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Sucrose transporter (SUT) is a type of transmembrane protein that exists widely

in plants and plays a significant role in the transportation of sucrose and the

specific signal sensing process of sucrose. Therefore, identifying sucrose

transporter is significant to the study of seed development and plant

flowering and growth. In this study, a random forest-based model named

ISTRF was proposed to identify sucrose transporter. First, a database

containing 382 SUT proteins and 911 non-SUT proteins was constructed

based on the UniProt and PFAM databases. Second, k-separated-bigrams-

PSSM was exploited to represent protein sequence. Third, to overcome the

influence of imbalance of samples on identification performance, the

Borderline-SMOTE algorithm was used to overcome the shortcoming of

imbalance training data. Finally, the random forest algorithm was used to

train the identification model. It was proved by 10-fold cross-validation

results that k-separated-bigrams-PSSM was the most distinguishable feature

for identifying sucrose transporters. The Borderline-SMOTE algorithm can

improve the performance of the identification model. Furthermore, random

forest was superior to other classifiers on almost all indicators. Compared with

other identification models, ISTRF has the best general performance andmakes

great improvements in identifying sucrose transporter proteins.
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1 Introduction

Sucrose is a kind of disaccharide, which is formed by the condensation of fructose and

glucose molecules through dehydration and is widely found in various tissues of plants. In

the process of plant photosynthesis, carbon transport is mainly in the form of sucrose (Kühn

et al., 1999). Therefore, the distribution of sucrose directly affects the growth and yield of

plants (Aluko et al., 2021; Mangukia et al., 2021). In terms of physical properties, sucrose is a

non-reducing sugar, which can carry a large amount of carbon. In terms of chemical

properties, its properties are very stable, and it is not easy to combine with other compounds

during transportation, so it has a certain protective effect on carbon. In terms of biological

properties, due to the carbon in sucrose having a higher osmotic potential, the transport

speed of sucrose is faster in a sieve tube. Sucrose transporters affect the transport of sucrose,

which is mainly distributed in parenchyma cells, companion cells, and vacuolar membranes.

They are the mediators of sucrose transport from source leaves to the phloem. In addition,
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sucrose transporters also exist in sink organs, such as stems, seeds,

and fruits. Sucrose transporters can promote sucrose transport

under Pi starvation, salinity, and drought stress (Al-Sheikh Ahmed

et al., 2018). At present, many experts have carried out a lot of

research studies on sucrose transporters and found sucrose

transporters in a variety of plant species, such as rice (Aoki

et al., 2003), maize (Tran et al., 2017), grapevine, and tobacco

(Wang et al., 2019). Endler et al. (2006) discovered a new sucrose

transporter on the vacuolar membrane. They used liquid

chromatography–tandem mass spectrometry to analyze

tonoplast proteins and identified 101 proteins, including

sucrose transporters. By studying the sucrose transporter gene

RUSUT2 in blackberry, Yan et al. (2021) found that the sucrose

content of mature leaves of the transgenic tobacco is enhanced by

the overexpression of RUSUT2. At the same time, they found that

Rusut2 has transport activity and may participate in sucrose

transport during the growth and development of blackberry plants.

With the development of bioinformatics,more andmore scholars

usedmachine learningmethods to identify sugar transporters. Mishra

et al. (2014) developed a new model that incorporated the PSSM

profile, amino acid composition, and biochemical composition of

transporter proteins. The SVM algorithm was used as a classifier to

classify transporters. Based on Mishra’s experiments, Alballa et al.

(2020) used a series of features including position information,

evolutionary information, and amino acid composition to improve

the accuracy and MCC of transporter classification. Ho et al. (2019)

used word embedding technology to extract effective features from

protein sequences and then adopted traditional machine learning

methods to classify a variety of transporters (including sugar

transporters). It has been proved that machine learning can

effectively solve some problems of protein classification. All of the

above studies focused on sugar transporters, while Shah et al.

proposed to use natural language processing technology BERT to

carry out feature extraction of glucose transporters in sugar

transporters and classify three glucose transporters through an

SVM classifier (Shah et al., 2021). Using machine learning

methods to identify special proteins has become a trend, and a

machine learning frame has been employed to identify sugar

transporters. All these previous works guide us to build a frame

for identifying sucrose transporters. In this study, we constructed an

identification model named ISTRF to identify sucrose transporters.

