang et al., 

2020), lymphoma (Wei et al., 2019b), colorectal cancer (CRC) (Jinushi et al., 2011), and 

GBM (Zhang et al., 2020), respectively, where they promote CSC stemness and tumor 

progression. Finally, in addition to soluble factors, TAMs can promote CSC stemness via 

direct interactions. Specifically, in breast cancer, liver, and lymph node sinusoidal 

endothelial cell C-type, lectin is a transmembrane protein highly expressed on TAMs that 

interacts with butyrophilin subfamily 3 member A3 receptor on cancer cells to enhance 

stemness (Liu et al., 2019).

TAM-derived factors and TAM-cancer cell physical interactions activate several pathways in 

cancer cells that are pivotal to the maintenance of stemness. These key CSC pathways 

include STAT3, SHH, and NOTCH (Han et al., 2015; Hirata et al., 2014; Zhang et al., 

2019b), as well as PI3K/AKT, WNT/ β-catenin, and NANOG (Morgan et al., 2018; Wang et 

al., 2010b, 2019a; Wei et al., 2013; Zhang et al., 2019c). Available evidence supports the 

view that TAM-derived factors activate these pathways to enhance or maintain CSC 

stemness (Table 2). Among them, STAT3 appears most important as a result of its potent 

upregulation of stemness-related genes and activation of stemness-promoting pathways, such 

as NF-κB (Galoczova et al., 2018). Accordingly, STAT3/NF-κB inhibition abolishes TAM-

promoted stemness in breast cancer (Lu et al., 2014; Valeta-Magara et al., 2019; Yang et al., 

2013), HCC (Li et al., 2017; Wan et al., 2014), prostate cancer (Huang et al., 2020), 

pancreatic cancer (Mitchem et al., 2013; Nomura et al., 2018), and CRC (Jinushi et al., 

2011). The WNT/β-catenin and SHH pathways can also promote CSC stemness in some 

settings. Aberrant activation of WNT signaling, common in many tumor types, often defines 

the CSC state and maintenance of CSC biology (de Sousa E Melo and Vermeulen, 2016). 

Cell culture and mouse model systems demonstrate that TAMs activate the WNT/β-catenin 

pathway in CSCs and inhibition of this pathway impairs TAM-induced upregulation of CSC 

stemness in HCC (Chen et al., 2019b), prostate cancer (Huang et al., 2020), and lymphoma 

(Wei et al., 2019b). Similarly, the SHH pathway has been implicated in regulating CSC 

stemness either directly or through interaction with other stemness-related pathways, such as 

TGF-β (Takebe et al., 2015). With respect to TAM-supported CSC stemness, CRC relies on 

the SHH pathway (Jinushi et al., 2011), pancreatic cancer on the TGF-β1/SMAD2/3/

NANOG pathway (Zhang et al., 2019a), HCC on the NOTCH pathway (Wang et al., 2016), 

breast cancer on the vsrc sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) 

(SRC) pathway (Lu et al., 2014), and glioma on the extracellular regulated kinase 1/2 

(ERK1/2) pathway (Zhang et al., 2020). Collectively, these findings highlight STAT3/NF-κB 

and WNT/β-catenin as key pathways responsible for TAM-induced CSC stemness. 

However, the diversity of pathways across many cancers underscores the need to develop 

context-specific strategies to target them.

Chen et al. Page 7

Cell Rep. Author manuscript; available in PMC 2021 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CSC-MDSC Crosstalk

The Impact of CSCs on MDSC Biology—MDSCs are a heterogeneous population of 

myeloid cells that include granulocytic or polymorphonuclear (PMN-MDSC) and monocytic 

(M-MDSC) subgroups (Gabrilovich and Nagaraj, 2009). PMN-MDSCs account for more 

than 80% of all MDSCs, and M-MDSCs can differentiate into TAMs (Gabrilovich, 2017; 

Kumar et al., 2016). MDSCs are generated in the bone marrow and recruited into tumors by 

tumor-derived chemokines, such as CCL2 and CCL5. Similar to TAMs, MDSCs play an 

important role in regulation of tumor angiogenesis, growth, metastasis, and immune 

suppression (Gabrilovich, 2017; Kumar et al., 2016). Increasing evidence also has revealed 

symbiotic interactions between CSCs and MDSCs in the TME, where CSCs contribute to 

