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A B S T R A C T

Background: Exhaled carbon monoxide (eCO) is associated with subclinical and overt cardiovascular disease and
stroke. The association between eCO with left atrial size, prevalent, or incident atrial fibrillation (AF) are
uncertain.
Methods: eCO was measured using an Ecolyzer instrument among Framingham Heart Study Offspring and Omni
participants who attended an examination from 1994 to 1998. We analyzed multivariable-adjusted (current
smoking, and other covariates including age, race, sex, height, weight, systolic blood pressure, diastolic blood
pressure, diabetes, hypertension treatment, prevalent myocardial infarction [MI], and prevalent heart failure
[HF]). Cox and logistic regression models assessed the relations between eCO and incident AF (primary model),
and prevalent AF and left atrial (LA) size (pre-specified secondary analyses). We also conducted secondary an-
alyses adjusting for biomarkers, and interim MI and interim HF.
Results: Our study sample included 3814 participants (mean age 58 ± 10 years; 54.4 % women, 88.4 % White).
During an average of 18.8 ± 6.5 years follow-up, 683 participants were diagnosed with AF. eCO was associated
with incident AF after adjusting for established AF risk factors (HR, 1.31 [95 % CI, 1.09–1.58]). In secondary
analyses the association remained significant after additionally adjusting for C-reactive protein and B-type
natriuretic peptide, and interim MI and CHF, and in analyses excluding individuals who currently smoked. eCO
was not significantly associated with LA size and prevalent AF.
Conclusion: In our community-based sample of individuals without AF, higher mean eCO concentrations were
associated with incident AF. Further investigation is needed to explore the biological mechanisms linking eCO
with AF.

1. Introduction

Exhaled CO (eCO) reflects both endogenous CO production and
exogenous CO exposure, as it rapidly equilibrates across the alveolar-
capillary membrane and exogenous CO from smoking and air pollu-
tion. Carbon monoxide (CO) is an endogenous byproduct of heme
metabolism, which is cytoprotective at physiologic concentrations. At
excess concentrations, CO impairs nitric oxide (NO)-mediated

vasodilation, leads to the formation of reactive oxygen species, promotes
adverse vascular remodeling, and fosters oxidative stress. [1–4]

Studies from the Framingham Heart Study (FHS) have reported that
eCO was associated with traditional cardiovascular disease risk factors,
the presence of metabolic syndrome, and subclinical cardiovascular
disease. [5–7] Higher concentrations eCO were associated with higher
risk of incident stroke, incident metabolic syndrome, and incident car-
diovascular disease. [5,7,8]
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With the increasing incidence and prevalence of atrial fibrillation
(AF), and its association with increased risk of stroke, dementia,
myocardial infarction, heart failure, chronic kidney disease, and death;
[9–17] we sought to assess the association between eCO and AF. We
hypothesized that elevated eCO is associated with incident eCO and
increased left atrial (LA) size. We sought to examine LA size as an in-
termediate phenotypic between eCO and the development of AF. In
secondary analyses we examined additional intermediate factors
potentially linking eCO to AF such as inflammatory or neurohormonal
biomarkers.

2. Methods

2.1. Study sample

FHS is a longitudinal study that originally recruited adults living in
Framingham, Massachusetts in 1948. In 1971 adult children of the
Original cohort, along with spouses were recruited into the Offspring
cohort. The Omni 1, a cohort of individuals from underrepresented
racial and ethnic groups from the area were recruited in 1994. The
design of the study and detailed information about these cohorts is
published elsewhere. [18,19]

The study sample included 4038 FHS participants who participated
in the Omni 1 Exam 1 (1994–1998) and Offspring Exam 6 (1995–1998).
Participants were excluded for missing eCO measurements (n = 52), or
missing covariates (n = 57). In the study of incident AF, participants
with prevalent AF (n= 115) were also excluded. All study protocols used
were approved by the Boston University Medical Center Institutional
Review Board, and written informed consent was obtained from all
participants.

