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Linoleic acid induces metabolic 
stress in the intestinal 
microorganism Bifidobacterium 
breve DSM 20213
Alice Senizza1, Gabriele Rocchetti1, Maria Luisa callegari1,2, Luigi Lucini1* & Lorenzo Morelli1

Despite clinical and research interest in the health implications of the conjugation of linoleic acid 
(LA) by bifidobacteria, the detailed metabolic pathway and physiological reasons underlying the 
process remain unclear. This research aimed to investigate, at the molecular level, how LA affects 
the metabolism of Bifidobacterium breve DSM 20213 as a model for the well-known LA conjugation 
phenotype of this species. the mechanisms involved and the meaning of the metabolic changes caused 
by LA to B. breve DSM 20213 are unclear due to the lack of comprehensive information regarding the 
responses of B. breve DSM 20213 under different environmental conditions. Therefore, for the first time, 
an untargeted metabolomics-based approach was used to depict the main changes in the metabolic 
profiles of B. breve DSM 20213. Both supervised and unsupervised statistical methods applied to the 
untargeted metabolomic data allowed confirming the metabolic changes of B. breve DSM 20213 when 
exposed to LA. In particular, alterations to the amino-acid, carbohydrate and fatty-acid biosynthetic 
pathways were observed at the stationary phase of growth curve. Among others, significant up-
regulation trends were detected for aromatic (such as tyrosine and tryptophan) and sulfur amino acids 
(i.e., methionine and cysteine). Besides confirming the conjugation of LA, metabolomics suggested a 
metabolic reprogramming during the whole growth curve and an imbalance in redox status following 
LA exposure. Such redox stress resulted in the down-accumulation of peroxide scavengers such as low-
molecular-weight thiols (glutathione- and mycothiol-related compounds) and ascorbate precursors, 
together with the up-accumulation of oxidized (hydroxy- and epoxy-derivatives) forms of fatty acids. 
Consistently, growth was reduced and the levels of the oxidative stress marker malondialdehyde were 
higher in LA-exposed B. breve DSM 20213 than in the control.

Linoleic acid (LA), or 9-cis, 12-cis-octadecadienoate, is a polyunsaturated omega-6 fatty acid that typically occurs 
in nature as a triglyceride ester. LA has long attracted the attention of nutritionists, particularly for its main iso-
mers, also known as conjugated linoleic acid (CLA). Diet is the only way to obtain the proper ratio of essential 
fatty acids and, according to current regulations, infant formula must contain LA and α-linolenic acid (ALA)1.

The role of LA in bacterial growth is not completely clear, even though different hypotheses have been 
proposed. Among these hypotheses is that LA is toxic to many bacteria, given its ability to reduce bacterial 
growth. Koppová and colleagues2 reported that the length of the lag phase was dependent on LA concentra-
tions and was proportional to the fatty acid concentration. In particular, long-chain fatty acids with a higher 
number of unsaturated double bonds have a major inhibitory effect on bacterial cell growth compared to fatty 
acids with fewer unsaturated bonds. Bacteria adopt many strategies to survive in the presence of LA, such as 
hydrogenating unsaturated free fatty acids into more saturated products, which are considered to be less toxic3. 
Bifidobacteria have been deeply studied for their ability to transform LA into different CLA isomers, including 
9-cis, 11-trans-octadecadienoate (9-cis, 11-trans-CLA) and vaccenic acid4. In previous works, several research 
groups have evaluated the ability of different bifidobacteria to convert LA into CLA-isomers. Raimondi et al.4 
screened 34 bifidobacteria strains and reported that B. breve WC0421 was the best CLA producer, converting LA 
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into 68% 9-cis, 11-trans-CLA and 25% 9-trans, 11-trans-CLA. Additionally, O’Connell et al.5 used gas chroma-
tography (GLC) to estimate the CLA-production capabilities of different Bifidobacterium species, showing that B. 
breve NCFB 2258 was the strain providing the best LA transformation to CLA (namely to 9-cis, 11-trans-CLA). 
Such positional and geometric conjugated isomers of the essential fatty-acid LA have received great attention 
from the scientific community because they have been linked to many health-promoting activities, such as 
anti-adipogenic, anti-diabetogenic and anti-atherosclerotic activities6. Nonetheless, the conjugation of LA to 
CLA has been reported among the gut commensal-produced processes involved in host-microbe interactions7.

Despite such important outcomes, the mechanism(s) of bifidobacteria for metabolizing LA is still unclear 
and information about the bacterial toxicity of this compound remains limited8. In fact, to the best of our knowl-
edge, no significant information regarding the comprehensive changes induced by LA to B. breve metabolism 
has been reported. In this regard, targeted/untargeted metabolomics platforms could offer a powerful tool for 
discovering novel compounds and biomarkers that result from modifications induced by different treatments9. 
Both previously cited metabolomics-based strategies are characterized by inherent advantages and disadvantages. 
In particular, untargeted metabolomics represents the comprehensive analysis of all the measurable analytes in 
a sample, including chemical unknowns9. Due to its comprehensive nature, untargeted metabolomics must be 
coupled with advanced chemometric techniques, such as multivariate analysis, to reduce the extensive datasets 
generated by the smaller set of manageable signals. In such a way, this untargeted strategy can help to better 
understand the complexity behind the metabolic changes of bacteria exposed to exogenous factors9. In fact, when 
predefined lists of analytes are studied (targeted metabolomics), it is more difficult to find correlations between 
sets of metabolites and specific physiological states10.