MDSC infiltration, expansion, and activation via secretion of soluble factors and exosomes 

in different cancer types (Figure 4; Table 3). In SCCHN, compared with CD44− cells, 

CD44+ CSCs secrete higher levels of IL-8, granulocyte-macrophage colony-stimulating 

factor (GM-CSF), and TGF-β and induce larger populations of MDSCs when they are co-

cultured with peripheral blood mononuclear cells (PBMCs) (Chikamatsu et al., 2011). In 

GBM, GSCs not only promote the differentiation of PBMCs into M-MDSCs via secretion of 

exosomes (Domenis et al., 2017) but also activate MDSCs to suppress immune responses via 

secretion of macrophage migration inhibitory factor (MIF) (Otvos et al., 2016). In 

melanoma, the expression of miR-92 in CD133+ CSCs is reduced when compared to 

CD133− cells, which upregulates the expression of TGF-β via the α5 integrin/SMAD2 

pathway, resulting in more PMN-MDSCs in the TME (Shidal et al., 2019).

MDSCs Promote CSC Stemness—Once MDSCs infiltrate into the TME, they can 

reciprocally promote CSC stemness via distinct mechanisms in a number of cancer types 

(Figure 4; Table 3). In ovarian cancer, MDSCs induce miR-101 and GM-CSF expression in 

cancer cells, which increases stemness via upregulation of the corepressor gene C-terminal 

binding protein-2 (CtBP2) (Cui et al., 2013) and activation of the STAT3 pathway (Li et al., 

2020), respectively. In multiple myeloma, PMN-MDSCs trigger the expression of piwi-

interacting RNA piRNA-823 in cancer cells, which promotes stemness via activation of 

DNA methyltransferase 3B (DNMT3B) to facilitate DNA methylation (Ai et al., 2019). 

Although these data highlight the essential role of MDSCs in promoting cancer cell 

stemness, the identities of the MDSC-derived factors in these cancer types are still emerging. 

Of note, STAT3 again appears to be one of the key pathways responsible for stemness. In 

breast and pancreatic cancers, MDSCs secrete IL-6 (in both cancer types) and nitric oxide 

(in breast cancer) to activate STAT3 and NOTCH pathways to promote stemness (Panni et 

al., 2014; Peng et al., 2016). In breast cancer, activated STAT3 promotes activation of 

NOTCH, which in turn facilitates persistent STAT3 activation, thus creating a feedback loop 

to reinforce stemness (Peng et al., 2016). In addition to stemness, M-MDSC-derived NOS2 

can also promote EMT via activation of the STAT3 pathway, which drives cancer cell 

dissemination and metastasis (Ouzounova et al., 2017). In CRC, PMN-MDSCs can secrete 

exosomal S100A9 to promote cancer cell stemness via activation of the STAT3 and NF-κB 

pathways, which is further amplified under hypoxic conditions (Wang et al., 2019b), 

establishing NF-κB in MDSC-induced stemness. Indeed, MDSCs are the major source of 

PGE2 in several types of cancer (e.g., ovarian, cervical, and endometrial cancers; Komura et 

al., 2020; Kuroda et al., 2018; Yokoi et al., 2019), which can foster cancer cell stemness by 
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activating NF-κB via E-type prostanoid receptor 4 (EP4)-PI3K and EP4-mitogen-activated 

protein kinase (MAPK) pathways (Wang et al., 2015). Thus, a number of factors and 

pathways underlie MDSC-CSC interactions, and STAT3 and NF-κB are again very 

prominent.

CSC-T Cell Crosstalk

Impact of CSCs on T Cell Biology—Computational analyses have also revealed 

correlations between cancer cell stemness and CD8+ T cells in a broad range of cancer types 

(Miranda et al., 2019). In SCCHN, GBM, and melanoma, high stemness correlates with low 

expression of cancer-associated antigens and immune stimulatory molecules (e.g., CD86, 

CD40, major histocompatibility complex [MHC] II, transporter associated with antigen 

processing, histocompatibility leukocyte antigen [HLA]-A2, melanoma antigen recognized 

by T cells 1, melanoma inhibitor of apoptosis, New York esophageal squamous cell 

carcinoma 1, and melanoma-associated antigen-A) and high expression of immune 

checkpoint inhibitors (e.g., PD-L1; Chikamatsu et al., 2011; Schatton et al., 2010; Wei et al., 