First, a dataset is built. Second, protein sequences are encoded with

k-separated-bigrams-PSSM. Third, the Borderline-SMOTE algorithm

is used to augment the positive samples. Finally, the identification

model is trained by the random forest algorithm.

2 Materials and methods

2.1 Frame chart of ISTRF

In the study, we proposed a novel identification model called

ISTRF, the frame chart of which is shown in Figure 1. First of all,

the sucrose and non-sucrose transporter datasets are obtained

using sequence homology analysis technology based on the

Uniprot and Pfam databases, and then the CD-HIT program

was used to remove redundancy and delete the protein sequences

with more than 60% similarity. The sucrose transporter samples

are construed for the training identification model. Second, we

extracted the k-separated-bigrams-PSSM feature to represent

samples. Third, we augment the positive samples to balance

the training samples by using the Borderline-SMOTE

technology. Finally, we built a random forest-based classifier

that takes the balancing feature vectors as input. In the following

sections, the dataset, feature extraction, sample balancing, and

classifiers will be, respectively, introduced in detail.

2.2 Dataset

In this study, a self-built dataset is constructed and used. To

obtain a reliable experimental result, it is necessary to use a high-

quality benchmark data set, and then the initial data must be

processed strictly and standardly. UniProt (Consortium, 2019)

database is an authoritative protein database, in which we

searched by the keyword “sucrose transporter” to obtain the

initial positive sample data set. From the protein family database

PFAM (Mistry et al., 2021), families containing positive samples

were deleted, and the protein sequence with the longest length

was extracted from every remaining family as a negative sample

to construct the initial negative sample data set. Next, we

processed the initial data set. The first step was to delete the

protein sequences containing illegal characters; the second step

was to delete the protein sequences with a length less than 50; in

the third step, the CD-HIT (Fu et al., 2012) program was used to

remove redundancy and delete the protein sequences with more

than 60% similarity. We eventually obtained 382 SUTs and

9,109 non-SUTs. This data set is extremely unbalanced, so we

divided the negative sample data set into ten equally and took one

as the experimental data, which is 911 non-SUTs. We divided the

data set into an 80% training dataset and a 20% testing dataset

and constructed the dataset as shown in Table 1.

2.3 Feature extraction

In the process of protein identification, feature extraction is a

crucial step (Yang and Jiao, 2021). To improve the identification

performance of the model, we tried to extract features with high

identification and good specificity. In this study, we considered

this problem from two perspectives, namely, physicochemical

properties and evolutionary information. We tried three features

and their various combinations. Finally, the k-separated-

bigrams-PSSM which has the best performance according to

the experimental result is selected as the feature representation

method in our model.
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2.3.1 188D
188D includes the frequency of 20 amino acids and eight

physical and chemical properties (Cai et al., 2003).

The formula for calculating the frequency of 20 amino acids

is as follows:

Fi � Ni

L
, (i � A,C,D, . . . , Y),

where Ni is the number of amino acid type i, and L is the length of

a protein sequence.

The composition, transition, and distribution are used to

describe eight physicochemical properties of proteins (Xiong

et al., 2018; Zou et al., 2019; Masoudi-Sobhanzadeh et al.,

2021). Taking the hydrophobicity attribute as an example,

“RKEDQN” is polar, “GASTPHY” is neutral, and

“CVLIMFW” is hydrophobic. The frequency of each group

can be expressed as follows:

Ci � Ni

L
, i ∈ {polar, neutral, hydrophobic}.

FIGURE 1
Frame chart of ISTRF.

TABLE 1 Self-built dataset.

Dataset SUT Non-SUT

Training dataset 306 729

Testing dataset 76 182
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The transition from polar group to neutral group is the

frequency of polar residue following neutral residue or neutral

residue following polar residue. The transition between the

neutral group and hydrophobic group and the transition

between the hydrophobic group and polar group have similar

definitions. It can be expressed by the following formula:

T(i1, i2) � N(i1, i2) +N(i2, i1)
L − 1

, (i1, i2) ∈
{(polar, neutral), (neutral, hydrophobic), (hydrophobic, polar)}.

