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Knot formation of dsDNA pushed 
inside a nanochannel
Jan Rothörl1, Sarah Wettermann1, Peter Virnau1* & Aniket Bhattacharya2*

Recent experiments demonstrated that knots in single molecule dsDNA can be formed by 
compression in a nanochannel. In this manuscript, we further elucidate the underlying molecular 
mechanisms by carrying out a compression experiment in silico, where an equilibrated coarse-grained 
double-stranded DNA confined in a square channel is pushed by a piston. The probability of forming 
knots is a non-monotonic function of the persistence length and can be enhanced significantly 
by increasing the piston speed. Under compression knots are abundant and delocalized due to a 
backfolding mechanism from which chain-spanning loops emerge, while knots are less frequent and 
only weakly localized in equilibrium. Our in silico study thus provides insights into the formation, 
origin and control of DNA knots in nanopores.

In many biological processes a double-stranded DNA (dsDNA) is confined in a geometry much shorter than its 
contour length in a highly organized and compact state and often under high pressure1,2. A classic example is an 
organized state of a dsDNA strand in a viral capsid3–8. The viral DNA uses the stored elastic energy for its inva-
sion process. Intriguingly, this DNA was found to be highly knotted particularly in a mutant variant for which 
both sticky ends are allowed to reside within the capsid3,4. It is in general difficult to develop an experimental 
protocol to study an actual system in vitro, although there have been studies to measure the force and the organ-
ized topology of the dsDNA inside a capsid9,10. During the last decade advancements in nanotechnology have 
enabled us to prepare nanochannels of sub-persistence length dimensions11. DNA pushed inside nanofluidic 
devices12–16 is now used for mapping genomes, sequence motifs, structural variations17,18.

Recently, nanochannels were even used for the detection of knots in DNA as demonstrated in experiment19 
and simulation20. Due to a controllable and simpler geometry, nanochannels offer immense promise to under-
stand universal aspects of biological phenomena using well established concepts from polymer physics21,22. 
Besides problems of biological significance and of human health, nanochannel based experiments claimed the 
occurrence of jamming9,10- which indicates that confined bio-polymers offer yet another platform to study slow 
relaxation and glassy dynamics. Thus studies of chain compression in nanochannels appeal to broad areas of 
science.

Many numerical studies of knots have established numerous results on generic23–38 and biopolymers1,6,8,39–45. 
While knots are, e.g., abundant in single ideal chains24,25, the addition of excluded volume typically reduces the 
knotting probability significantly25,29, while spherical confinement or globular states enhance knotting26,29. For 
the latter, knots tend to be delocalized, i.e. average sizes scale linearly with the chain length29, while knots are 
weakly localized and scale sub-linearly for under ideal or good solvent conditions28,29.

Previously, we have studied compression of semi-flexible polymers in nanochannels using a Langevin dynam-
ics (LD) scheme46,47. These LD simulation studies and another recent study48 have provided substantial insights 
about many details at smaller length scales unattainable experimentally, but are essential for microscopic under-
standing and interpretation of nanochannel experiments using fundamental laws of physics. One of the advan-
tages of these simulation studies is that, unlike an actual experiment, one can vary confining dimensions and 
chain stiffness easily and is thus capable of extending the simulation studies for a broader parameter space which 
is often quite expensive to design experimentally. In our recent LD simulation study47 we mimicked a recent 
experiment in silico where dsDNA—modeled as a semi-flexible polymer—was pushed inside a rectangular 
open-ended nanochannel much longer than required to attain a steady state. By varying the bending rigidity 
of the chain we showed how the structure evolves from a disordered state to a highly organized spooled state. 
Furthermore, the LD simulation revealed a detailed picture of how the fold nucleation originates at the piston 
end and expands during the compression process47.

An important and relevant question in these compression studies in the biological context is to study how the 
formation of knots are initiated and once formed how they spatially evolve under confinement. Theoretical and 
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simulation studies have been further fueled by a recent experiment that demonstrates that knots indeed occur in 
compression experiments16. In computer simulations studies Orlandini and Micheletti have already investigated 
equilibrium knot formation of coarse-grained DNA models in nanonchannels31,32. Of particular relevance to our 
work is a recent study38 in which the non-equilibrium formation of knots and so-called geometrical entangle-
ments as measured by counting crossings under projections are investigated in closed nanochannels exposed 
to compression and relaxation cycles. It was found that the two types of entanglements evolve with different 
dynamics and are for the most part uncoupled.