2010). Consistent with these correlates, CSCs regulate the composition and function of T 

cells via several experimentally validated mechanisms (Figure 4; Table 4). First, in GBM, 

GSCs produce TGF-β, CCL2, and galectin-3, which suppress CD8+ and CD4+ T cell 

activation and proliferation (Wei et al., 2010). Second, GSC exosome tenascin-C (TNC) 

engages α5β1 and α5β6 integrins on T cells to downregulate AKT/mTOR signaling and 

inhibit T cell activation and proliferation (Domenis et al., 2017; Mirzaei et al., 2018). 

Finally, in prostate cancer, CSCs secrete TNC to inhibit the activation and proliferation of 

CD8+ and CD4+ T cells via interaction with α5β1 integrin on T cells (Jachetti et al., 2015).

T-reg cells are an immunosuppressive subset of CD4+ T cells characterized by expression of 

forkhead box P3 (FoxP3) and by tumor promotion via inhibition of effector T cells (Togashi 

et al., 2019). CSCs attract and activate T-reg cells via various soluble factors (Figure 4; Table 

4), including, most notably, TGF-β, which controls T-reg cell recruitment and expansion. 

For example, CSCs can produce high levels of TGF-β in SCCHN (Chikamatsu et al., 2011), 

GBM (Wei et al., 2010), and melanoma (Shidal et al., 2019), which in turn promotes T-reg 

cell recruitment and expansion via activation of the α5 integrin/mothers against 

decapentaplegic homolog 2 (SMAD2) pathway, thus inducing T cell apoptosis and inhibiting 

T cell proliferation and activation. In addition, several C-C chemokine family members, such 

as CCL1 (Xu et al., 2017a), CCL2 (Wei et al., 2010), and CCL5 (You et al., 2018), have 

been shown to be highly produced by CSCs in distinct types of cancer, where they can 

stimulate the infiltration of T-reg cells into the TME. Together, CSC-secreted TGF-β and 

specific chemokines play key roles in T-reg cell recruitment and expansion in the TME.

T Cells Regulate CSC Stemness—Emerging evidence demonstrates that different 

subsets of T cells can regulate CSC stemness (Figure 4; Table 4). In GBM, T-cell-

conditioned medium inhibits GSC self-renewal via secretion TNF-α and interferon (IFN)-γ 
(Mirzaei et al., 2018). In NSCLC, CD8+ T cells are the main sources of IFN-γ, where low 

levels of IFN-γ promote CSC stemness via activation of the PI3K/AKT/ NOTCH1 pathway 

and high levels of IFN-γ induce cancer cell apoptosis via activation of the Janus kinase 1 

(JAK1)/STAT1/caspase pathway (Song et al., 2019). In pancreatic cancer, infiltrating Th2 
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cells produce cytokines IL-4 and IL-13 to activate the JAK1/STAT6 pathway in cancer cells, 

which in turn increases MYC-driven glycolysis (Dey et al., 2020), an anabolic process that 

supports CSC stemness (Chen et al., 2020b; Sancho et al., 2015). In addition to secretion of 

soluble factors, T cells can regulate CSC stemness via a direct cell-to-cell contact 

mechanism in breast cancer where cognate non-lytic interactions between CD8+ T cells and 

cancer cells can promote cancer cell stemness (Stein et al., 2019).

In addition to effector T cells, T-reg cells and Th17 cells can also regulate stemness. For 

example, in AML, T-reg cells secrete IL-10 to promote the stemness of leukemic stem cells 

via activation of the PI3K/AKT/OCT4/NANOG pathway (Xu et al., 2017b). The stemness-

promoting effect of T-reg cells is also observed in breast cancer, where unknown T-reg cell 

soluble factors upregulate stemness-related pathways: SOX2; NANOG; and OCT4 (Xu et 

al., 2017a). In HCC, T-reg cells secrete TGF-β to support CSC stemness by promoting EMT 

(Shi et al., 2018a; Xu et al., 2009), whereas in CRC, T-reg-cell-derived TGF-β drives cancer 

cell dedifferentiation (Nakano et al., 2019), suggesting context-specific actions of TGF-β in 

CSCs. These observations are consistent with the known highly contextual functions of 

TGF-β in cancer (Massagué, 2008). Although Th17 is a subset of T helper cells that mediate 

anti-tumor immune responses (Guéry and Hugues, 2015), IL-17 from Th17 cells or CD4+ T 

cells also promote CSC stemness through activation of NF-κB and p38 MAPK pathways in 

ovarian and pancreatic cancers (Xiang et al., 2015; Zhang et al., 2018) and STAT3 pathway 

in gastric cancer (Jiang et al., 2017). In addition, IL-17 can be upregulated in T-reg cells 

under hypoxic conditions, which in turn fosters CSC stemness in CRC (Yang et al., 2011). 