The distribution consists of five values, which are the first, 25, 50,

75, and 100% positions of each group of amino acid in the sequence.

2.3.2 PSSM composition
PSSM composition is a feature that describes the

evolutionary information of protein sequences, and it is

also used to identify a variety of proteins (Wang et al.,

2018; Ali et al., 2020; Qian et al., 2021). First, we run the

PSI-BLAST tool (Ding et al., 2014) against the

Uniref50 database with the e-value set to 0.001. We can

obtain the original PSSM profile. Then, we summed the same

amino acid rows together and divided the results by the

number of amino acids in the protein sequence. Finally, a

400-dimensional PSSM composition was obtained.

2.3.3 The k-separated-bigrams-PSSM
The k-separated-bigrams-PSSM is generated from the

original PSSM profile by column transformation. It

represents the transition probabilities from one amino acid

to another amino acid in a protein sequence (Wang et al.,

2020), and the interval of the two amino acids is K. N

represents the PSSM matrix, and L is the number of amino

acids in the protein sequence and also the number of rows in

the PSSM matrix. The transition from the m-th amino acid to

the n-th amino acid can be expressed by the following

formulas:

Tm,n(k) � ∑
L−k

i�1
Ni,mNi+k,n,

where 1 ≤ m ≤ 20, 1 ≤ n ≤ 20, and 1 ≤ k ≤ K.

T(k) � [T1,1(k), T1,2(k), . . . , T1,20(k), T2,1(k), . . . ,
T2,20(k), . . . , T20,1(k), . . . , T20,20(k)].

For each k, T(k) is a 400-dimensional feature that represents

400 amino acid transitions. The k ranges from 1 to 11. When k is

set to 1, it represents the transition probabilities between

neighboring amino acids; when k is set to 2, it represents the

transition probabilities between amino acids with one amino acid

between them.We can obtain k-separated-bigrams-PSSM (k = 1)

and a PSSM-related transformation matrix through POSSUM

(Wang et al., 2017). The website is open, and users can easily

obtain the required features.

2.4 Sample balancing

The training dataset constructed in Section 2.2 is an

imbalance dataset, on which the classifier trained is biased to

identify the unseen sample as the majority class (Shabbir et al.,

2021). Therefore, we use the Borderline-SMOTE algorithm to

balance the feature set. The SMOTE (Chawla et al., 2002)

algorithm is an oversampling technique for synthesizing

minority classes. It uses the KNN algorithm to calculate the k

nearest neighbors of eachminority class sample, randomly selects

N samples, and performs random linear interpolation on the k

nearest neighbors to construct new minority class samples.

However, it does not consider the position of the adjacent

majority class samples, which usually leads to the

phenomenon of sample overlap and affects the classification

effect (Chen et al., 2021). Borderline-SMOTE (Han et al.,

2005) is an improved oversampling algorithm based on

SMOTE. Because the boundary samples are more likely to be

misclassified than those far from the boundary, the algorithm

only oversamples the boundary samples of the minority class. In

the Borderline-SMOTE algorithm, we used the KNN algorithm

with k = 5 to balance the feature set of sucrose transporters, so

that the 306 SUTs and 729 non-SUTs in the training set were

expanded to 729 SUTs and 729 non-SUTs.

2.5 Classifier

In this study, we tried a lot of classification algorithms such as

SVM, naive Bayes, SGD, and random forest (Ao et al., 2022).

Eventually, we selected the random forest as our classifier based

on the experimental results shown in Section 3.3. These machine

learning algorithms can be implemented by the WEKA (Holmes

et al., 1994; Garner, 1995) software. WEKA is an open data

mining platform that can perform data processing such as

classification, regression, and clustering. It contains a variety

of machine learning algorithms and is simple to operate.