Therefore, the aim of the present work was to apply an untargeted metabolomics approach using liquid chro-
matography time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) with multivariate statistical analysis to 
study the metabolomic changes in B. breve DSM 20213 exposed to LA.

Results and Discussion
Growth and metabolomic profile of B. breve DSM 20213 following exposure to LA. Under our 
experimental conditions, the addition of LA to the medium negatively affected the growth rate of B. breve DSM 
20213. In fact, the cell number of the strain grown in MRS + LA was lower than in MRS, starting from the earlier 
points of the growth curve (Fig. 1), thus demonstrating a reduced growth rate compared to MRS throughout 
the whole curve. After 48 h culture, the cell number of the strain grown in MRS + LA had an FC value = 0.89, 
hence exhibiting a reduced growth rate (−11%) compared to MRS. Consistently, the generation time was lower 
in LA-treated cells than in control, both in the log (50 min vs 44 min) and in the stationary phase (296 min vs 
120 min).

In order to assess the major metabolic changes promoted by LA, a UHPLC-QTOF mass spectrometric method 
was used to depict the metabolism of B. breve DSM 20213, as elicited by the addition of LA to the medium. In this 
regard, the untargeted approach resulted in the putative annotation of more than 10,000 features using the com-
prehensive database MetaCyc11 (www.metacyc.org). Supplementary File 1 presents the detailed list of annotated 
metabolites and composite mass spectra (mass & abundance combinations).

Overall, the large number of metabolites detected reflects the complexity of the mechanism under inves-
tigation and increased the chances of depicting the metabolic changes induced by the addition of LA. Indeed, 
the analysis of complex matrices such as microbial samples comprises a huge amount of metabolites with high 
chemical diversity, thus requiring an untargeted metabolomics approaches to profile all the unknowns12. In such 
metabolomics-based studies, post-acquisition steps (i.e., feature extraction, mass and retention time alignment, 
filtration and normalization) are required before applying multivariate analysis. In our experiments, this process 
reduced the number of features but improved confidence in the annotation. Thereafter, in order to represent 
similarities/dissimilarities in metabolic profiles between the two sample groups (i.e., B. breve DSM 20213 and 
B. breve DSM 20213 + LA) at the end of the growth curve, an unsupervised hierarchical cluster analysis (HCA) 

Figure 1. Growth curve of B. breve DSM 20213 cultivated for 48 h in MRS Cys either with or without addition 
of linoleic acid (LA). LA was added to MRS medium at the final concentration of 0.5 g/L.
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was carried out using the Mass Profiler Professional software (Agilent Technologies). The output of this analysis 
is reported in Fig. 2 as the average value of the three replicates. The clustering produced from the heat map based 
on Fold-Change distribution clearly shows the effect of adding LA on the metabolism of B. breve DSM 20213; 
in particular, it is evident that LA induced a clear reduction in specific groups of compounds and promoted the 
accumulation of other metabolites.

Multivariate analysis supervised methods, such as partial least squares and orthogonal projection to latent 
structures discriminant analysis (i.e., PLS-DA and OPLS-DA, respectively), are typically used following unsu-
pervised tools, such as HCA, to better identify discriminant compounds13. In fact, although unsupervised clus-
ter analysis can reveal differences between classes without supervision (based on intrinsic similarities in their 
measurements), the utilization of a class membership characterizing supervised models allows better separa-
tion between classes in the score space. Additionally, the Y-predictive variability is better separated from the 
Y-uncorrelated in X (i.e., orthogonal signal correction) when OPLS-DA is applied. This analysis was carried 
out including the samples collected at the end of the lag phase, during the log phase and at the stationary phase 
(Fig. 3). Interestingly, although distinct metabolomic profiles could be found at the different points of the growth 
curve within each treatment, two distinct clusters could be identified; these clusters included samples from bac-
teria grown in LA and without LA, respectively. However, although three distinct sub-clusters could be observed 
in cells grown without LA, the samples gained from B. breve DSM 20213 following exposure to LA and gained 
from exponential and stationary phase presented overlapping metabolomic profiles. These patterns suggest that 
the effect of LA addition imposed a metabolic reprogramming in B. breve that could be observed irrespective 
of the growth phase, from the exponential up to the stationary phase. Indeed, the OPLS-DA score plot (Fig. 3) 
indicates that LA-related metabolomic changes were comparable between exponential and stationary phases in 
LA-treated cells. On the contrary, three distinct clusters could be observed in control, each of them corresponding 
to a different growth stage (namely lag, log and stationary phases). The different patterns observed for control 
and LA-treated cells suggest that LA imposed a metabolic reprogramming that was hierarchically prevalent irre-
spective of the growth phase considered and particularly evident starting from the log phase (where the samples 
overlapped - Fig. 3). According to our results, the separation of treatments in the OPLS-DA hyperspace was 
effective, as suggested by model’s validation parameters (R2Y = 0.99 and Q2Y = 0.99). Furthermore, adequate 
cross-validation parameters and permutation test outputs were obtained, thus confirming the robustness of the 
multivariate models. Despite several information related to lag phase are herein provided, it is important to keep 
in mind that several confounding factors may affect the results. Since the bacterial population in this phase is 
represented by an overnight culture inoculum, it is reasonable that cells are not synchronized. Thus, the metab-
olites found in this phase could be released by the dead, damaged and viable cells that constituted the inoculum 
population.