2.2. Measuring exhaled carbon monoxide

Exhaled CO was measured at rest with the Ecolyzer (2000 series)
instrument (Energetics Science Inc., Elmsford, NY), which uses an
electrochemical sensor to quantify the level of CO gas in samples ranging
from 1 to 100 ppm. The Ecolyzer instrument was calibrated to the
midpoint of the scale each day using a canister of CO gas containing
exactly 50ppm. [6,8] Two readings were obtained from each participant
and averaged, and the average Ecolyzer readings minus the base rate of
the ambient CO level of the testing room constituted the eCO. For the
present analyses, we censored exhaled CO levels >50 ppm and used the
average of available eCO measurements from examination cycles 2
through 6 for each participant. The eCO measure is predominantly
reflective of endogenous production of CO with minimal contamination
by ambient exposure, as well as well as being reproducible. [1,6,8]

2.3. Covariates

We adjusted for age, sex, height, weight, current smoking, systolic
blood pressure, diastolic blood pressure, diabetes, hypertension treat-
ment, prevalent myocardial infarction, and prevalent heart failure as
covariates based on the widely replicated CHARGE-AF model. [20,21]

Current cigarette smoking was considered present if the participant
reported use the year before examination. Medications for blood pres-
sure and diabetes mellitus were assessed by self-report. Weight was
measured in kilograms and height in meters. Seated systolic and dia-
stolic blood pressures were measured according to the FHS protocol.
Diabetes was defined as treatment with a hypoglycemic agent, fasting
blood glucose ≥126 mg/dL, or non-fasting glucose of ≥200 mg/dL.
Myocardial infarction and heart failure were adjudicated by a panel of
three physicians using written FHS criteria after reviewing FHS and all
available outside medical records. [22,23]

High-sensitivity C-reactive protein (CRP) and B-type natriuretic
peptide (BNP), were measured at the FHS clinic during the 6th exami-
nation cycle on fasting samples. [24] CRP was measured using a Dade

Behring BN100 nephelometer, and plasma BNP was measured using
high-sensitivity immunoradiometric assays (Shionogi, Japan).

2.4. Outcome events and echocardiographic measures

Participants were designated as having AF if an ECG at an FHS ex-
amination demonstrated atrial fibrillation or atrial flutter or if it was
documented in the participants' outside medical records, interim hos-
pitalizations, outside ECGs, or ambulatory ECG monitoring results. LA
diameter was assessed using M-mode echocardiographic measurements
obtained during the 6th FHS examination. [25]

3. Statistical analysis

Due to the skewness, the eCO levels were loge transformed and
standardized. Descriptive statistics were reported as n (%), mean ± SD,
or if skewed median [25th and 75th percentile]. We examined the as-
sociation between eCO levels and incident AF using Cox proportional
hazards models with robust sandwich estimators, to account for the
relatedness of some participants.

Follow-up times were censored at the last follow-up time at the end
of 2019 or death. The proportional hazards assumption was assessed
using Schoenfeld residuals and the log minus log plots. All models were
adjusted for age and sex. Our primary model was additionally adjusted
for established risk factors associated with AF from the CHARGE-AF
model, [20] described above. In addition, we used the Fine and Grey
model to assess the competing risk of death given the extended follow-
up. For display purposes, we created Kaplan-Meier curves based on
eCO tertiles.

In the secondary analyses, we additionally adjusted for c-reactive
protein and B-type natriuretic peptide. We also adjusted for both interim
myocardial infarction and interim heart failure. We further tested for
effect modification by age (≥65 and < 65 years old), sex (female vs
male), and smoking status (current smoking vs never smoking or prior
smoking). We also examined the association of eCO with LA size using
the linear mixed effect model and the association of eCO with prevalent
AF using generalized estimating equation models. Both models were
adjusted for the same covariates as the primary model.

Statistical significance was considered a two-sided P < 0.05. All
analyses were performed using the R software package version 4.0.3.

4. Results

In the primary analysis, we studied 3814 participants without
prevalent AF. The mean age of the participants was 58 ± 10 years, 54.4
% were women, 88.4 % were White individuals, and 15.2 % currently
smoked (Table 1). The median eCO was 8.2 ppm [ppm, 25th percentile
4.0 and 75th percentile 18.1]. During an average of 18.8 ± 6.5 years
follow-up, 683 participants were diagnosed with AF. The clinical char-
acteristics of participants with prevalent AF, incident AF, and AF-free at
the index examination are shown in Table 1.

As displayed in Table 2, eCO was associated with incident AF after
adjusting for established AF risk factors (HR, 1.31, 95 % confidence
interval [CI], 1.09–1.58). Higher eCO levels were associated with
increased cumulative risk of AF; as can be seen in Fig. 1 the risk of AF
increased with higher tertiles of eCO.

The association remained significant after additionally adjusting for
CRP and BNP, and interim myocardial infarction and heart failure
(Table 2). With regards to the association between eCO and incident AF,
we did not observe statistically significant interactions by age, sex, or
smoking status (Table 3). In particular, eCO was associated with incident
AF in analyses excluding individuals who currently smoked.