SVM is a supervised learning algorithm and is implemented

by the SMO (sequential minimal optimization) algorithm in

WEKA (Vapnik, 2006). The classical SVM algorithm has been

applied to many problems of bioinformatics, especially in binary

classification (Manavalan et al., 2018; Zhang et al., 2019; Ao et al.,

2021; Zeng et al., 2021). The main idea is to find an optimal

segmentation hyperplane and measure the maximum geometric

distance between the nearest sample and the hyperplane so as to

divide the data set correctly. The SMO algorithm is an improved

support vector machine algorithm that aims to improve the

efficiency of the support vector machine. It breaks the large

quadratic programming (QP) problem into many smaller QP

problems and avoids the problem that the time-consuming

numerical QP optimization is used in the inner loop (Platt, 1998).

Naive Bayes is a very classical and simple classification

algorithm (Cao et al., 2003). The idea of the algorithm is also
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very simple. For a given sample to be classified, the probability

that it belongs to the positive sample and the negative sample is

solved firstly. And then the sample will be classified into the

category with the higher probability. It assumes that each input

variable is independent. Although real life cannot meet this

assumption, it is still valid for most complex problems.

Stochastic gradient descent (SGD) is often used to learn

linear classifiers under convex loss functions such as logistic

regression and support vector machines (Bottou, 2010). The SGD

algorithm is proposed to solve the problem that batch gradient

descent needs to use all the samples for each parameter update,

and the speed is slow when the number of samples is large. The

characteristic of the SGD algorithm is that in each iteration, a

group of samples is randomly chosen for training. After N

iterations, it finds out the coefficient which leads to the

minimum error of these models.

Random forest is based on the idea of ensemble learning,

and it integrates multiple decision trees to obtain classification

results (Breiman, 2001). First of all, select k samples repeatedly

and randomly from the original training sample set N to

generate a new training sample set. Then, n decision trees

are generated using the training sample set as input. These

decision trees form a random forest. Each decision tree is a

classifier. As many decision trees as there are, there are as many

classification results. Finally, the random forest integrates the

classification results of n decision trees and identifies the class

with most votes as the classification result of the sample.

Because of this randomness, the random forest has a good

anti-noise capability and is very suitable for processing high-

dimensional data and avoiding overfitting. In many studies,

random forest has shown a good classification effect (Lv et al.,

2019; Ru et al., 2019; Ao et al., 2020; Lv et al., 2020; Petry et al.,

2020; Zhang et al., 2021a).

2.6 Measurement

We used five indicators to evaluate the performance of our

identification model: sensitivity (SN), specificity (SP), accuracy

(ACC), Marshall correlation coefficient (MCC), and F-measure

(Basith et al., 2020; Zhang et al., 2021b; Lee et al., 2021). These

evaluation indicators were the results of the confusion matrix

calculation obtained from the experiment, and the calculation

formula is as follows:

SN � TP

TP + FN

SP � TN

TN + FP

ACC � TP + TN

TP + TN + FP + FN

MCC � (TP × TN) − (FP × FN)																																												(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)√

FR � TP

TP + FP

F −Measure � 2 × SN × PR

SN + PR

where TP represents the number of correctly predicted sucrose

transporters, TN represents the number of correctly predicted

non-sucrose transporters, FP represents the number of

incorrectly predicted sucrose transporters as non-sucrose

transporters, and FN represents the number of incorrectly

predicted non-sucrose transporters as sucrose transporters.

3 Results and discussion

3.1 Performance of different features

As shown in the frame chart of ISTRF in Section 2.1, our

model extracted the k-separated-bigrams-PSSM feature to encode

samples. To prove the effectiveness of our feature extraction

method, we conducted experiments to compare the

performance of different feature extraction algorithms.

