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SUMMARY

The oral microbiome has been implicated in a growing number of diseases; how-
ever, determinants of the oral microbiome and their roles remain elusive. Here,
we investigated the oral (saliva and tongue dorsum) metagenome, the whole
genome, and other omics data in a total of 4,478 individuals and demonstrated
that the oral microbiome composition and its major contributing host factors
significantly differed between sexes. We thus conducted a sex-stratified meta-
genome-genome-wide-association study (M-GWAS) and identified 11 differen-
tial genetic associations with the oral microbiome (psex-difference < 5 3 10�8).
Furthermore, we performed sex-stratified Mendelian randomization (MR) ana-
lyses and identified abundant causalities between the oral microbiome and
serum metabolites. Notably, sex-specific microbes-hormonal interactions
explained the mostly observed sex hormones differences such as the significant
causalities enrichments for aldosterone in females and androstenedione in
males. These findings illustrate the necessity of sex stratification and deepen
our understanding of the interplay between the oral microbiome and serum
metabolites.

INTRODUCTION

The gut microbiome has been referred to as our ‘‘other genome’’, due to its integral role in human health.

The oral microbiome can colonize the intestines1 and has also been implicated in a growing number of dis-

eases2–4 beyond dental caries5 and periodontitis.6 Many studies have indicated that host factors, such as

sex, body mass index (BMI), lifestyle, and sociodemographic differences, may influence the gut micro-

biome composition.7–10 However, there are limited studies on the various contributing factors to the

oral microbiome variability,11–13 andmost of themwere conducted on small collection samples and utilized

16S rRNA gene amplicon sequencing for the oral microbiota, whereas previous studies suggested that 16S

rRNA cannot achieve the taxonomic resolution afforded by sequencing the entire gene.14 Therefore,

unraveling the factors that shape and define the oral microbiome in a well-designed cohort is crucial for

the understanding of both oral and broader systemic health.

The 4D-SZ cohort is a well-designedmulti-omics cohort,15–18 with shotgun data for themetagenome across

multiple body sites and the host genome, as well as metabolic traits, detailed questionnaires, and clinical

information. Based on the cohort, we found host genetics significantly contributed to the gut microbiome15

and identified 58 causal relationships between blood metabolites and the gut microbiome16 in a total of

3,432 individuals. In addition to the gut microbiome-related studies, we have constructed a high-quality

oral genome catalog17 and further confirmed the impact of the host genome on the oral microbiome18

by aligning metagenome data to the oral genome catalog. Notably, multiple studies including our recent

paper showed evidence for the sex-specific effect on the gut microbiome.15 Sex differences in the gut

microbiome were proposed to mainly be driven by sex hormones,19,20 which in turn contribute to sex dif-

ferences in immunity and susceptibility to diseases.7,21–23 Therefore, based on our previous good research

results and the evidence of sex explaining the variance of oral microbiome composition,13,17,18 we aimed to

comprehensively dissect the sex differences in the oral microbiome, host traits (mainly blood metabolites,

such as sex hormones), and their causal relationships in the 4D-SZ cohort.
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This paper analyzed a whole-genomic and metagenomic shotgun sequencing dataset in a total of 4,478

individuals (3,504 saliva and 3,694 tongue dorsum) from the 4D-SZ cohort, along with host factors (anthro-

pometric measurements, diet, periodontal conditions, routine blood tests, serum metabolome, and other

metadata), to investigate the effect of sex on the oral microbiome composition (Figure S1; a study overview

panel). We first identified sex-specific oral microbiome and host major factors that were significantly

associated with the oral microbiome. We then performed a sex-stratified metagenome-genome-wide-as-

sociation study (M-GWAS) analysis for identifying sex-specific host genetic loci. Using significant genetic

variants identified by sex-stratified M-GWAS as instrumental variables, we further took Mendelian random-

ization (MR) analysis to excavate sex-specific causal relationships between the host factors, especially

serum metabolites, and oral microbes. To the best of our knowledge, this paper is the first to use

M-GWAS and MR to study the sex effect on the oral microbiome. This study not only provides a reference

for the subsequent mechanism research on sex-specific differences in the oral microbiota but also helps to

develop microbiota-targeted therapeutic interventions according to sex.