A VIP analysis, followed by fold-change (FC) analysis, was carried out to identify the best discriminants from 
both the following OPLS-DA modelling. By running the relevant features (i.e., FC > 2 and VIP score > 0.8) in the 
Pathway Tools software, the metabolic perturbations induced by LA in B. breve DSM 20213 were computationally 
predicted. Table 1 reports the main biosynthetic pathways highlighted at each sampling point, together with the 
average and cumulative FC values. The cumulative fold change of the metabolisms affected by LA addition is also 
graphically reported as Supplementary File 2.

Figure 2. Unsupervised hierarchical cluster analysis (HCA) of the metabolite profile of B. breve DSM 20213 
+ linoleic acid (LA) vs B. breve DSM 20213 (similarity: ‘Euclidean’; linkage rule: ‘Ward’) following 48 h of 
exposure. Compound intensity was used to build up the heat map, on the basis of which the clusters were 
generated. This figure was generated in Mass Profiler professional version B.12.04 (Agilent technologies).
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As it can be noted differences in metabolic profiles started to be visible at the end of the lag phase, to become 
marked during the log phase. In this latter stage, a general down accumulation could be evidenced in LA treated 
cells, regardless the biochemical class considered. This suggests that the microorganism was facing a stress condi-
tion that impaired its metabolic capability, in agreement with both the reduced growth rate we observed from the 
end of the lag phase (Fig. 1) and the higher generation time observed in LA-treated cells. Senizza and co-authors14 
observed a similar growth reduction, when the same strain, DSM 20213, was exposed to LA. We can therefore 

Figure 3. Supervised Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) score 
plot on the metabolite profile of B. breve DSM 20213 + linoleic acid (LA) vs. B. breve DSM 20213. Samples were 
collected at the end of lag phase, during the log phase and at the stationary phase; individual replications (n = 3) 
are given in the class prediction model score plot. This figure was produced in Simca 13 (Umetrics).

B. breve DSM 
20213 + LA vs 
B. breve DSM 
20213 (lag 
phase)

B. breve DSM 
20213 + LA vs 
B. breve DSM 
20213 (log 
phase)

B. breve DSM 
20213 + LA 
vs B. breve 
DSM 20213 
(stationary 
phase-48h)

Amino acids
LogFC (average) 4 −7 −1

LogFC (cumulative) 34 −52 −17

Fatty Acids and Lipids
LogFC (average) 8 −7 0.8

LogFC (cumulative) 291 −259 31

Carbohydrates
LogFC (average) 5 −12 −0.3

LogFC (cumulative) 31 −72 3

Amines and polyamines
LogFC (average) 5 −11 7.3

LogFC (cumulative) 33 −74 44

Cofactors
LogFC (average) 4 −7 −0.4

LogFC (cumulative) 94 −158 −21

Nucleosides-Nucleotides
LogFC (average) 10 −7 −6.2

LogFC (cumulative) 62 −39 −56

Secondary metabolites
LogFC (average) 0 −10 0.3

LogFC (cumulative) −40 −1422 135

Cell structures
LogFC (average) 11 −6 1.2

LogFC (cumulative) 112 −62 10

Metabolic regulators
LogFC (average) 10 −10 −0.4

LogFC (cumulative) 50 −48 −3

Other biosynthesis
LogFC (average) 7 −7 −1.8

LogFC (cumulative) 66 −70 −41

Table 1. Biosynthetic pathways considering B. breve DSM 20213 + linoleic acid (LA) vs B. breve DSM 20213, 
as resulted by Pathway Tools Omics Dashboard for MetaCyc (www.metacyc.org). Each main pathway 
is provided together with the average Log Fold Change value (LogFC) and the cumulative LogFC value, 
considering lag, log and stationary (48 h) phases.
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speculate that the increased demand to allocate cell resources towards the coping of stress-induced processes 
resulted in such reduction of growth rate following addition of LA.