Here, we investigate knot formation when a confined dsDNA is being pushed by a nano-dozer in a nanochan-
nel whose width is much smaller than the contour length of the dsDNA. An important difference from previous 
studies is that our system is open ended in one direction and that we study the evolution of knots in a constantly 
moving steady state. We also vary the bond stiffnesses to investigate the influence of changes in salt conditions. 
The key result is that the confined chain in the nanochannel pushed by a nano-dozer will progressively become 
highly knotted with delocalized knots. The knotting probability is greatly enhanced compared to corresponding 
equilibrium simulations, which in addition to compactification can be traced back to a backfolding mechanism 
for semi-flexible chains. Next, we describe the model, some essential facts about the LD simulation scheme, how 
our coarse-grained chains can be mapped onto DNA and the method that we use to analyze knots.

Results
Emergence of knots in nanochannels.  Figure 1 summarizes the main findings of our study. Applying 
a pushing force leads to a compactification of the polymers (Fig. 1a), which in turn dramatically increases the 
occurrence of knots in the steady state in comparison to equilibrium values (Fig. 1b). Likewise, the amount 
of trefoil knots is reduced for configurations with a higher total knotting probability because the high density 
induces the formation of multiple or more complex knots. In this compact state, knots are delocalized and span 
over the whole chain as indicated for the example of trefoil knots in Fig. 1c where for a bending stiffness κ > 20 
the average length of the knot is approximately 80% of the contour length or higher, which implicates that knots 
are formed preferentially near each end (please see Fig. 2e), while knots in equilibrium conformations are sig-
nificantly smaller. These findings in a sense mirror previous observations, e.g. in Ref.29, which demonstrated that 
a θ-transition from a swollen coil to a globular state is not only accompanied by an increase in knotting but also 
by a delocalization of the latter.

Figure 1d investigates the influence of the piston velocity for the experimentally relevant case of κ = 4 (DNA 
in a nanochannel, see “Methods” section). Again, compactification with increasing velocity is directly related 
to an increase of overall knotting. These results suggest that the occurrences of knots can be tuned by the speed 

Figure 1.   Knots and radii of gyration of steady-state configurations for different input parameters. (a) Root-
mean-squared radius of gyration 

√

〈R2
g (t)〉 for chains of different stiffness. Error bars are omitted as their size is 

smaller than the size of the points. (b) Knotting probability and occurrence probability of trefoil knots for 
different values of the bond stiffness κ . Error bars are determined by taking the standard deviation over the 
square-root of the number of runs. Lines are added for readability. Knotting probability for v = 0 is strictly zero 
for κ ≥ 50 . (c) Trefoil knot lengths found for different κ with a moving piston and in equilibrium. (d) 

√

〈R2
g (t)〉 

for different piston velocities at κ = 4 . Again the size of error bars would be smaller than the size of the points. 
The red dashes in (d–f) indicate the average result in MC simulations without a moving piston for κ = 4 which 
is equivalent to the leftmost equilibrium values in plots (a–c). (e) Knotting probabilities for different piston 
velocities at κ = 4 . (f) Trefoil knot lengths for different piston velocities at κ = 4.
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of the piston and converge towards the equilibrium values for small piston velocities (Fig. 1e). This outcome is 
similar to results of Michieletto et al.38 indicating that an increased piston force will lead to an increase in the 
overall knotting probability and knot complexity as shown by a decrease in the occurrence of simple trefoil 
knots. As indicated above the decrease of knotting towards the equilibrium state at slow piston velocities is again 
accompanied by a trend towards a weak localization of trefoil knots (Fig. 1f)29.