We further examined the association of eCO with LA size and prev-
alent AF. As shown in Supplemental Tables 2 and 3, eCO was not
significantly associated with LA size or prevalent AF in either age- and
sex-adjusted models or multivariable-adjusted models.

O.B. Eromosele et al.
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5. Discussion

In our community-based study, we observed that eCO was associated
with incident AF accounting for standard risk factors. In secondary an-
alyses eCO remained associated with incident AF further adjusting for
inflammatory (CRP) and neurohormonal markers (BNP). The associa-
tion between eCO and incident AF persisted accounting for interim
myocardial infarction and heart failure, and for the competing risk of
death. We did not observe significant effect modification in the relation
between eCO and incident AF by age, sex, or smoking status. In the
secondary models, eCO was not significantly associated with either LA
size and prevalent AF.

Prior studies done by FHS reported eCO was associated with tradi-
tional cardiovascular disease risk factors, the presence of metabolic

syndrome, and subclinical cardiovascular disease. [5–7] At higher con-
centrations, eCO was associated with higher risk of incident cardiovas-
cular disease, metabolic syndrome, and stroke. [5,7,8] To our
knowledge, no study has assessed the association between eCO and
incident AF, left atrial size, or prevalent AF. This void in literature was
well suited to be filled by the Framingham Heart Study (FHS), given the
longitudinal routine ascertainment of events in the cohort.

The endogenous production of CO occurs through the constitutive
and inducible action of heme oxygenase (2 and 1, respectively) during
the catabolism of heme. [26] CO has cytoprotective and homeostatic
functions, playing an important role in the human stress response,
especially in the modulation of cellular antioxidant defense and vascular
endothelial injury. [8,26–28] At higher levels, endogenous CO inhibits
the action of endothelial nitric oxide, which is associated with pro-
thrombogenic and pro-inflammatory states, and contributes to car-
diometabolic disease by promoting oxidative stress. [1,4] In animal
models, CO appears to be a modulator of cardiometabolic disease by
promoting hypertension and endothelial dysfunction. [29]

Smoking and pollution are known exogenous contributors to eCO.
The average eCO concentrations in individuals who smoke have been
observed to be significantly higher than those who do not smoke, and in
individuals who do not smoke, the average eCO is significantly higher in
citizens residing in big cities than small towns, suggesting that consistent
exposure to increased concentrations of air pollution and cigarette
smoking affect concentrations of eCO. [30–34] CO concentrations, aside
from their connections to cardiometabolic and vascular pathways,
mirror the heme oxygenase activity involved in CO production during
heme metabolism. [8,35] Heme oxygenase-1 is an increasingly
acknowledged regulator of cardiovascular risk, showcasing notable
cardioprotective effects through its modulation of cardiac inflammatory
processes, cellular signaling, and mitochondrial function. [8,35,36]

Our study findings demonstrate the absence of a statistically signif-
icant association between eCO levels and LA size. Prior studies from FHS
have shown a predictive link between LA size and the development of
AF. [37–43] Consequently, our observation of an association between
eCO and incident AF, without a concurrent association with LA size and
prevalent AF, suggests that the relationship between eCO and incident
AF was not driven by LA remodeling as a predisposing factor for AF
development. [38,39,44–46]

The mechanistic pathways underlying our findings have several
plausible explanations. It is possible that elevated eCO levels might in-
fluence the development of intermediate cardiovascular disease risk
factors that contribute to the etiopathogenesis of AF, such as inflam-
mation, neurohormonal dysregulation, and oxidative stress. [47]
Alternatively, eCO may potentially serve as an indicator of subclinical
disease burden, which in turn could predispose individuals to the
development of AF. It is also possible that our results could be influenced
by false positives or the presence of unaccounted confounding variables,
possibly related to other environmental gases and pollutants that were
not considered in our analytical framework. Subsequent studies are
needed to assess the potential of eCO as a valuable clinical biomarker for
predicting AF risk in specific populations, while exploring the role
modulation of CO or heme oxygenase pathways may offer into reducing
AF risk. [8]

6. Limitations and strengths

The quantification of exhaled carbon monoxide (CO) levels can be
influenced by various factors related to both micro- and macro-
environmental exposure to combustion byproducts. [7,48,49] In our
study, we acknowledge that our data lacked reliable measurements
pertaining to second-hand smoke exposure, occupational smoke expo-
sure, or environmental influences, such as ambient air pollution.
Furthermore, we did not possess individual- or regional-level data on
contemporaneous atmospheric CO levels. [7,49]

Although current smoking status was ascertained through

Table 1
Baseline characteristics of the study participants.