The VIP variables selection method was used to rank the contribution of each variable for discrimina-
tion purposes, i.e., to highlight the best markers of the OPLS-DA distribution. In particular, the VIP selection 
method allowed reducing the high complexity of the metabolomics-based dataset and listed 1,171 metabolites 
(Supplementary File 1). As provided, 1672 metabolites were characterized by a VIP score > 1 (extremely impor-
tant in the model), while the remaining 895 metabolites showed VIP scores between 0.8 and 1 (moderately 
important in the model). Fold-change values (FC) were produced for discriminant compounds and, finally, this 
list of compounds was exported into the Pathway Tools Omics Dashboard15 for interpretation.

changes induced by LA to primary metabolism and membrane lipids. The rise of ‘omics’ technol-
ogies (such as high-resolution mass spectrometry combined with different chemometric tools) resulted in a huge 
influx of complex, high-resolution datasets, thus complicating the understanding of these data from a biological 
point of view15. Therefore, to reduce the complexity of the metabolomics-based data, the OPLS-DA VIP discrimi-
nant markers were loaded into the Pathway Tools Omics Dashboard. By running the relevant features (i.e., FC > 2 
and VIP score > 0.8) in the Pathway Tools software, the metabolic perturbations induced by LA in B. breve strain 
were computationally predicted. Table 1 reports the main biosynthetic pathways highlighted, together with the 
number of discriminant compounds and the average and cumulative FC values throughout the different stages of 
the bacterial growth curve.

Among others, the primary metabolism involving amino acids, fatty acids and carbohydrates was affected 
by LA addition. Comparable results were observed in B. breve DSM 20213 exposed to LA, at transcriptome 
level14. These authors found that LA impacted the expression of genes involved in carbohydrate and amino acids 
transport. In particular, a negative regulation of genes involved in sugar transport, such as the PTS system and 
permease proteins of ABC transporters rather than oligopeptide permeases. Furthermore, they observed a down 
regulation of a type I multifunctional fatty acid synthase.

As can be observed, secondary metabolites and cofactors were also modulated by LA. Nonetheless, several 
compounds in these classes are involved in more than one pathway, thus complicating the specific understanding 
of their metabolic roles16. However, these alterations suggest that the metabolic reprogramming induced by LA 
was rather wide and also included secondary metabolism processes, some of which are described later.

The ability of B. breve to convert LA into different CLA-isomers has been deeply studied8, with 9-cis, 
11-trans-CLA recognized as the most predominant isomer produced. Consistently, our metabolomics approach 
allowed putatively annotating different CLA isomers (such as 10-trans, 12cis-CLA and 9-cis, 11-trans-CLA). 
However, as reported in Supplementary File 1, the principal CLA isomer (9-cis, 11-trans-CLA) was putatively 
annotated only in B. breve DSM 20213 grown in LA-containing medium to record LogFC values of 3.5 and 15.9 
at log and stationary phases, respectively. Overall, the response of B. breve to the presence of LA is a multifactorial 
process that involves many mechanisms and cellular pathways17.

The most discriminant metabolites highlighted by VIP analysis following OPLS-DA are provided both 
in Table 2 (B. breve DSM 20213 + LA vs B. breve DSM 20213, 48 h of exposure) and supporting material 
(Supplementary File 3). Surprisingly, in our experimental conditions, the addition of LA to the medium showed 
a dramatic influence on amino acid metabolism. In particular, a strong up-regulation trend was found for the 
two sulfur amino acids, L-methionine and L-cysteine, in B. breve DSM 20213 + LA vs B. breve DSM 20213 
(LogFC = 7.0 and 13.0, respectively). Interestingly, L-cysteine was found to possess one of the highest VIP scores 
following OPLS-DA analysis (Table 2), thus confirming its importance for predicting the impact of LA on B. breve 
DSM 20213. Additionally, we noticed a down-regulation trend for L-cystathionine (LogFC = −13.3), a putative 
intermediate of the previously cited amino acids pathway, as reported by Lee and O’Sullivan18 in bifidobacteria. 
Previous literature confirms that LA induces an up-regulation of cystathionine beta lyase metC in B. breve DSM 
2021314.

Such up-accumulation trends recorded for the two sulfur amino acids could indicate that the addition of LA 
has a similar impact on acid pH, as reported by Sanchez et al.19, who studied the influence of acid pH condi-
tions on sulfur amino acid metabolism in Bifidobacterium longum. In addition, Jin and co-authors20 suggested 
improving the acid-resistance of bifidobacteria by adding cysteine and cystathionine into the acid-stress medium. 
Consistently, cysteine has been reported to play a protective role against detrimental effects of LA in B. breve DSM 
2021314. Unfortunately, the reason(s) for these changes remains unclear and further ad-hoc investigations seem 
necessary to confirm these hypotheses.