Figure 2 sheds light on these findings from a molecular basis. For κ = 4 the structure is disordered but the 
position of the monomers is still correlated with their sequence as indicated by the color scheme in Fig. 2a and 
the bead positions in Fig. 2c. For κ = 20 , the persistence length already exceeds the width of the tube which in 
conjunction with compactification leads to backfolding (Fig. 2b,d). The backfolding on the other hand creates 
loops which are a prerequisite for knots and in turn explains the initial rise in knotting with κ as well as their 
delocalization. In this context it would be interesting to study if backfolding creates a prevalence of torus-type 
knots as e.g. observed in the DNA located in viral capsids4,7. Unfortunately, the statistics of our simulations 
do not allow for a meaningful comparison. For large persistence lengths, backfolding becomes more difficult 
resulting in a lower knotting probability (Fig. 1b). In the equilibrium case, the compactification from the piston 
is no longer present and for κ = 20 , the chain can already spread throughout the channel which leads to a low 
knotting probability and weakly localized knots (Fig. 2e).

Discussion
In this manuscript we investigate velocity induced knot “production” in a nanochannel in comparison to those 
under equilibrium conformations. Both knotting probability and knot sizes depend strongly on piston velocity 
and resulting compactification as well as chain stiffness which can be, e.g., mitigated by adjusting ionic conditions 
and screening of charges in DNA. We observe that if the chain’s persistence length is greater than the width of 
the nanochannel, knots form by a backfolding mechanism. Since backfolding becomes harder for larger stiffness, 
the probability of knot formation decreases which explains the observed non-monotonic characteristic of knot 
formation in a nanochannel. We also study relative occurrences of complex knots as a function of the piston 
velocity and the chain stiffness. Our study thus sheds some new light on recent experiments in which DNA knots 
were created in a flow channel16 and provides insight on the molecular origin and control of self-entanglements 
under these conditions.

Finally, we would like to point out that the coarse-grained simulation does not include hydrodynamic effects. 
It is worth considering how the results will change if we had incorporated it in the simulation. Dorfman has 
argued that for flexible chains hydrodynamic interactions are important. But for the semi-flexible chains with 
persistence length larger than the pore width, the chain is fully extended and is described by the free-draining 
limit50. Thus, for most channel sizes which result in a significant extension of the DNA compared to its bulk 
conformation, the hydrodynamic interactions between segments of the chain are almost completely screened. 
For the parameters used here the chain conformation lies in the transition region between deGennes blobs and 
Odjik limit and there is no theoretical argument for the effects of the hydrodynamic interaction in this regime. 
However, from Fig. 2 we observe that the chain conformations are mostly extended and hydrodynamic effects 
are likely to be small. For large velocities folded conformations are very different from deGennes blobs and 
therefore, one would expect the hydrodynamic effects to be small also, and the conclusions of this manuscript 
will essentially remain the same.

Figure 2.   Simulated structures for different parameters. (a, b) Structures for κ = 4 (a) (length parallel to the 
channel 73σ ) and κ = 20 (b) (length 91σ ) visualized using VMD49. Beads are colored from blue to red according 
to their monomer number. (c, d) The plots show the average position along the tube for all beads averaged over 
a simulation time of 50, 000τ for simulations at κ = 4 (c) and κ = 20 (d) with the piston at position 0. The insets 
show the relative density of beads along the structure averaged over the same frames. The structure for κ = 20 
is significantly larger. The highest density for both structures is found to be close to the piston on the right. (e) 
Equilibrium structure without piston for κ = 20.
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Methods
Coarse‑grained polymer model.  The coarse-grained polymer model for LD simulations used here is 
exactly the same as in our previous publication47 where a bead-spring model polymer chain is confined to an 
open-ended rectangular channel and pushed from the right with a piston in the negative x-direction (Fig. 3a). 
The semi-flexible chain (Fig. 3b) is represented by a generalized bead-spring model51 where the beads (mono-
mers) interact via excluded volume (EV), a Finite Extension Nonlinear Elastic (FENE) spring potential and a 
bond-bending potential enabling variation of ℓp as implemented previously46,47. The excluded volume interac-
tion between any two monomers i and j of diameter σ is given by a short range truncated and shifted Lennard-
Jones (LJ) potential ULJ (Eq. 1) of strength ε with a cutoff distance rc = 21/6σ is given by:

where rij = |�ri − �rj| is the distance between any pair of beads. Successive monomers are connected by a FENE 
spring potential

where kFENE is the spring constant and R0 is the maximum allowed bond length. The parameters kFENE and R0 
along with ε and σ determine the bond-length. The chain stiffness is controlled by a bond-bending potential