RESULTS

The oral microbiome differed between sexes

The oral microbial species profile for the 4D-SZ (a multi-omics cohort15–18 sequenced in Shenzhen with

3,504 saliva and 3,694 tongue dorsum samples, among which 3,165 individuals had both sample types;

Table S1), according to alignment to a previously well-constructed high-quality oral genome catalog,

was highly representative of the oral microbiome including uncultured strains as well as potentially parasitic

bacteria of the candidate phyla radiation (CPR).17 Among the 384 host traits (anthropometric and serum

metabolites, etc.), sex was a significant factor associated with the oral microbiome composition (PERM-

ANOVA24 test, p = 2 3 10�4 for both saliva and tongue dorsum, Table S2). 1,393 (38.834%) of the total

3,589 species-level genome bins (SGBs) in saliva and 1,416 (39.476%) SGBs in tongue dorsum were signif-

icantly different between males and females (multivariate linear model, false discovery rate [FDR] < 0.05)

after adjusting for age, BMI, medication, supplements, and mouthwash frequency (see STAR Methods).

903 of the sex-differential SGBs were shared by saliva and tongue dorsum samples (Table S3). In saliva,

women exhibited more Streptococcus (20.028%, SGBs number of female/male enrichment = 266:13),

Prevotella (5.743%, female:male = 60:20), and Granulicatella (3.230%, female:male = 37:8). In contrast,

men’s saliva showed more Campylobacter A (9.045%, female:male = 46:80), Veillonella (5.096%, female:-

male = 56:15), Porphyromonas(2.799%, female:male = 1:38), andOribacterium (2.727%, female:male = 1:37)

(Figures 1A and 1B). In the tongue dorsum, some genera extended the sex differences. Notably, women

showedmore Streptococcus (12.711%, female:male = 146:34), Lancefieldella (7.768%, female:male = 107:3),

Prevotella (6.850%, female:male = 81:16), Granulicatella (3.531%, female:male = 38:12), and Pauljensenia

(4.802%, female:male = 59:9), while men’s tongue dorsum showed more Campylobacter A (10.734%, fema-

le:male = 60:92), Porphyromonas (3.178%, female:male = 0:45), Capnocytophaga (2.966%, female:-

male = 0:42), Fusobacterium (5.014%, female:male = 1:70), andOribacterium (2.471%, female:male = 6:29)

(Figures 1C and 1D). These sex-differential SGBs showed good discriminated efficiency for sex groups, with

the average area under the receiver operating characteristic (ROC) curve (AUC) = 0.878 (95% confidence

interval [CI]: 0.866–0.890; Figure S2) and AUC = 0.818 (95% CI: 0.804–0.833) in saliva and tongue dorsum

samples, respectively. When splitting into the discovery and replication cohorts (Table S1), the differentially

abundant species between males and females identified in the discovery cohort can also discriminate the

sex groups in the independent replication cohort with the same, even slightly higher, accuracy (AUC; Fig-

ure S3 and Table S4), again suggesting the robustness and the critical roles of the oral microbiome in the

discriminating sex.

Major factors associated with the oral microbiome differed between sexes

To identify the contributing factors to the microbiome composition, we first examined the variance of the

microbiome composition explained by each factor. We identified 158 and 129 host factors, including host

physiological, lifestyle, and blood metabolites, which were significantly associated with saliva microbiome

and tongue dorsum, respectively (FDR < 0.05) (Table S2 and Figure S4). Dental calculus (explained 1.3% of

the variance for saliva microbial composition, 1.24% for tongue dorsum), the bleeding frequency of gums

(0.87% for saliva, 0.3% for tongue dorsum), and high-fat and high-sugar diet frequency (0.88% for saliva,

1.3% for tongue dorsum) were among the most important factors associated with the oral microbiome

compositions (Figure 2 and Table S2). We further investigated the correlation between the relative

abundances of each oral microbial taxa and each host metabolic trait using multivariate linear regression.

After adjustment for sex, age, and other confounders (see STAR Methods), we observed 3,843 and 3,963
2 iScience 26, 105839, January 20, 2023
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Figure 1. The oral microbiome differed between sexes

(A) Boxplot of represented sex-specific SGBs for the salivary microbiome. The top 15 important (ranked by five-fold random forest classifier for sex) females-

or males-enriched SGBs with p < 1 3 10�8 (GLM test with adjusting confounders) were shown.

(B) SGBs number of female/male enrichment for the salivary microbiome.

(C) Boxplot of represented sex-specific SGBs for tongue dorsum microbiome. The top 15 important (ranked by five-fold random forest classifier for sex)

females- or males-enriched SGBs with p < 1 3 10�8 (GLM test with adjusting confounders) were shown.