The earlier time points of the growth curve evidenced a down-accumulation of some amino acids. In more 
detail, the hydrophobic L-valine (LogFC −18) and L-leucine/L-isoleucine (LogFC −20) exhibited negative trends 
at the log phase, and the same trend was observed for the polar amino acid L-histidine (LogFC −18). Other sig-
nificant changes following the addition of LA to the medium were observed for aromatic amino acids, particularly 
when considering the biosynthesis of L-tyrosine and L-tryptophan, at the end of the stationary phase. In fact, these 
two compounds showed LogFC values of 15.0 and 12.4 respectively, at the stationary phase, thus revealing clear 
up-accumulation trends (Table 2). These trends were confirmed by looking at some of the most important bio-
synthesis intermediates, such as 4-hydroxyphenylpyruvate (Log FC = −13.4) and 1-(2-carboxyphenylamino)-1-
deoxy-D-ribulose 5-phosphate (Log FC = −18.6), which are characterized by clear down-accumulated values. 
Taken together, these findings suggest that the addition of LA to the medium might result in the activation of 
the shikimate pathway that is responsible for the metabolism of aromatic amino acids21. Indeed, aromatic amino 
acids could be associated with a stress condition response, as observed by An and co-authors22, who analyzed 
bile-stress responses in B. longum BBMN68. Moreover, hydrophobic amino acids, such as aromatic amino acids, 
could protect proteins against stress mechanisms by building, for example, hydrophobic areas22. Finally, another 
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up-regulation trend was observed at 48 h for L-histidine (Log FC = 7.7), likely arising from the degradation of 
imidazole-lactate, which was found to possess strong down-regulation (Log FC = −14.0).

Unlike for amino acids, the addition of LA did not cause marked changes in carbohydrate metabolism. 
Differences in carbohydrates accumulation were negligible at the earlier points of the growth curve. Thereafter, as 
shown in Table 1, the carbohydrate biosynthetic pathway is characterized by an average FC value = −0.3 at 48 h of 
exposure. Polysaccharides are believed to contrast cell aggregation and adhesion23, suggesting that a decrease of 
these compounds could be a strategy of B. breve DSM 20213 to improve the hydrophobicity and auto-aggregation 
of its cells when exposed to LA. Previously, Shakirova et al.24 reported an increase of cell surface hydrophobicity 
in relation to decreased carbohydrate levels in Bifidobacterium lactis Bb12.

Regarding fatty acids, a significant impact of LA on fatty acid (FA) and membrane lipids profile was observed 
throughout the whole growth curve (Table 1 and Supplementary File 3). In detail, glycolipids and phospholip-
ids with a high degree of unsaturation underwent a complex modulation, with a tendency to up-accumulate 
at the lag phase, followed by down-accumulation starting from the exponential phase (Supplementary File 3). 
Interestingly, different papers described that the modification of membrane composition is among the primary 
effects imposed by LA on bacterial cells14,25. These authors reported that, among others, myristic, stearic and 
lactobacillic acids decreased following LA addiction. In our experiments, we could observe a strong decrease of 
stearic acid (LogFC = −1.0 and −19.0 at the lag and exponential phase, respectively). These changes in membrane 
lipids profile reflect the adaptation of our strain to LA, provided that modification of membrane composition 
plays a pivotal role in membrane fluidity, bilayer thickness and membrane-related functions26. Nonetheless, it is 
known that alteration of cell membrane is a mechanism often adopted by bacteria to cope with stress conditions27.

Regarding FA, we also highlighted an up-accumulation trend for some hydroxy- and oxo-fatty acids, such 
as 18-oxo-oleate (LogFC = 19.0 and 2.0 at the lag and exponential phase, respectively), 18-hydroxy-oleate 
(LogFC = 22.0 and 3.0 at the lag and exponential phase, respectively) and 18-hydroxy-stearate (LogFC = 19.0 
and 1.0 at the lag and exponential phase, respectively). At the late stationary phase (48 h), 2-hydroxytricosanoate 
(LogFC = 1.6), 2-hydroxydocosanoate (LogFC = 1.3), 4-oxopentanoate (LogFC = 12.8), auriculate (LogFC = 1.7) 

VIP score 
(OPLS-DA)