Here θi = cos−1
(

�bi−1·�bi
|�bi−1||�bi |

)

 is the angle between two successive bond vectors �bi−1 = �ri − �ri−1 and �bi = �ri+1 − �ri , 
respectively, as shown in Fig. 3b. In three dimensions, for κ  = 0 , the persistence length ℓp of the chain is related 
to κ via39,52,53

for the values of κ considered in this work where kB is the Boltzmann constant and T is the temperature.

Langevin dynamics simulation.  We use the following Langevin dynamics equation of motion to advance 
the position of the ith monomer
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Figure 3.   Schematics of the simulation model. (a) A semi-flexible bead-spring chain confined inside a 
rectangular nano-channel is pushed by the green piston from right to left at velocity v = vpiston . The 
confinement potentials are imposed on four (two xy and two xz) planes, and by the moving piston in the yz 
plane in the negative x direction. The chain is free to move on the side opposite the piston. This figure was 
created using Xfig (version 3.2.8a, URL: https://​sourc​eforge.​net/​proje​cts/​mcj/). (b) Demonstration of the knot 
closure. The termini of the polymer are connected with the center of mass (black dot) as indicated by the dashed 
red lines. The solid red lines are then appended to the polymer and connected by a closing arc drawn with red 
dots. (c, d) The root-mean-squared radius of gyration 

√

〈R2
g (τ )〉 of the polymer as a function of LD time τ for 10 

simulations each and two different values of the chain stiffness, κ = 4 and 20, respectively. The polymer is 
compressed until it reaches a steady state with a constant radius of gyration. At this point it moves like a blob of 
a fixed shape. The steady state 

√

〈R2
g 〉 for the polymer with lower stiffness is significantly smaller in its final state. 

(e) The knotting probability as a function of time τ . During compression, the knotting probability increases 
while it is constant in the steady state. A higher stiffness leads to a higher knotting probability in the steady state. 
The results are averaged over 20 independent runs each.

https://sourceforge.net/projects/mcj/
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where γ is the monomer friction coefficient, and Wi is a Gaussian random force with zero mean at temperature 
T which satisfies the fluctuation-dissipation relation. The numerical integration is implemented using the algo-
rithm introduced by Gunsteren and Berendsen54. Our previous experience with LD simulations suggests that 
appropriate parameter specifications are γ = 0.7

√

mε/σ 2  , kFENE = 30ε/σ , R0 = 1.5σ , and a temperature 
kBT/ε = 1.2 . For a time step �t = 0.01τ (with τ being the standard Lennard-Jones time) these parameter values 
produce stable trajectories over a very long period of time and do not lead to an unphysical crossing of a bond 
by a monomer55,56. The average bond length stabilizes at bl = 0.970± 0.002 with negligible fluctuation regardless 
of chain size and rigidity55. The piston is moved with a constant velocity of v0 = 0.005 σ

τ
 if not noted otherwise 

after an initial equilibration of the chain. We ensure that the MD time for the pushing phase is long enough for 
the chain to attain a steady state shown in Fig. 3c–e that displays the connection between chain extension 
(Fig. 3c,d) and knot formation (Fig. 3e) in approach to the steady state. Times to reach the latter depend on bond 
stiffness κ as seen from the behavior of 〈

√

〈R2
g (t)〉 in Fig. 3c,d. While for κ = 4 reaching a steady state takes less 

than 50,000τ , it takes around 160,000τ for κ = 20 . For each κ and v, physical quantities are averaged over at least 
ten independent runs. Our analysis indicates that knots can form and dissolve both during the initial compres-
sion and in the steady state. Even compact structures can still change their knot type in accordance with other 
results on knot formation under applied force38. Of course, the probability of forming a knot, however, is signifi-
cantly larger in the compressed (steady) state.