Thus, different T cell subsets contribute to maintenance of CSCs via a variety of 

mechanisms involving soluble factors and cell-to-cell contact.

Therapeutic Potential of Intercepting CSC-Immune Cell Crosstalk

Targeting CSC-TAM Crosstalk—Major preclinical and clinical efforts have sought to 

target the distinct biologic characteristics and crucial signaling pathways of CSCs and 

TAMs, as reviewed previously (Agliano et al., 2017; Pathria et al., 2019; Zhao et al., 2018). 

As summarized in Figure 5, clinical trials that can target CSC biology include inhibitors of 

the SHH, NOTCH, WNT/β-catenin, STAT3, and NANOG pathways (Agliano et al., 2017; 

Zhao et al., 2018) and anti-CD44 antibodies (Menke-van der Houven van Oordt et al., 2016). 

To date, the SHH inhibitor, vismodegib, has been approved for metastatic or locally 

advanced basal cell carcinoma (Sekulic et al., 2012), and clinical trials are underway for 

agents targeting macrophage recruitment (CCR2, CXCR4, integrin subunit alpha 4 [ITGA4] 

and ITGA5 inhibitors), polarization (toll-like receptor 4 [TLR4], TLR7, TLR9 and CD40 

activators and PI3Kγ inhibitor), and survival (CSF1R inhibitors; Grégoire et al., 2020; 

Pathria et al., 2019). However, despite the appeal of CSC-targeting agents, dramatic 

responses have not been observed, perhaps owing to a lack of truly specific CSC targets 

(Agliano et al., 2017; Turdo et al., 2019) as well as the high plasticity of CSC, which enables 

loss and reacquisition of stemness under varying TME conditions (Agliano et al., 2017; 

Müller et al., 2020; Plaks et al., 2015). Similarly, TAM-targeted therapies, such as CSF1R 

inhibition, have shown meager anti-tumor responses in GBM due in part to resistance 

conferred by activated PI3K signaling in glioma cells (Quail et al., 2016).
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It is tempting to speculate that targeting more deliberately the entwined co-dependencies of 

CSCs and TAMs and their plasticity in specific contexts could yield more robust responses. 

For example, IL-6/STAT3 and PI3K are essential for the regulation of both CSC stemness 

and macrophage pro-tumor polarization in many tumor types; inhibition of these pathways 

has shown anti-tumor activity (Agliano et al., 2017; Kobatake et al., 2020; Pathria et al., 

2019; Weng et al., 2019). Moreover, selecting patients with high CSC and TAM signatures 

could enhance responses to agents targeting these pathways (Agliano et al., 2017; Pathria et 

al., 2019). Such trials could benefit further from pharmacodynamic assessment of whether 

these agents can modulate these pathways and their associated tumor biology (Figure 5). 

Finally, given the plasticity of this system, these pharmacodynamic studies should be 

complemented by integrated omic analyses of the adaptive responses to these therapeutic 

interventions, which may further inform combination trials of synergistic agents.

An appealing strategy to disrupt CSC-TAM crosstalk may include blockade of the CD47-

signal regulatory protein alpha (SIRPα) pathway. CD47 is a transmembrane protein 

expressed on CSCs and cancer cells that functions as a “don’t eat me” signal (Cioffi et al., 

2015); interaction of CD47 with SIRPα on macrophages results in inhibition of 

phagocytosis by TAMs (Matozaki et al., 2009). Anti-CD47 therapy increases CSC 

phagocytosis in vitro and decreases tumor burden in vivo (Chan et al., 2009; Cioffi et al., 

2015; Majeti et al., 2009), which are further augmented when this therapy is combined with 

chemotherapy (Cioffi et al., 2015). Several clinical trials testing monoclonal anti-CD47 

antibodies (Hu5F9-G4, SFR231, CC-90002, and IBI188) and small-molecule inhibitors 

(TTI-621 and ALX148) are underway (Figure 5; Grégoire et al., 2020; Pathria et al., 2019). 