(D) SGBs number of female/male enrichment for tongue dorsum microbiome.
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Figure 2. Host major factors associated with the oral microbiome differed between sexes

The top 52 host major factors correlated with microbiome composition for each oral niche between sexes were shown using the PERMANOVA test (based on

bray distance, 4,999 permutations). Major factors were ranked based on variance explanation (R2) from the females’ saliva profiles. Stars on the bar

represented the major factors well explained the microbiome composition in the PERMANOVA test. ** for Benjamini-Hochberg (BH) significance Q < 0.01, *

for Q < 0.05, + for Q < 0.1. Triangle represented the significant differences between beta-diversity-based F statistics of females and those of males at

Q < 0.001, by applying a bootstrappingmethod to estimate the dispersion of differences in themicrobiota community (Methods). 27 of the top 52 host major

factors explained the variance of microbiome compositions largely differed between sexes, with the red upper triangle representing stronger correlations in

females, while the blue lower triangle representing stronger correlations in males.
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significant correlations between host metabolic traits and salivary and tongue dorsum microbiota, respec-

tively (FDR < 0.05, Table S5), which as a prerequisite suggested a possible strong causality in the subse-

quent MR analyses.

When stratified by sex, dental calculus explained a larger variance of the tongue dorsum microbial

composition in females than males; however, the bleeding frequency of gums and high-fat and high-

sugar diet frequency explained larger variances of the salivary microbial composition in females

(n = 2,509) than males (n = 1,955) (Figure 2 and Table S6). Blood urea nitrogen (BUN) was among the

top 10 factors (0.6% for saliva, 0.8% for tongue) and explained a larger variance of microbial composition

in females for both saliva and tongue dorsum samples. Urea entering the mouth is hydrolyzed to carbon

dioxide and ammonia by bacterial ureases.25 The positive association between BUN and Haemophili

strains and the negative association between BUN and Streptococcus strains supported the ureolytic ac-

tivity of Streptococcus25 (Table S5). Factors such as folic acid, triglyceride, BMI, hyperlipidemia, fatty

liver, fasting blood sugar, and basal metabolic rate had stronger associations in males than in females

(Figure 2). Besides, female-specific factors (age of menarche, the menstrual cycle, pregnancy, lactation,

menopause; 0.1%–0.7% for saliva, 0.1%–1.2% for tongue), dietary structure (0.1% for saliva, 0.1% for

tongue), and oral lifestyle (number of brushing, flossing frequency; 0.3%–0.4% for saliva, 0.2%–0.3% for

tongue) were all found to be important factors for the oral microbiome (Figure S4 and Table S6). Serum

steroid metabolites (aldosterone, progesterone, corticosterone, testosterone; 0.1%–0.4% for saliva,

0.1%–0.4% for tongue) and biomarkers of female-specific factors were also found to be important and

will be described in detail in the MR analyses.
4 iScience 26, 105839, January 20, 2023
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Figure 3. Sex-stratified M-GWAS identified sex-specific signals for the oral microbiome

(A and B) Sex-stratified M-GWAS identified sex-specific signals for the salivary (A) and tongue dorsum (B) microbiome. Male-specific associations

represented the M-GWAS results with p < 5 3 10�8 in males but p > 0.05 in females and psex-difference < 0.05. Female-specific associations represented the
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Figure 3. Continued

M-GWAS results with p < 5 3 10�8 in females, p > 0.05 in males, and psex-difference < 0.05. The most significant sex-differential M-GWAS associations

(p < 5 3 10�8 in one sex but p > 0.05 in the other sex, and psex-difference < 5 3 10�8) were listed using genes and associated microbial taxa and marked in

red lines. The gray solid line represented the sex-differential p cut-off of 0.05 and the gray dotted line represented the sex differential p cut-off of

5 3 10�8.
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Many of the differences in beta-diversity metrics (40%) between sexes were supported by both saliva and

tongue dorsum samples (Figures 2 and S5A; Table S6). These data were further analyzed by using the

generalized linear model (Table S5). This model confirmed the sexual dimorphic associations of metabo-

lites with microbiota. Themetabolite showing the greatest difference in the association with the oral micro-

biome between males and females was glutamic acid (Figure S5B). The average concentration of glutamic

acid in males is 1.39 times higher than that in females when calculating sex difference of host traits

(Table S7). These results indicated sexual dimorphism of oral microbial biodiversity as measured by the

variance of beta diversity explained by host traits.