LogFC (B. breve 
DSM 20213 + LA 
vs B. breve DSM 
20213) Accumulation

Amino acids

L-Cystathionine 1.10 ± 1.17 −13.3 Down

L-Homocysteine 0.90 ± 1.19 −0.6 Down

L-Methionine 0.83 ± 1.09 7.0 Up

L-Cysteine 1.45 ± 0.19 13.0 Up

4-hydroxyphenylpyruvate 1.15 ± 1.13 −13.4 Down

Shikimate 3-phosphate 1.22 ± 1.05 −11.5 Down

1-(o-carboxyphenylamino)-1′-deoxyribulose 5′-phosphate 1.45 ± 0.09 −18.6 Down

L-tryptophan 1.30 ± 0.78 12.4 Up

L-tyrosine 1.14 ± 0.79 15.0 Up

Imidazole-lactate 1.15 ± 0.87 −14.0 Down

L-histidine 0.94 ± 1.50 7.7 Up

Fatty acids

9-cis, 11-trans-octadecadienoate 0.95 ± 1.17 15.9 Up

Vernolic acid 1.01 ± 1.23 8.3 Up

2-hydroxytricosanoate 1.05 ± 1.36 1.6 Up

2-hydroxydocosanoate 1.04 ± 1.08 1.3 Up

4-oxopentanoate 0.86 ± 0.61 12.8 Up

Auricolate 1.12 ± 1.41 1.7 Up

16-hydroxy-15-methyl-palmitate 1.21 ± 0.73 17.8 Up

Stress-related compounds

L-sorbosone 1.15 ± 1.32 −14.9 Down

2-phospho-L-ascorbate 1.45 ± 1.04 −17.6 Down

Glutathione amide 0.89 ± 0.87 −8.2 Down

Glutathione amide disulfide 0.92 ± 0.89 −7.1 Down

Glutathione amide perthiol 1.00 ± 1.14 −11.8 Down

Mycothiol 1.41 ± 0.62 −17.9 Down

Mycothiol-bimane conjugate 1.15 ± 1.10 −13.4 Down

2-aminoprop-2-enoate 1.44 ± 1.12 −17.3 Down

Table 2. Discriminant compounds (as resulted by OPLS-DA) better discriminating the changes on primary 
metabolism and redox stress. Each compound is provided together with the corresponding VIP score, LogFC 
value (B. breve DSM 20213 + LA vs B. breve DSM 20213) and accumulation.
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and 16-hydroxy-15-methyl-palmitate (LogFC = 17.8) were also accumulated. Consistently, gut microbiota has 
been reported to produce hydroxy- and oxo-FAs from LA28. Additionally, Fernández-Murga and colleagues29 
noticed in Lactobacillus acidophilus an increase in hydroxyl-fatty acids when this bacterium grows at suboptimal 
temperatures. In particular, they suggested a hypothetical role of these fatty acids in cell membrane permeabil-
ity. In our experimental conditions, we found an increase of epoxides of LA, such as vernolic acid (Table 2 and 
Supplementary File 3). This latter compound had a VIP score > 1 and a LogFC accumulation of 19.0, 2.0 and 8.0 
at the lag, log and stationary phases respectively, thus confirming the importance of this LA-derived metabolite in 
the OPLS-DA prediction model. Interestingly, in a previous work30, some authors reported an increase (up to 37% 
of total fatty acids) of vernolic acid in Lactobacillus helveticus as a response to salt, acid, oxidative and thermal 
stresses, thus outlining a possible correlation of this class of compounds with stress conditions. However, further 
studies (e.g., using targeted analytical approaches) are needed to confirm this trend.

Effect of LA on redox stress. Besides the metabolic reprogramming induced by LA, several discrimi-
nant compounds could be related to redox stress and oxidative imbalance in B. breve DSM 20213. Indeed, the 
coordinated regulation of ubiquinol and menaquinol species starting from the earlier steps of the growth curve 
(Supplementary File 3), together with the changes in ascorbate, glutathione and mycothiol species observed at 
48 h of LA exposure (Table 2), suggests an increased capacity of B. breve DSM 20213 to counteract intracellular 
radical species. At the end of the growth curve, 3-demethylubiquinol-7 and ubiquinol-6 presented LogFC values 
of 8.4 and 16.4 respectively, whereas demethylmenaquinol-7 and demethylmenaquinol-9 exhibited LogFC values 
of 2.9 and 2.1 respectively. The accumulation of membrane-related quinol/quinones such as menaquinols can be 
linked to the need to limit accumulation of superoxide and the production of H2O2

31. Since bifidobacteria lack 
of respiratory chain, NAD+ is regenerated by lactate dehydrogenase and flavoproteins. However, when lactate is 
accumulated (i.e., during the stationary phase), these ways of NAD+ regeneration are replaced by NADH oxi-
dase and/or peroxidase activities, a process that generates toxic H2O2

32,33. More recently, the genome analysis 
of B. breve UCC200334 revealed the presence of a putative bd-type quinol oxidase subunit II gene, coding for an 
oxidoreductase, present also on the B. breve DSM 20213 chromosome. This oxidase has been proposed to protect 
sensitive enzymes and cells from ROS35 and could represent one of the putative mechanisms used by bifidobacte-
ria for limiting the intracellular accumulation of superoxide.

Consistently, a down-accumulation of L-sorbosone (ascorbate precursor, LogFC = −14.9), glutathione amide, 
its disulfide-related and perthiol derivatives (LogFC = −8.2, −7.1 and −11.8, respectively) as well as mycothiol 
and its bimane conjugate (LogFC = −17.9 and −13.4, respectively) were recorded at late stationary phase. These 
low molecular weight thiols normally increase during the late exponential and stationary phases to play an impor-
tant role in redox balance of the cell36. We can therefore speculate that the modulation of these compounds 
represents the adaptive consequence of LA-mediated oxidative stress in B. breve strain. The glutathione-related 
metabolite 2-aminoprop-2-enoate was also altered in presence of LA. Glutathione and other low molecular 
weight thiols are redox buffers known to be involved, in bacteria, in peroxide detoxification processes and early 
adaptation to oxidative stress37. Interestingly, glutathione has also been linked to low pH and other environmental 
stress factors38. Such radical inactivation roles might also involve the thioredoxin system, which has been reported 
to regulate dithiol/disulfide balance in bacteria thanks to its disulfide reductase activity39. Further confirmation 
can be achieved from the reduced content of mycothiol and its derivative. This compound functions as a reserve 
of cysteine and in the detoxification of reactive oxygen and nitrogen species by acting as a thiol buffer protecting 
against disulfide stress40. Notably, Actinobacteria have been linked to a wide diversity of low-molecular-weight 
protective thiols to manage oxidative stress and environmental challenges41. Indeed, transcriptomic evidences 
and ad-hoc growth experiments have demonstrated the protective role of cysteine towards the LA-induced stress 
in B. breve DSM 2021314.