Another opportunity to disrupt CSC-TAM crosstalk centers on targeting soluble factors that 

reciprocally support each cell type. For example, inhibition of the CSC-specific POSTN and 

its related pathway (Zhou et al., 2015) or TAM-derived CCL5 (Huang et al., 2020) have 

been shown to interrupt CSC-TAM crosstalk, suppress tumor growth, and extend survival in 

mouse models of GBM and prostate cancer.

On a more conventional note, standard of care chemotherapies have shown limited promise 

for advanced metastatic disease due to severe toxicity and rapid development of resistance. 

As CSCs and TAMs play critical roles in the development of drug resistance (Agliano et al., 

2017; De Palma and Lewis, 2013), disruption of CSC-TAM crosstalk could improve its 

response to chemotherapy. Along these lines, CSCs in chemoresistant tumors secrete 

cytokines to create a pro-tumorigenic microenvironment by skewing macrophages toward a 

pro-tumor phenotype (Yamashina et al., 2014). Indeed, depletion of TAMs reduces CSC 

stemness, inhibits metastasis, and improves chemotherapeutic responsiveness in pancreatic 

cancer (Mitchem et al., 2013). Mechanistically, TAMs promote CSC stemness and 

chemoresistance via release of MFG-E8, which can trigger activation of STAT3 and SHH 

pathways in CSCs of CRC (Jinushi et al., 2011). Thus, mounting evidence points to the 

potential of targeting the CSC-TAM circuits for novel cancer treatments as well as for 

enhancement of chemotherapy effectiveness.

Targeting CSC-MDSC Crosstalk—The importance of MDSCs in promoting tumor 

growth, metastasis, angiogenesis, CSC stemness, and immune suppression has motivated the 

testing agents that inhibit MDSCs (Fleming et al., 2018). MDSC inhibition strategies target 
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recruitment (e.g., inhibition of CCR5 and CXCR2), promote depletion (e.g., tyrosine-kinase 

inhibitors and chemotherapeutic agents), and block immunosuppressive activity (e.g., 

inhibition of STAT3, phosphodiesterase-5, and class I histone deacetylases; Fleming et al., 

2018). However, the development of MDSC-targeted therapies is hampered by heterogeneity 

of MDSCs and lack of cellular markers (Lu et al., 2019). That is, MDSCs are heterogeneous 

immature myeloid cells composed of PMN-MDSCs and M-MDSCs, which possess distinct 

biological functions. Current MDSC-targeted agents may target both MDSC subgroups and 

other cell types in the TME. In addition, the lack of specific markers for human MDSCs and 

identification of the equivalent murine MDSCs has impeded translational research. Finally, 

MDSC density and activation states can change dynamically in the TME.

Notwithstanding these challenges, several strategies targeting CSC-MDSC crosstalk are 

worth considering. One strategy would be to target STAT3, which is dually essential for CSC 

maintenance and MDSC infiltration/activation, and inhibition of STAT3 has demonstrated 

potent anti-tumor activity associated with impaired CSC stemness and MDSC infiltration/

activation in cancer mouse models (Fleming et al., 2018; Peng et al., 2016). A second 

strategy would be to target soluble factors fostering CSC-MDSC crosstalk. For example, 

inhibition of CSC-derived MIF or MDSC-derived IL-6 extends survival in mouse models of 

GBM (Otvos et al., 2016) and breast cancer (Peng et al., 2016). A third strategy would 

involve neutralization of exosome-stimulated CSC-MDSC symbiosis. Specifically, 

knockdown of S100A9 in MDSC exosomes impairs STAT3 activation and inhibits tumor 

growth in mouse models of CRC (Wang et al., 2019b). Together, these various mechanistic 

insights point to disruption of the IL-6/STAT3 pathway as a strategy to interfere with CSC-

MDSC crosstalk and inhibit tumor growth.