Variable Participants without prevalent AF
n = 3814

Age, years 58 ± 10
Women 2075 (54.4 %)
Race

White 3372 (88.4 %)
Black 162 (4.2 %)
Asian 73 (1.9 %)
Other 207 (5.4 %)

Hispanic ethnicity 189 (5.0 %)
Height, cm 167 ± 10
Weight, kg 78 ± 17
Current smoking 578 (15.2 %)
Systolic blood pressure, mmHg 128 ± 19
Diastolic blood pressure, mmHg 75 ± 10
Antihypertensive medication use 1011 (26.5 %)
Diabetes mellitus 358 (9.4 %)
Prevalent myocardial infarction 122 (3.2 %)
Prevalent heart failure 24 (0.6 %)
Left atrium diameter (cm) 4.0 ± 0.5
CRP, mg/L, median [25 %, 75 %] 2.0 [0.9, 4.7]
BNP, pg/mL, median [25 %, 75 %] 8.2 [4.0, 18.1]
eCO, ppm, median [25 %, 75 %] 4.5 [3.8, 6.5]
Ln (eCO) 1.7 ± 0.6

Values are represented as n (%) for dichotomous variables or mean ± standard
deviation (SD) for continuous variables or median [25th, 75th percentile] for
skewed continuous variables.
All values for exhaled carbon monoxide (eCO) are the average values taken from
examinations 2 through 6. CRP, C-reactive protein; BNP, B-type natriuretic
peptide.

Table 2
Association of eCO with incident AF.

Adjustment #Referents Incident
AF, n

HR 95 % CI P

Age and sex 3131 683 1.35 1.18–1.54 <0.001
Multivariable* 3131 683 1.31 1.09-1.58 0.005
Multivariable, CRP,

and BNP
2596 637 1.23 1.00–1.50 0.05

Multivariable,
interim MI, and
interim HF

3131 683 1.29 1.07–1.56 0.008

Multivariable*
accounting for
competing risk of
death

3131 683 1.24 1.10–1.51 0.002

HR: Hazard ratio, expressed as one unit of loge exhaled carbon monoxide (eCO);
CI: confidence interval; P-values listed were not adjusted for multiple testing.
CRP, c-reactive protein; BNP, B-type natriuretic peptide, MI, myocardial
infarction; HF, heart failure.

* Multivariable models included age, sex, smoking, height, weight, systolic
blood pressure, diastolic blood pressure, antihypertensive treatment, diabetes
mellitus, prevalent myocardial infarction, and prevalent heart failure.
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questionnaires, there remains a possibility of misclassification due to
misreporting of current smoking, inaccuracies in prior smoking history,
or the inability to account for secondhand smoke or for environmental
pollutants, such as nitric oxides or sulfur oxides [8]. Ambient air
pollution, known to contain CO and contribute to atherosclerotic
vascular disease, presents a complex issue influenced by factors such as
automobile type, proximity to major roadways, and home heating
methods like kerosene stoves, further complicated by evolving trends
indicating decreasing CO concentrations in ambient air in recent de-
cades [49–53].

Hence, it is imperative to acknowledge that our analyses did not
encompass a comprehensive assessment of CO exposure histories. To
better address this issue, future epidemiological studies assessing stroke
risk may consider the use of environmental or personal sensors to ac-
count for exogenous CO exposure and explore the role of other air pol-
lutants in a more nuanced manner more comprehensively. Also, being
an observational study, residual confounding cannot be fully excluded;
hence causal relationships cannot be established. In addition, our
prevalent AF analyses may have been underpowered. Left atrial mea-
surements were made by M-mode echocardiogram and may have mis-
classified left atrial size.

Most participants were of European ancestry, from New England in
the US, with ages ranging from middle to older-aged adults; the gener-
alizability to other ages, regions, and other races and ethnicities is un-
certain. There was also limited information about the types of AF (e.g.,
paroxysmal vs. persistent, etc.). We acknowledge that AF is frequently
clinically unrecognized, and we undoubtedly failed to detect some
incident AF. In addition, we assessed eCO at a single time point, which

occurred in some cases many years prior to incident AF.

7. Conclusion

Our study observed an association between eCO and incident AF
after adjusting for known AF-related risk factors. There is a need for
more research to better understand how eCO may contribute to the
pathogenesis or prediction of AF.
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