Another clue that relates LA exposure to oxidative imbalance in B. breve DSM 20213 is the trend observed 
for L-sorbosone that suggests a reduced production of ascorbate. Like the previously-mentioned thiols, ascor-
bate has a pivotal role in defending bacteria against oxidative imbalances and has been linked to cell growth42,43. 
Consistently with our postulation, Senizza et al.14 highlighted a strong up-regulation of the gene encoding for 
WhiB-like protein WblE in B. breve DSM 20213 exposed to LA. This protein is an iron-sulfur protein having a 
redox-sensing function, likely functioning as disulfide reductase36, whose gene results up regulated under stress 
conditions. Notably, Wbl proteins have been related to mycothiol and, together with cysteine and glutathione, 
they have been recognized to act as protective factors towards oxidative stress and to play a major role in thiols 
homeostasis by averting disulfide stress36.

Consistent with our postulation, the previously discussed up-accumulation of several hydroxy- and oxo-fatty 
acids throughout the whole growth curve can be related to a reduced capacity to cope with oxidative stress. The 
same can be observed by looking at MDA content. This compound, widely recognized as a marker of lipid per-
oxidation, was significantly higher (p < 0.05) in LA-treated B. breve cells when compared with control, recording 
positive fold-change values during the whole growth curve (p < 0.05, n = 3). In more detail, MDA ranged from 
not detectable values at the lag phase, to fold-change values of 8.2 (17.2 vs 2.1 nM) and 14.9 (19.4 vs 1.3 nM) at the 
log and stationary phases, respectively. Similar trends were reported by Senizza et al. in the same strain in pres-
ence of LA14. Therefore, it is possible to postulate an association between the lipid oxidation phenomena and the 
previously reported reduced growth rate. Indeed, He et al.44 reported that the ability to cope with oxidative stress 
is a key factor in dramatically improving cell survival in bifidobacteria.

Taken together, the clues related to the redox status of B. breve DSM 20213 following LA exposure suggest that 
the bacteria underwent a metabolic reprogramming that resulted in a modulation of the ability to contrast oxi-
dative species. As a consequence, such bacteria experienced an imbalanced regulation of the redox status, which 
might be linked to the reduced growth we observed.
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conclusions
In this work, untargeted metabolomics coupled with multivariate statistics were used to shed light on the impact 
of LA on Bifidobacterium breve DSM 20213 metabolism. To date, most research has focused only on the con-
jugating ability of bacteria and their correlations with the host’s health45. Overall, our findings corroborate the 
hypothesis that the addition of LA to the medium produces a stress/detoxification response. The growth of B. 
breve DSM 20213 was reduced following addition of LA. Metabolomics clearly highlighted distinctive metabolic 
signatures in this strain when the LA was added to the medium. In fact, B. breve DSM 20213 seems to adopt dif-
ferent strategies to survive the addition of LA, via changing its metabolism. However, the response of this strain 
to LA seems to be similar to those induced by other stress factors, such as those involving oxidative imbalance 
and low-molecular-weight thiols, membrane quinones and ascorbate. However, further and more focused work 
is still necessary to deepen the present results, e.g., by using other analytical and complementary approaches such 
as transcriptomic and/or targeted approaches.

Methods
chemicals, strain and culture conditions. Linoleic and formic acids were purchased from Sigma-
Aldrich (St. Louis, USA), while water and methanol (both LC-MS grade) were from VWR (Milan, Italy).

B.breve was obtained from the DSMZ collection (Braunzschweig, Germany). B. breve DSM 20213 was cul-
tured in MRS broth (BD Difco™ Lactobacilli MRS broth, Fisher Scientific) that was modified by adding 0.5 g/L 
L-cysteine-HCl. In order to study the biotransformation of LA into CLA, 0.5 g/L of LA was added to MRS and 
the broth was then filter sterilized (0.22 µm). B. breve DSM 20213 was cultured in triplicate in both MRS and 
MRS + LA at 37 °C for 48 h under anaerobic conditions. Growth curves were built by measuring optical density 
at 600 nm (OD600) every hour in the first 12 h, and then at 14, 16, 24, 36 and 48 h. The generation time was cal-
culated using the number of cells enumerated at the lag phase (3 h for both MRS and MRS + LA), at the log phase 
(5 h and 6 h for MRS and MRS + LA, respectively) and at the beginning of stationary phase (7 h and 8 h for MRS 
and MRS + LA, respectively). Samples were taken at the end of lag phase, during the exponential phase and at the 
stationary phase (3, 5 and 48 h respectively); the cultures in MRS and MRS + LA were quenched in 80% methanol, 
centrifuged at 10,000 × g for 10 min and the pellets obtained were resuspended in 1 mL of sterilized nuclease-free 
water and immediately stored at −20 °C until analysis, while the supernatants were discarded. MRS agar plus 
0.5 g/L L-cysteine-HCl was used for plate counts.