Human genetic associations with the oral microbiome include associations with the sex

chromosomes

Sex-combined M-GWAS analyses of the 4D-SZ cohort identified 340 and 374 independent loci significantly

associated with tongue dorsum and salivary microbiome (p < 5 3 10�8), respectively.18 17 of the loci asso-

ciated with the tongue dorsummicrobiome and 14 of the loci associated with the salivary microbiome were

located in the X chromosome (Table S8). For example, in M-GWAS for tongue dorsum samples, the abun-

dance of genus Leptotrichia Awas associated with theWDR44 gene, which encodes a protein that interacts

with the small GTPase rab11. Haemophilus influenzae, the most common pathogen causing asthma,26 was

associated with a deletion near the FAM9C gene, which has been reported to be associated with asthma.27

In M-GWAS for salivary samples, Veillonella parvula, related to the autoimmune disease rheumatoid

arthritis (RA)2 which is more prevalent in females, was associated with SNPs near the SMARCA1 gene.

Although the sample size became smaller, stratifying the individuals by sex could reduce heterogene-

ity28,29 and help obtain sex-differential signals from M-GWAS. Sex-stratified M-GWAS for salivary samples

identified 327 male-specific independent associations (Table S9 and Figure 3A; p < 5 3 10�8 in males;

p > 0.05 in females and psex-difference < 0.05; independent loci defined as distance <1MB and r2 < 0.1)

and 277 female-specific associations (p < 5 3 10�8 in females; p > 0.05 in males and psex-difference < 0.05)

in the discovery dataset. Apart from the associations involving the variants not found in the low-depth data-

set (Table S1), 13 of the 242male-specific and 14 of the 216 female-specific associations could be replicated

in the same direction of the minor allele in the same sex (p < 0.05). The strongest female-specific associa-

tion was observed for rs1410336242 near the LOC105371703 gene (bfemale = 0.22, pfemale = 1.30 3 10�12

compared with bmale = �0.06, pmale = 0.08; psex-difference = 1.68 3 10�9, Figure 3A) associated with genus

Eggerthia. Seven male-specific associations were observed with marginal psex-difference < 5 3 10�8:

rs142374260 at LALBA-KANSL2 with F0040 uSGB 94; rs370266368 at L3MBTL4 with Treponema C uSGB

1992; rs756149092 at UPF2-DHTKD1 with uSGB 2747 belonging to family Bacteroidaceae; rs147250707

at AKNA with Fusobacterium periodonticum C; rs11739353 at LOC101928651 with CAG-793 uSGB 3551;

rs1206782373 at DACH2 with Solobacterium spp.; and rs74694053 at LOC105377143-KBTBD8 with uSGB

1945 belonging to family Cardiobacteriaceae. Both Solobacterium and Carnobacteriaceae in the oral

cavity showed associations with a reduced risk of colorectal cancer (CRC).17

For the tongue dorsum, we identified 339 male-specific and 269 female-specific independent associations

(Table S9 and Figure 3B; p < 5 3 10�8 in one sex but p > 0.05 in other sex; psex-difference < 0.05). Except for

the not found variants in the low-depth replication dataset, 18 of the 247 (18/247) available male-specific

associations and 15/197 female-specific associations could be replicated in the same direction of the minor

allele in the same sex (p < 0.05), showing a stronger replication power than for saliva. Three male-specific

associations were observed with marginal psex-difference < 5 3 10�8 but none for female-specific associa-

tions. They are rs192945350 at KCNH5-RHOJ associated with F0040 uSGB 1289; chr10:99050952 at

HPSE2 associated with Haemophilus D spp. that were depleted in individuals with RA2; and rs9532851 at

RGCC-VWA8 associated with Pauljensenia spp., a genus recently renamed from Actinomyces,30 which

was previously identified as highly predictive of RA and a decreased risk of CRC.17

In addition to the sex-specific associations including the 11 top associations with psex-difference < 5 3 10�8,

we also investigated sex-specific pathways based on sex-specific loci (Table S10). For the salivary
6 iScience 26, 105839, January 20, 2023
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microbiome, the male-specific associated SNPs were mainly enriched in 6 pathways in KEGG or

REACTOME database (p < 0.05 in DAVID tools). These pathways were hsa00510: N-Glycan biosynthesis,

hsa04514: cell adhesion molecules (CAMs), hsa01100: metabolic pathways (for example carbohydrate

metabolic process fromGOdatabase), hsa04015: Rap1 signaling pathway, hsa01230: biosynthesis of amino

acids, and R-HSA-205017: NFG and proNGF binds to p75NTR. These results supported previous findings

that the males exhibited more abundant N-glycans31 and tend to oxidize more total carbohydrate32

than females. The female-specific associated SNPs enriched pathway included R-HSA-167060: NGF

(nerve growth factor) processing, GO:0045596�negative regulation of cell differentiation, and

GO:0007507�heart development that indicated the sex-specific modification on cardiac gene expres-

sion.33 For the tongue dorsummicrobiome, the male-specific associated SNPs were clustered into heparan

sulfate/heparin-glycosaminoglycan (HS-GAG) metabolism-related pathway, such as R-HSA-2024096: HS-