Targeting CSC-T Cell Crosstalk—The symbiotic interactions between CSCs and T cells 

may also offer several precision therapeutic strategies. First, in breast cancer, blockade of 

CSC-derived T-reg cell supporting factors, such as CCL1, has been shown to significantly 

inhibit tumor growth and T-reg cell infiltration (Xu et al., 2017a). A similar anti-tumor effect 

has been observed in a mouse model of pancreatic cancer by inhibition of T-cell-derived 

stemness supporting factors, such as Th17 cell-derived IL-17, which dramatically impaired 

tumor growth and CSC stemness (Xiang et al., 2015). The second approach is to harness the 

potential of T-cell-based immunotherapies, especially immune checkpoint inhibition (ICI). 

The anti-tumor effectiveness of ICIs relates to the expression of immune checkpoint 

molecules, such as PD-L1, in the TME (Ravindran et al., 2019). Following activation of the 

STAT3 and NOTCH3/mTOR pathways (Lee et al., 2016; Mansour et al., 2020), CSCs 

express higher PD-L1 level compared to non-CSCs in many cancer types, including GBM, 

melanoma, SCCHN, CRC, breast cancer, gastric cancer, and ovarian cancer, in which PD-L1 

can further promote CSC stemness, thus inducing a positive feedback loop (Gao et al., 2019; 

Gupta et al., 2016; Ravindran et al., 2019; Wei et al., 2019a). In addition, PD-L1 level can be 

amplified following symbiotic CSC-immune cell interactions. For example, MDSCs can 

promote stemness and upregulate PD-L1 in CSCs via activation of the PI3K/AKT/mTOR 

pathway (Komura et al., 2020). Consequently, CSCs secrete exosomes to upregulate PD-L1 

in macrophages via activation of the STAT3 pathway (Gabrusiewicz et al., 2018). Together, 

these findings point to the potential utility of ICI agents, a concept supported by the anti-
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PD1 therapy enhancement of the anti-tumor activity of a CSC vaccine in a mouse model of 

bladder cancer (Shi et al., 2018b). The third approach would be the development of 

combination therapies targeting CSC-immune cell crosstalk and immune checkpoints. ICIs 

produce remarkable responses in some cancer patients; however, the majority of patients do 

not have responses. Mechanistic studies have shown that the effectiveness of ICIs is highly 

dependent on the TME (Murciano-Goroff et al., 2020). TAMs, MDSCs, and T-reg cells are 

the most prominent immune cells in the TME, where they form symbiotic interactions with 

CSCs, interact with each other, and suppress T cell function (Figure 4). Mechanistically, 

TAMs and MDSCs can suppress T-cell-mediated anti-tumor immune responses by high 

expression of immune checkpoint molecules (e.g., PD-L1, PD-L2, CD80, and CD86), 

production of immunosuppressive cytokines (e.g., IL-10 and TGF-β), and recruitment of 

immunosuppressive T-reg cells into the TME (Engblom et al., 2016; Kumar et al., 2016; 

Mantovani et al., 2017). These studies highlight the promise of TAMor MDSC-targeted 

therapies for improved ICI effectiveness. Indeed, a growing body of evidence demonstrates 

that macrophage-targeted therapies, such as activation of macrophage phagocytosis (Lian et 

al., 2019; Liu et al., 2018) or reprogramming of TAMs from pro- to anti-tumor phenotype 

(Baer et al., 2016; Guerriero et al., 2017; Kaneda et al., 2016; Zhu et al., 2014), synergize 

with ICIs in multiple cancer mouse models. Similarly, MDSC-targeted therapies, by 

inhibiting MDSC infiltration (Flores-Toro et al., 2020; Highfill et al., 2014; Liao et al., 2019; 

Zhao et al., 2020) or blocking MDSC activation (Davis et al., 2017; Liu et al., 2020; Lu et 

al., 2017), show robust synergy with ICIs in mouse models. These preclinical studies have 

prompted combination therapeutic trials for many cancer types (Hou et al., 2020; Pathria et 

al., 2019).

Concluding Remarks and Future Perspectives

The genetic paradigm has dominated our approach to cancer therapy, generating many 

agents targeting driver oncogenic events in cancer cells. In recent years, the success of 

targeting immunity and angiogenesis has heightened interest in targets operating within the 

TME ecosystem. This review specifically has cataloged the molecular circuitry underlying 

reciprocal interactions between CSCs and immune cells, including TAMs, MDSCs, and T 

cells, in tumor maintenance. This bidirectional crosstalk is manifested on several levels, 

including CSC-directed immune cell recruitment and activation and the role of these 

immune cells in promoting cancer cell stemness and establishing a supportive CSC niche. 