Malondialdehyde (MDA) determination. The MDA content was measured at lag, log and stationary 
phases by using the thiobarbituric acid reactive substance (TBARS) assay, as previously reported46. Pellets were 
obtained from 10 mL of cell culture by centrifuging for 10 min at 10,000 × g. The absorbance at 532 nm was deter-
mined using a Perkin Elmer (Ontario, Canada) Lambda 12 spectrophotometer. For MDA determination, a molar 
extinction coefficient of 155 cm−1 mM−1 was used. Results were finally expressed as nM MDA equivalents (n = 3).

UHPLC-ESI-QTOF untargeted profiling and data processing. The previously obtained resuspended 
cell aliquots were sonicated for 5 min, centrifuged at 10,000 × g for 10 min, and then supernatants were filtered 
using 0.22 μm cellulose syringe filters into amber vials until further analysis. The comprehensive metabolite pro-
file of the extracts was then investigated using UHPLC-QTOF mass spectrometry. In particular, the instrumenta-
tion consisted of a 1290 UHPLC coupled with a G6550 quadrupole-time-of-flight (QTOF) mass spectrometer (all 
from Agilent Technologies, Santa Clara, CA, United States) via a JetStream dual electrospray ionization source. 
Chromatographic separation, source conditions and QTOF instrumental conditions were optimized following 
the methods in previous works47,48. Briefly, an Agilent Zorbax Eclipse Plus C18 column (100 × 2.1 mm, 1.8 μm) 
was used for separation. The mobile phase consisted of a binary mixture of methanol and water. The flow rate was 
set to 0.200 mL min−1 using a gradient of methanol (from 5 to 95%) within 34 min. The injection volume was 6 μL 
and acquisition was carried out in positive full-scan mode, detecting mass features in the range 100–1200 m/z. 
Samples were acquired in “extended dynamic range” mode with a nominal resolution of 40,000 FWHM.

The raw features from UHPLC-ESI/QTOF were processed using Profinder software (version B.07, from 
Agilent Technologies). The find-by-formula algorithm was used to annotate molecular features following mass 
and retention time alignment. The minimum absolute abundance was set to 8000 counts, the mass accuracy was 
5 ppm and the isotope model of “common organic molecules” was chosen. The list of possible molecular formu-
lae was provided by considering their accurate monoisotopic masses (error ≤ 5 ppm) and isotopic patterns (i.e., 
isotopic distribution, space and abundance). These latter were compared to those registered in the comprehensive 
database “MetaCyc”, which was used for annotation purposes. MetaCyc11 (www.metacyc.org) is a non-redundant 
reference database of small molecules containing experimentally verified metabolic pathways and enzyme infor-
mation curated from the scientific literature49. Features were aligned (mass tolerance window: 5 ppm + 2mDa; 
retention time tolerance: 0.15 min) and retained if present in 100% of replicates in at least one condition. This 
post-acquisition filtering-by-frequency process allowed achieving higher confidence for the features that were 
actually present. Finally, the data were log2 transformed and centered to the median of the individual features in 
the dataset. This was done to treat all compounds equally regardless of their abundance.

chemometrics and statistics. Analysis of variance (one-way ANOVA) was carried out using PASW 
Statistics 25.0 (SPSS Inc.) to check for significant differences (p < 0.05) in the MDA content of B. breve DSM 
20213 + LA vs B. breve DSM 20213. Afterward, the metabolomics data were elaborated in MPP following annota-
tions. The abundance of metabolites was normalized at the 75th percentile and then volcano plot analysis was car-
ried out by combining fold-change (FC) analysis (cut-off = 2) and ANOVA (p < 0.01, Bonferroni multiple testing 
correction). Thereafter, an unsupervised statistical approach, Hierarchical Cluster Analysis (HCA), was used as 
previously described47. Furthermore, the raw metabolomics-based dataset was loaded into SIMCA 13 (Umetrics, 
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Malmo, Sweden) for the supervised OPLS-DA approach. Confidence limits of 95% and 99% were used to check 
for the presence of outliers (suspect and strong outliers, respectively, according to Hotelling’s T2 approach), while 
cross-validation (CV-ANOVA, p < 0.01) and a permutation test (N = 500) to exclude overfitting were also car-
ried out. The goodness-of-fit and prediction ability of the OPLS-DA model (i.e., R2Y and Q2Y, respectively) were 
also checked, adopting cut-off values for Q2Y = 0.5, as stated in the literature50. Finally, the VIP variable selection 
method (i.e., variable importance in projection) was carried out to identify those metabolites with the highest 
discrimination potential. Generally, according to software recommendations (Umetrics, Malmo, Sweden), VIP 
markers larger than 0.8 were considered the most meaningful in the prediction model. Finally, a smart table was 
created in MetaCyc (www.metacyc.org) using a targeted list of compounds obtained when considering those VIP 
markers possessing FC values > 2. The smart table was then loaded onto the “omics-dashboard”15 of the online 
tool in order to point out the pathways and processes most affected by the addition of LA to B. breve DSM 20213.
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