GAG degradation, R-HSA-2022928: HS-GAG biosynthesis, R-HSA-1971475: a tetrasaccharide linker

sequence is required for GAG synthesis, and hsa04722: neurotrophin signaling pathway. Studies have

indicated that some functions or action mechanisms of brain-derived neurotrophic factors vary in a sex-

dependent manner and may be modulated by sex hormones.34,35 The female-specific associated SNPs

were enriched in 6 pathways including hsa04261: adrenergic signaling in cardiomyocytes, hsa04024:

cAMP signaling pathway, hsa05032: morphine addiction, hsa05033: nicotine addiction, hsa04973: carbohy-

drate digestion and absorption, and hsa04725: cholinergic synapse. Sex-specific adrenergic signaling in

cardiomyocytes again suggested sex dimorphism in cardiac functions.33,36 The cholinergic synapse

transmission also showed sex dimorphism in adult C. elegans.37
MR identified causal relationships between the oral microbiome and host traits

With the strong genetic associations with the oral microbiome, we next performedMR to identify potential

causal relationships between host traits and oral microbes. Sex-combined one-sample MR analyses iden-

tified 502 and 290 significant causal relationships between host traits and the salivary or tongue dorsum

microbiome, respectively (Table S11; Bonferroni adjusted p < 0.05 for the 3,843 and 3,963 observationally

significant correlations between host traits and the salivary and tongue dorsum microbiota, respectively).

85.5% (429/502) of the host traits-salivary microbiome causalities and 57.6% (167/290) of the host traits-

tongue dorsum microbiome causalities were replicated in the MR analysis on the replication cohort (in

the same direction with p < 0.05; Table S11), reinforcing these causal effects. A majority of the causalities

lay in the bleeding frequency of gums and dental calculus, in agreement with our above finding that they

explained most for oral microbial compositions. Our MR identified the causal effects of periodontal path-

ogens in both niches such as Porphyromonas endodontalis (Figure S6; b = 0.285, p = 2.693 10�10 for saliva;

b= 0.266, p = 1.133 10�11 for tongue), Prevotella intermedia (b= 0.196, p = 1.043 10�6 for saliva; b= 0.201,

p = 2.92 3 10�7 for tongue), Treponema B denticola (b = 0.226, p = 8.75 3 10�7 for saliva; b = 0.211, p =

1.143 10�7), and Fusobacterium nucleatum (b = 0.168, p = 1.213 10�3 for saliva; b = 0.139, p = 2.433 10�3

for tongue) on the bleeding frequency of gums and dental calculus, and the reverse effects were also true.

These causal relationships were robust and well replicated in the replication dataset (Figure S6). In

addition, we found several cardiometabolic-related factors, such as chromium,38 creatine,39 cystine,40

and glutamic acid41 causally linked to the abundances of a few oral microbiota (Table S11). For example,

chromium (b = �0.158, p = 4.25 3 10�6), cystine (b = �0.247, p = 1.14 3 10�12), and cystathionine

(b = �0.252, p = 3.50 3 10�10) negatively correlated with the abundance of Lactobacillus, while creatine

(b = 0.327, p = 1.52 3 10�13) and glutamic acid (b = 0.345, p = 2.46 3 10�17) positively correlated with

the abundance of Lactobacillus in salivary samples, which suggested that the human circulating metabo-

lites were also important for Lactobacillus residing in the oral cavity. These causalities inferences were in

line with the experimental verification that blood chromium could be reduced by using gut lactobacillus,42

which directly catalyzed the generation of L-cysteine persulfide from L-cystine and generation of L-cysteine

from cystathionine.43

Sex-stratified one-sample MR identified 62 male-specific and 45 female-specific causal relationships be-

tween the salivary microbiome and host traits (Figures 4A and 4B; Table S11), as well as 27 male-specific

and 36 female-specific causal relationships between the tongue dorsum microbiome and host traits

(Figures 4C and 4D; Table S11). These sex-specific causalities were those significant in one sex (Bonferroni

adjusted p < 0.05) but not significant in the other (p > 0.05) and exhibiting significant differences between

sexes (psex-difference < 0.05). Oral hygiene practices and diets showed different effects between males and

females. Mouthwash exhibited a negative effect on Lachnoanaerobaculum uSGB 1301 and Oribacterium

spp. in saliva only for males, and species belonging to these two genera were associated with low uric
iScience 26, 105839, January 20, 2023 7
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Figure 4. Sex-stratified MR results were identified for the oral microbiome