Specifically, we selected 188D, PSSM composition, k-separated-

bigrams-PSSM, and their combinations. 188D feature reflected the

frequency of 20 amino acids and eight physical and chemical

properties, while PSSM composition and k-separated-bigrams-

PSSM reflected the evolutionary information of protein

sequences. We used the random forest as a classifier and did

not apply Borderline-SMOTE to the extracted feature, and the

experimental results of different features on 10-fold cross-

validation are shown in Table 2. Bold values in the table

indicate the best results. According to the number of indicators

with the highest value, the number of k-separated-bigrams-PSSM

is 4, the number of combinational features of 188D and

k-separated-bigrams-PSSM is 4, and the number of other

features and combinational features is lower or equal to 1. The

k-separated-bigrams-PSSM has fewer feature numbers than the

combination of 188D and k-separated-bigrams-PSSM; therefore,

the former has the best performance according to the number of

indicators with the highest value. According to the indicator of

ACC and MCC, k-separated-bigrams-PSSM still has the highest

value, and it verified that k-separated-bigrams-PSSM has the best

general performance. Considering the indicator of SN, our used

k-separated-bigrams-PSSM also has themaximum value. It verifies

that our feature extraction method has better performance than

other methods in predicting sucrose transporter protein from

positive examples. Considering the indicator of SP, our feature

extraction method is slightly lower than the combinational feature

of PSSM composition and k-separated-bigrams- PSSM and is

equal to or higher than other methods. However, the indicators

of SN, MCC, and ACC of our feature extraction method are

obviously larger than the combinational feature of PSSM

composition and k-separated-bigrams-PSSM, which verify that
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the combinational feature of PSSM composition and k-separated-

bigrams-PSSM trends to identify a protein as a non-sucrose

transporter protein. Based on the fact that training data are an

unbalanced data set in which negative samples are larger than

positive ones, our feature extraction method is less affected by

unbalanced data. After balancing the training data, the SN of our

feature method is larger than the combinational feature of PSSM

composition and k-separated-bigrams-PSSM, and the detailed

experimental results are shown in Section 3.2. Therefore, from

the overall perspective, our method obviously performs better than

all other methods.

To further illustrate that our feature extraction method also

has better performance using other classifiers, we also conducted

experiments on different features using an SGD classifier. Table 3

shows the experimental results. As we can see from Table 3, our

feature extraction method has better performance than other

methods according to the number of indicators with the highest

value or ACC indicator or MCC indicator. All in all, our feature

extraction method performs better than other feature extraction

methods.

3.2 Experiments on sample balancing

As shown in the frame chart of ISTRF in Section 2.1, the

sucrose transporter database built in this study has more negative

samples than positive ones, and it is an imbalanced dataset that

influences the classification performance of the machine learning

TABLE 2 Result of various feature extraction methods using random forest without Borderline-SMOTE on 10-fold cross-validation.

Feature SN SP ACC MCC F-measure

188D 0.895 0.970 0.948 0.874 0.910

PSSM composition 0.876 0.967 0.940 0.855 0.896

k-separated-bigrams-PSSM 0.925 0.973 0.958 0.900 0.929

188D + PSSM composition 0.895 0.973 0.950 0.878 0.913

188D + k-separated-bigrams-PSSM 0.925 0.973 0.958 0.900 0.929

PSSM composition + k-separated-bigrams-PSSM 0.908 0.978 0.957 0.897 0.927

188D + PSSM composition + k-separated-bigrams-PSSM 0.918 0.973 0.957 0.895 0.926

Bold values in the table indicate the best results.

TABLE 3 Result of various feature extraction methods using SGD without Borderline-SMOTE on 10-fold cross-validation.

Feature SN SP ACC MCC F-measure

188D 0.866 0.951 0.926 0.821 0.873

PSSM composition 0.873 0.956 0.931 0.834 0.883

k-separated-bigrams-PSSM 0.964 0.952 0.956 0.897 0.928

188D + PSSM composition 0.902 0.959 0.942 0.861 0.902

188D + k-separated-bigrams-PSSM 0.912 0.952 0.940 0.857 0.900

PSSM composition + k-separated-bigrams-PSSM 0.905 0.967 0.949 0.877 0.913

188D + PSSM composition + k-separated-bigrams-PSSM 0.912 0.960 0.946 0.870 0.909

Bold values in the table indicate the best results.

TABLE 4 Result of various features using random forest with Borderline-SMOTE on 10-fold cross-validation.