The molecular characterization of CSC-immune cell symbiosis has uncovered potential 

therapeutic strategies, including dual targeting of vital pathways activated in both CSCs and 

immune cells (e.g., STAT3 and PI3K), disrupting the molecules responsible for physical 

CSC-immune cell interactions (e.g., CD47-SIRPα), and neutralizing soluble factors that 

reciprocally support both CSCs and immune cells (e.g., IL-6). Collectively, elucidation of 

these symbiotic CSC-immune cell interactions has also revealed the centrality of these novel 

molecular mechanisms in driving tumorigenesis, metastasis, and chemotherapy resistance. 

Thus, targeting of this molecular circuit has the potential to disrupt CSC-immune cell co-

dependencies and enhance the effectiveness of conventional therapies.

Although our knowledge of CSC-immune cell crosstalk is maturing, multiple questions will 

need to be answered in order to effectively and systematically convert mechanistic insights 
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into new therapeutic interventions. First, many studies investigating CSC-immune cell 

crosstalk have relied on cell line co-culture models or isolated cells from tumor tissues, 

which highlights the need for complementary studies using in vivo models, genetic 

validation, and dynamic analyses of the TME using lineage tracing and live micro positron 

emission tomography (microPET)/computed tomography (CT) imaging technologies. Such 

in vivo models could be complemented by organoid cultures, which appear to more 

faithfully recapitulate the features of their source tissues (Baker, 2018). That is, cancer cell 

organoids and immune cell co-cultures could serve as more robust and higher throughput 

model systems to study the dynamic and reciprocal interactions between CSCs and immune 

cells and to test therapeutic agents targeting CSC-immune cell crosstalk. Second, the 

remarkable plasticity and heterogeneity of both CSCs (transitioning between stem versus 

non-stem states) and immune cells (including the transitions within and across cell types, 

such as the transition across the phenotypic spectrum in TAMs, differentiation of MDSC to 

PMN-MDSC and M-MDSC subgroups, and differentiation of M-MDSCs to TAMs) 

highlight the challenges in identifying the context-specific nature of distinct critical CSC-

immune cell circuits at different tumor stages and in different cancer types, as well as 

changes in CSC-immune cell interactions resulting from therapeutic interventions. Thus, 

harnessing the full potential of targeting CSC-immune cell crosstalk will require extensive 

use of scRNAseq to identify new subpopulations and define the physiological states of CSCs 

and immune cells, as well as their crosstalk in specific tumor contexts and under exposure to 

certain therapies. Such single-cell auditing must be complemented by functional and genetic 

analyses using in vivo model systems to identify and validate targets and mechanisms 

governing CSC-immune cell co-dependencies. Given the number of factors involved, 

bispecific antibodies dually targeting key factors acting in concert in the CSC-immune cell 

circuit should be considered. Third, across many tumor types, the IL-6/IL-6R/STAT3 

pathway appears to be the most prominent and important driver of CSC-immune cell 

crosstalk, as evidenced by the finding that pharmacological inhibition of the IL-6R/STAT3 

pathway impairs tumor progression and reduces CSC stemness, TAMs, and MDSCs in 

bladder cancer, breast cancer, and HCC mouse models (Kobatake et al., 2020; Peng et al., 

2016; Wan et al., 2014). However, a more-detailed investigation of the actions of these drugs 

is needed, as they also target other stromal cells in the TME. That is, the anti-tumor actions 

may not relate to CSC-immune cell crosstalk and/or may target stromal cells with opposing 

actions to CSCs, TAMs, and MDSCs. In this regard, genetically engineered mouse models 

would be useful to more precisely dissect the myriad roles of the IL-6/IL-6R/STAT3 

pathway specifically in CSCs, TAMs, MDSCs, and/or T cells versus other cells within the 

TME ecosystem. Finally, in addition to TAMs, MDSCs, and T cells, unbiased analyses on 