(A–D) Left panels showed the causal effects of host phenotypic traits (serum metabolites etc.) on the salivary (A) and tongue dorsum microbiota (C),

respectively. Right panels showed the causal effects of the salivary (B) and tongue dorsum microbiota (D), respectively, on host phenotypic traits (serum

metabolites, etc.). The cells marked with ‘‘**’’ represented the p value of sex difference less than 0.01, while ‘‘*’’ represented the p value of sex difference less

than 0.05. Each part had two groups, representing significant MR results in males (blue) or females (orange), respectively.
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acid determinator SLC2A9 in our recent study.18 Mouthwash was also positively correlated with Rothia

sp001808955 in males and negatively associated with Granulicatella uSGB 3045 in females for the tongue

dorsum microbiome. Bleeding frequency of gums had a negative causal effect on female-enriched Strep-

tococcus spp. in females for both niches and a positive causal effect on male-enriched Aggregatibacter

spp. (A. kilianii B and A. segnis) in males for the tongue dorsummicrobiome. When looking in the opposite

direction, increased periodontal pathogens Treponema B denticola, Fusobacterium uSGB 1916, family
8 iScience 26, 105839, January 20, 2023
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F082, Prevotella uSGB 2526, F0422 uSGB 2370, and Solobacterium uSGB 1551 all caused increased

bleeding frequencies of gums, but increased Fusobacterium uSGB 2180 caused decreased bleeding fre-

quencies of gums. High-fat and high-sugar diet causally linked to lower Mogibacterium uSGB 1015 abun-

dance for males in both oral niches and lower abundances ofGemella morbillorum andOribacterium uSGB

1591 in females for tongue dorsum microbiome. Increased Gemella massiliensis kSGB 238 was causally

related to an increased risk of dental calculus.

Serum amino acids as basic metabolic regulators also showed abundant sex-specific causal relationships

with the oral microbiome (Figure 4). Increased carnosine, which marked sexual dimorphism in skeletal mus-

cles and was remarkably higher in males than in females,44 was causally related to decreased Fusobacte-

rium periodonticum C level in saliva and increased abundances of Streptococcus spp. (mainly S. mitis

and S. pseudopneumoniae O) in tongue dorsum, only for males (Figure S7). Cystathionine had a causal

effect on lower Fusobacterium spp. abundance in males’ tongue dorsum. In turn, Fusobacterium spp.

such as Fusobacterium periodonticum C significantly correlated with a lower cystathionine level in males’

saliva, suggesting the negative correlation between them is reciprocal when combined with the finding in

the previous literature45,46 that Fusobacterium spp. can efficiently utilize cystathionine to produce

hydrogen sulfide (H2S), a toxic foul-smelling gas. However, TM7x uSGB 3001 had a positive causal effect

on cystathionine in females’ tongue dorsum. When investigating metagenomics functional modules47

related to cystathionine, we found that K01739: cystathionine gamma-synthase (metB: 2.5.1.48) and

K01758: cystathionine gamma-lyase (CTH: 4.4.1.1) were enriched in cystathionine-associated genus like Fu-

sobacterium (Figure S8). Increased glutamic acid was causally related to decreased abundances ofNeisser-

iaceae spp., Ottowia uSGB 2417, and Eikenella but increased abundance of F0422 uSGB 1710 (family Veil-

lonellaceae) in females’ saliva. Increased glutamic acid also had a causal effect on lower abundances of

TM7x uSGB 1196 and Lachnoanaerobaculum sp000287675 but had a positive correlation with Prevotella

uSGB 34. We found glutamate-related modules (eg. ornithine biosynthesis, proline biosynthesis, heme

biosynthesis, and glutathione biosynthesis) were enriched in Neisseriaceae, Ottowia, Eikenella, Lachnoa-

naerobaculum sp000287675, and Prevotella uSGB 34 genomes. Cystine had a positive causal effect on

genus Pauljensenia spp. such as Pauljensenia sp000278725 in saliva but a negative causal effect on Porphyr-

omonas uSGB 3273 in tongue dorsum only for males. Cystine-related modules (eg. cysteine biosynthesis,

methionine salvage, methionine biosynthesis, and methionine degradation) were also enriched in Pauljen-

senia and Porphyromonas uSGB 3273 (Figure S8). Increased Fusobacterium uSGB 2817, Parvimonas uSGB

3325, and CAG�793 uSGB 3551 were causally linked to a lower level of alpha-aminoadipic acid, which was

found to be amarker of diabetes risk,48 autoimmunity, and age-associated changes in human collagen.49,50