Reptation Monte Carlo simulation to study the equilibrium limit.  Note that piston speeds in 
coarse-grained implicit solvent simulations are typically orders of magnitude faster when compared to experi-
ments. Therefore, we have also undertaken reptation Monte Carlo simulations of a slightly simplified model 
system of a single semi-flexible bead-spring chain confined inside a rectangular nanochannel of fixed size. In 
the reptation move which resembles the movement of a slithering snake, one segment is deleted from a ran-
domly chosen chain end and attached to the other end57. Moves are accepted based on the Metropolis criterion. 
The repulsive Lennard-Jones and bond-bending potentials were matched with those of the LD simulation as 
described above. However, contrary to the LD simulation model’s confinement potential imposed onto the tube 
walls we use non-interacting walls and fixed bond length bl = 0.967 . These MC simulations allow for a compari-
son of our dynamical investigations with equilibrium values (corresponding to piston velocity v → 0).

Knot analysis.  Knots in a closed chain are typically characterized by the minimum number of crossings 
observed when projecting a 3D chain onto a plane and can be considered as a fine gauge for the overall structure. 
Apart from the unknotted ring, the so-called unknot, the simplest knot is the trefoil (31) knot, which contains 
three crossings. There is one knot type with four crossings (41) and two with five crossings, and from there on 
the number of different knots with the same number of crossings increases exponentially58,59. In our setup the 
polymer chain is open, and therefore, a closure connecting both ends of the chain has to be defined. First, we 
connect the end-points of each polymer with its center of mass. Along these lines we define a closure which 
emerges from one terminus follows the first line connects to the second one far away from the polymer and ends 
at the second terminus40. After closure, the Alexander polynomial can be determined as described in detail in60 
(compare Fig. 3b). Knot sizes are determined by successively removing monomers from the ends of a polymer 
until the knot type changes29.

Mapping onto DNA and comparison with experiments.  Mapping our semi-flexible chain onto DNA 
is based on Eq. (4). For simplicity, we assume a solvent-independent persistence length of 50 nm or 150 base 
pairs. Furthermore, we assume that our beads describe the locus of a double-stranded DNA strand. In high salt 
conditions (1M NaCl), charges of DNA are completely screened and σ ≈ 2.5 nm. In physiological conditions 
charges are only partially screened and σ ≈ 5 nm, and for low salt conditions σ increases even further to about 
15 nm at 0.01 M NaCl33,39,61. With a simulation temperature of T = 1.2 used throughout we obtain (in simulation 
units) κ = 24 for high salt, κ = 12 for physiological and κ = 4 for low salt conditions. This allows us to put our 
simulations in the context of recent experiments by Amin et al.16 undertaken at an estimated ionic strength of 
8 mM which corresponds to our low salt scenario. Our chain has a contour length of L = Nσ = 1024σ = 15,360 
nm or 46,080 base pairs, while our confining tube has a width of 16σ ≈ 240 nm. This compares to 168,903 base 
pairs and tube dimensions of 325× 415 nm used in Ref.16. Note that the mapping changes drastically with ionic 
conditions.

The time scale of the simulated quantities can be translated into an experimental time scale via

For low salt conditions we use σ = 15  nm as stated above, a mass m of 618u per base pair, a persistence length 
of κσkBT

= 3.33 beads and therefore 45 base pairs per bead. We assume room temperature of T = 300 . This results 
in a time scale of 1 simulation time which equals to approximately 1.6ns. Our simulation time of 400,000τ for 
κ = 4 is therefore equivalent to 6.4× 10−4 s. Hence without explicit solvent one obtains a much faster time scale 
compared to experiments which often take place at a scale of seconds16. A typical experimental piston velocity for 
these experiments is 0.1–1 µm/s14,15. In the simulation we advance the piston with a velocity v0 = 0.005 σ

τ
≈ 0.05 

m/s, several order of magnitude faster than the experimental piston speed. Thus dynamics in our coarse-grained 

(5)mr̈i = −∇(ULJ + UFENE + Ubend + Uwall + Upiston)+ γ vi +Wi ,

(6)tMD = σ

√

m

kBT
.
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simulation are accelerated by several orders of magnitude in comparison to experiments and cannot be com-
pared directly.
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