TGGA datasets demonstrated that high cancer cell stemness is associated with reduced NK 

cells (Miranda et al., 2019), suggesting a potential CSC-NK cell crosstalk. CSCs are 

generally susceptible to killing by activated NK cells; however, a growing body of evidence 

shows that CSCs may be resistant to NK cells in some cancer types, such as GBM, AML, 

and breast cancer (Sultan et al., 2017). Emerging evidence demonstrates that the anti-CSC 

activity of NK cells is largely dependent on the TME and that NK cell activation can be 

suppressed by TAMs, MDSCs, and T-reg cells (Bruno et al., 2019; Ghiringhelli et al., 2006; 

Krneta et al., 2017). In addition to NK cells, very limited evidence demonstrates that cancer 

cell stemness is related to the presence of dendritic cells (DCs), B cells (Hsu et al., 2018; 
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Miranda et al., 2019), and neutrophils (Hira et al., 2015; Hwang et al., 2019). However, the 

nature of the crosstalk between CSCs and these four types of immune cells (NK cells, B 

cells, DCs, and neutrophils) is largely unknown. Therefore, further studies characterizing 

such crosstalk, as well as the relationship of these four cell types with other immune cells, 

including TAMs, MDSCs, and T cells, will pave the way for developing novel and more 

effective immunotherapies.

In summary, we have presented mounting evidence implicating CSC-immune cell 

interactions as drivers of tumor development involving many hallmarks of cancer and as 

modulators of the response to therapeutic interventions. Harnessing the therapeutic potential 

of these interactions will require rigorous validation of the targets and mechanisms 

underlying this symbiotic relationship as well as a deeper understanding of the specific 

biological contexts in which they play essential rate-limiting roles in tumor maintenance. 

Successful achievement of this goal would greatly benefit cancer patients.
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Figure 1. The Mechanism Underlying CSC Stemness Regulation and the Contribution of CSCs 
to Cancer Hallmarks
CSC stemness is regulated by several key signaling pathways, including STAT3, SHH, 

NOTCH, PI3K, WNT/β-catenin, and NANOG. CSCs promote tumorigenesis and 

progression by contributing to at least nine out ten hallmarks of cancer. Whether CSCs 

contribute to the tenth hallmark of cancer, evading growth suppressors, remains unknown.
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Figure 2. Origins of Macrophages and Microglia and the Mechanism of CSC-Driven TAM 
Infiltration and Polarization
Macrophages in tumors have two distinct origins: BMDMs and tissue-resident macrophages, 

such as microglia in the brain. BMDMs originate from bone marrow progenitor cells that 

differentiate into monocytes. Monocytes traffic to other sites upon stimulation and then 

differentiate into macrophages. Microglia originate from microglial progenitors seeded from 

the embryonic yolk sac. CSCs contribute to the infiltration and polarization of BMDMs and 

microglia via secretion of a variety of chemokines and factors (as indicated).
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Figure 3. CSC Niche Components and the Role of Macrophages in CSC Stemness Maintenance
CSC niches are composed of several types of cells (including macrophages, tumor cells, 

mesenchymal stem cells, fibroblasts, and endothelial cells) and their cytokine/growth factor 

networks, ECM components, and hypoxic environment. Macrophages represent one of these 

niches, which promote CSC stemness through producing a large number of soluble factors 

as indicated.
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Figure 4. CSC-Immune Cell Crosstalk and Interactions among Immune Cells in Cancer
Different types of CSC-immune cell crosstalk (including CSC-TAM, CSC-MDSC, CSC-T 

cell, and CSC-T-reg cell) and the immunosuppressive function of TAMs, MDSCs, and T-reg 

cells on T cells in cancer. Crosstalk between two cell types is achieved by secretion of a 

variety of chemokines, cytokines, exosomes, or other factors as indicated.
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Figure 5. CSC and TAM Targeting Strategies in Cancer Therapy
Preclinical studies with mice have identified critical pathways that regulate CSC stemness 

and TAM biology (including recruitment, polarization, survival, and phagocytosis) during 

tumor progression. Targeting these key pathways can inhibit the properties of CSCs and 

TAMs and impair tumor progression. In addition to the pathways targeting either CSCs or 

TAMs, several pathways, including STAT3, PI3K, and CD47-SIRP1α, are involved in 

regulating the properties of both CSCs and TAMs, thus providing more-effective therapeutic 

strategies. Given the existence of CSC-TAM crosstalk during tumor progression, targeting 

CSC-TAM co-dependency is another promising cancer therapy strategy.
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