Sex hormones also showed sex-specific causalities enrichments. The hormone aldosterone, whose level is

higher in females than in males in this cohort (Figure 5A and Table S7), exhibited significant causalities enrich-

ments in females for both niches, with 139 causalities significant in females (p < 0.01) compared with 52 causal-

ities significant inmales for saliva (Figure 5B; chi-squared test, p= 7.393 10�14) and 139 causalities significant in

females compared with 52 causalities significant in males for tongue dorsum (p < 2.2 3 10�16). For example,

aldosterone showed causal effects on females’ oral microbiome such as decreased F0040 spp. abundance in

bothniches.However, speciesStreptococcusparasanguinis B, SolobacteriumuSGB1570, andVeillonella atyp-

ica all had positive causal effects on serum aldosterone in females’ tongue dorsum samples (Figure 5C). When

further investigating the other sex hormones, we found cortisone and dehydroepiandrosterone, whose

levels were higher in females than in males (Table S7), both showed significant causalities enrichments in

females for tongue dorsum (p = 0.03 and p = 0.002, respectively). Consistently, one of several "male"

sex hormones, androstenedione as an androgen showed causalities enrichments in males for tongue dorsum

(p=1.173 10�3). Androstenedionewasgenetically positively correlatedwith the abundanceof thegenusPaul-

jensenia (renamed fromActinomyces) and its species such as P. cellulosilytica and P. odontolyticus. Moreover,

its other two species, Pauljensenia uSGB 1578 and uSGB 682 showed reciprocal positive correlations with an-

drostenedione.All these causal relationshipsbetween androstenedioneandPauljenseniaonly existed inmales

but not in females for tongue dorsum (psex-difference<0.05; Figure 5D). The above findings suggest that sex-spe-

cific microbes-hormonal interplays explain the mostly observed sex-specific differences in the oral microbial

composition and serum hormones.

In addition, the microelement chromium was causally and positively correlated with male-enriched

Campylobacter A in males’ tongue dorsum, and selenium had a positive causal effect on Rothia mucilagi-

nosa in females’ tongue dorsum. Lachnoanaerobaculum uSGB 728 associated with low uric acid
iScience 26, 105839, January 20, 2023 9
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Figure 5. Sex-specific microbes-hormonal interplays explained the observed sex-specific differences in serum hormones

(A) Barplot showed the comparisons of sex hormone levels in males and females, and significant sex differences were observed (see data details in Table S7).

A chi-square test was used, and a p value was marked.

(B) Several sex hormones showed consistent MR enrichments with oral microbiota in specific sex. The length of the bar represented the proportion of

significant causalities (p < 0.01) in all causalities associated with the specific sex hormone that were calculated in males and females, respectively.

(C) The Forest plot showed androstenedione (higher levels in males than in females) was genetically positively correlated with the abundance of genus

Pauljensenia and its species in males but not in females for salivary samples (p < 0.01 in males; p > 0.05 in females; and psex-difference<0.05). The MR estimates

and 95% CI values were shown in the plot. Corresponding p values of MR analysis in males, in females, and their compared T statistics were listed.

(D) The Forest plot showed aldosterone (higher levels in females than in males) had causal relationships with abundances of several oral bacteria in females

but not in males for salivary samples (p < 0.01 in females; p > 0.05 in males; and psex-difference<0.05). The MR estimates and 95% CI values were shown in the

plot. Corresponding p values of MR analysis in males, in females, and their compared T statistics were listed.
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determinator SLC2A9 in our M-GWAS study exhibited a causal effect on a lower vitamin B1 level. Trepo-

nema D uSGB 79 was causally related to a lower selenium level. A previous study reported Treponema

spp. showed a growth dependence on selenium.51 Gemella uSGB 2990 was causally linked to a blood

lead level.

MR inferred causalities between the oral microbiome and diseases

We inferred the causal relationships between the oral microbiome and diseases by performing two-sample

MR analyses using the oral microbiome GWAS summary data in this cohort, together with diseases GWAS

summary statistics from Japan Biobank.52 MR analysis identified abundant causal effects between the oral

microbiome and diseases (Table S12). Both Pauljensenia odontolyticus (also named Actinomyces odonto-

lyticus) group C and B (p = 6.49 3 10�7 and p = 3.90 3 10�4, respectively) from saliva were causally related

to increased risk of type 2 diabetes (T2D). Neisseria meningitidis is a major cause of meningococcal dis-

ease,53 and its relative abundance in the tongue dorsum was causally linked to an increased risk of

arrhythmia (p = 4.44 3 10�6). In addition, we also found 97 causalities shared by both salivary and tongue

dorsum microbiomes with diseases (Table S12). Notably, the causality between Veillonella rogosae and

asthma was reciprocal, with Veillonella rogosae reducing the risk of asthma, and asthma correlated with

a lower abundance of Veillonella rogosae. Increased abundances of Fusobacterium periodonticum C,

Streptococcus cristatus B, Pauljensenia pyogenes, and Pauljensenia uSGB 2911 were causally linked to
10 iScience 26, 105839, January 20, 2023
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Figure 6. Sex-specific causal relationships between the oral microbiome and diseases

(A) Forest plots represented the significant causal effects of four salivary bacteria, which were more prevalent in females than in males, on diseases in females

but not in males. The MR estimates and 95% CI values were shown.