Feature SN SP ACC MCC F-measure

188D 0.989 + 9.4 0.937–3.3 0.963 + 1.5 0.927 + 5.3 0.964 + 5.4

PSSM composition 0.982 + 10.6 0.952–1.5 0.967 + 2.7 0.935 + 8 0.968 + 7.2

k-separated-bigrams-PSSM 0.986 + 6.1 0.970–0.3 0.978 + 2 0.956 + 5.6 0.978 + 4.9

188D + PSSM composition 0.982 + 8.7 0.952–2.1 0.967 + 1.7 0.935 + 5.7 0.968 + 5.5

188D + k-separated-bigrams-PSSM 0.984 + 5.9 0.945–2.8 0.964 + 0.6 0.929 + 2.9 0.965 + 3.6

PSSM composition + k-separated-bigrams-PSSM 0.984 + 7.6 0.957–2.1 0.971 + 1.4 0.941 + 4.4 0.971 + 4.4

188D + PSSM composition + k-separated-bigrams-PSSM 0.985 + 6.7 0.949–2.4 0.967 + 1 0.935 + 4 0.968 + 4.2
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algorithm. We adopted Borderline-SMOTE to augment the

positive samples, and finally the number of positive samples is

equal to negative samples. To verify that Borderline-SMOTE is

effective for our model, we, respectively, conducted experiments

using random forest and SGD on the basis of different features

with Borderline-SMOTE. Experimental results are shown in

Tables 4 and 5. The first number is the experimental result

using Borderline-SMOTE, the second number is the percentage

of increase or decrease relative to one without Borderline-SMOTE,

and the plus sign denotes an increase, while theminus sign denotes

a decrease. By comparing Table 4 with Table 2, we can see that the

performance of features using Borderline-SMOTE is better than

features not using Borderline-SMOTE in all indicators except

indicator SP. The same conclusion is also obtained by

comparing Table 5 with Table 3. In general, the features of

Borderline-SMOTE can improve classification performance.

To further verify that our model can use Borderline-

SMOTE to improve the classification performance, that is,

Borderline-SMOTE is effective in our model. We compared

the performance of our model with Borderline-SMOTE and

TABLE 5 Result of various features using SGD with Borderline-SMOTE on 10-fold cross-validation.

Feature SN SP ACC MCC F-measure

188D 0.966 + 10 0.909–4.2 0.938 + 1.2 0.877 + 5.6 0.939 + 6.6

PSSM composition 0.975 + 10.2 0.938–1.8 0.957 + 2.6 0.914 + 8 0.958 + 7.5

k-separated-bigrams-PSSM 0.997 + 3.3 0.942–1 0.970 + 1.4 0.941 + 4.4 0.971 + 4.3

188D + PSSM composition 0.985 + 8.3 0.931–2.8 0.958 + 1.6 0.918 + 5.7 0.959 + 5.7

188D + k-separated-bigrams-PSSM 0.985 + 7.3 0.931–2.1 0.958 + 1.8 0.918 + 6.1 0.959 + 5.9

PSSM composition + k-separated-bigrams-PSSM 0.984 + 7.9 0.951–1.6 0.967 + 1.8 0.945 + 6.8 0.968 + 5.5

188D + PSSM composition + k-separated-bigrams-PSSM 0.988 + 7.6 0.940–2 0.964 + 1.8 0.928 + 5.8 0.965 + 5.6

FIGURE 2
Results of the model with or without Borderline-SMOTE on 10-fold cross-validation.
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without Borderline-SMOTE on 10-fold cross-validation, and

the experimental result is shown in Figure 2. Except for a slight

decrease in SP, all other indicators improved by 2.0–6.1% in

Figure 2, especially the indicator SN, which improved to its

maximum. The decrease of SP verified that Borderline-SMOTE

avoids our model being biased to classifying samples into

FIGURE 3
ROC curve with or without Borderline-SMOTE. (A) ROC curve without Borderline-SMOTE. (B) ROC curve with Borderline-SMOTE.

FIGURE 4
Results of the model with or without Borderline-SMOTE on the test dataset.
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negative samples. The increase of SN verified that Borderline-

SMOTE improves our model’s identification ability of positive

samples. The improvement of indicators of ACC, MCC, and

F-measure verified that Borderline-SMOTE improved our

model performance from a general perspective. Furthermore,

the ROC curves of our model are plotted in Figure 3, and it can

be seen that ISTRF with Borderline-SMOTE is superior to

ISTRF without Borderline-SMOTE in the prediction of

sucrose transporter protein.

To further evaluate the performance of Borderline-SMOTE

in an unseen data set, we conducted experiments on the unseen

data set. We used the testing set containing 76 sucrose

transporters and 182 non-sucrose transporters to verify the

model, and the experimental result is shown in Figure 4. By

comparing the twomodels without and with Borderline-SMOTE,

it was found that the latter performs better, which proves once

again that Borderline-SMOTE improves the performance of our

model.

3.3 Performance of various classifiers

As shown in the frame chart of ISTRF, we adopt random forest

as a classifier to train the identification model. To verify that

random forest has a better performance than other classifiers, we

compared random forest with SVM,NB, and SGD. Table 6 showed

the experimental result of 10-fold cross-validation using the

k-separated-bigrams-PSSM feature without the Borderline-

SMOTE as input. Table 7 showed the experimental result of

10-fold cross-validation using the k-separated-bigrams-PSSM

feature with the Borderline-SMOTE as input.

In Table 6, although the random forest classifier is slightly

lower than BN on the SN indicator, it is obviously superior to the

other four indicators. According to the number of indicators with

the highest value, random forest obtained the four highest values

and performs better than the compared classifiers. It is seen in

Table 7 that random forest also performs better than the

compared classifiers. All in all, random forest is effective in

identifying sucrose transporter proteins.

3.4 Comparison with existing methods

To further evaluate the performance of ISTRF, our model is

compared with the existing prediction method BioSeq-Analysis

(Liu et al., 2019). The online address for this method is http://

bioinformatics.hitsz.edu.cn/BioSeq-Analysis/PROTEIN/Kmer/.

The SVM and random forest algorithms are used in the BioSeq-

Analysis prediction method. We compared them separately. The

prediction results are shown in Table 8. It can be seen from

Table 8 that our identification model outperforms the compared

models on the indicators of ACC, MCC, and SN. It verified that

our identification model performs better in general.

4 Conclusion

A large number of experiments have proved that sucrose

transporters play an important role in plant growth and crop

yield. Therefore, the identification of sucrose transporters has

become particularly important. With the rapid development of

high-throughput sequencing technology, protein sequences can be

easily obtained. In contrast, traditional biochemical technology

needs a lot of human, material, and financial resources, and the

identification of proteins through bioinformatics methods has

become a popular trend. In this study, we introduced

k-separated-bigrams-PSSM as the input feature, random forest

as the classifier, and the Borderline-SMOTE algorithm to balance

the training set. We achieved 0.978 accuracy, 0.986 SN, 0.970 SP,

0.956 MCC, and 0.978 F-measure on the training set. In order to

verify the effectiveness of the model, the testing set was used for

experiments, and the accuracy was 0.961. In the future, we will

continue to find breakthroughs, optimize the experimental model,

and strive to obtain better results.

TABLE 6 Result of various classifiers using k-separated-bigrams-PSSM
feature without Borderline-SMOTE on 10-fold cross-validation.

Classifier SN SP ACC MCC F-measure

SVM 0.948 0.944 0.945 0.872 0.911

NB 0.984 0.782 0.842 0.703 0.786

SGD 0.964 0.952 0.956 0.897 0.928

RF 0.925 0.973 0.958 0.900 0.929

Bold values in the table indicate the best results.

TABLE 7 Result of various classifiers using k-separated-bigrams-PSSM
feature with Borderline-SMOTE on 10-fold cross-validation.

Classifier SN SP ACC MCC F-measure

SVM 0.997 0.877 0.937 0.880 0.940

NB 0.989 0.774 0.881 0.781 0.893

SGD 0.997 0.942 0.970 0.941 0.971

RF 0.986 0.970 0.978 0.956 0.978

Bold values in the table indicate the best results.

TABLE 8 Experimental result of using different methods.

Model ACC MCC SN SP

ISTRF 0.961 0.907 0.934 0.973

BioSeq-SVM 0.9457 0.8694 0.9079 0.9615

BioSeq-RF 0.938 0.8505 0.8026 0.9945

Bold values in the table indicate the best results.
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