(B) Forest plots represented the MR estimates and 95% CI values of the causal effect of the cerebral aneurysm on salivary microbiota in males and females,

respectively. P_obs_diff represented the differential significance of relative abundances between sexes in observational analyses (see details in Table S3).

P_MR_diff represented the differential significance of MR estimates between sexes (see details in Table S13). P_male and P_female represented the

significance of causalities as inferred by MR in males and females, respectively.
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increased risk of T2D. Decreased abundance of Treponema C uSGB 1992 was causally related to an

increased risk of T2D. These results were in line with previous findings54 that the oral microbiome Strepto-

coccus and Fusobacterium had higher abundances but Treponema had a lower abundance in T2D patients

compared to control individuals. Corroborating results from the 4D-SZ cohort, two species, from male-en-

riched Campylobacter A (uSGB 1156 and uSGB 3418), increased the risk of arrhythmia. Consistently,

Campylobacter A uSGB 2510 and Campylobacter A uSGB 2316 increased risks of congestive heart failure

and ischemic stroke, respectively. These confirmed that Campylobacter A species contributed to cardio-

vascular disease as previously reported.55

MR also shows sex-specific causal relationships between the oral microbiome and diseases (Table S13).

Fusobacterium periodonticum C, causally negatively influenced by carnosine and cystathionine in males

by our above MR analysis, was causally related to increased risk of peripheral artery disease in females (p =

1.19 3 10�3; Figure 6A). Three taxa, Veillonella rogosae, Oribacterium sinus, and Leptotrichia

A sp001274535, which all exhibited higher abundance in females than males in observational studies,

were causally related to decreased risks of chronic obstructive pulmonary disease, colorectal cancer,

and arrhythmia, respectively, only in females (Figure 6A). Epilepsy had causal effects on the increased abun-

dance of Lancefieldella spp. such as Lancefieldella sp000564995 in both tongue and saliva, which exists

only in females but not in males. In addition, epilepsy was causally linked to increased abundances of

uSGBs from Solobacterium, Catonella, Veillonella, and TM7x but decreased abundances of uSGBs from

Weeksellaceae, Gemella, and Haemophilus D. Cerebral aneurysm, which is more prevalent in women,

had significant causal effects on the decreased abundance of Streptococcus species such as S. oralis, S.

australis, and S.mitis in females’ tongue dorsum and was causally related to increased abundance of Strep-

tococcus and its species such as S. oralis, S. cristatus, and S. sp001553685 in males’ saliva (Figure 6B). These

results help to understand whether specific oral microbiota plays a causal role or a consequence in the sex-

ual dimorphism of cardiometabolic diseases and certain cancers.
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DISCUSSION

In this study, we generated a complete resource database including abundant sex-combined and sex-spe-

cific observational correlations and further causal relationships between the oral microbiome and host fac-

tors (mainly blood metabolites). We underline the necessity of sex stratification in investigating the

contributions of host genetic variants and other major factors to the oral microbiome composition, in

agreement with the increasing sex-stratified genetic association studies.29,56–59 We summarize several

key findings here. We first observed that the oral microbiome was sex dimorphic, and the major factors

determining the oral microbiome composition differed between sexes. We identified sex-specific genetic

loci associated with oral microbiota and further found abundant sex-differential causal relationships be-

tween the oral microbiome and serum metabolites, by applying one-sample bidirectional MR in 2,984 in-

dividuals from the discovery cohort and replicated in an independent cohort of 1,494 individuals. Sex-

dimorphic MR analyses found both increased carnosine and cystathionine in males were causally linked

to decreased abundance of Fusobacterium periodonticum C which was then found to have causal effects

on T2D in disease MR analyses. Androstenedione as an androgen showed significant MR enrichments in

males for the tongue dorsum. Likewise, aldosterone whose level was higher in females exhibited significant

MR enrichments in females for both niches. These results were consistent with the fact that the differential

sex hormone levels between males and females began in utero and continued throughout the lifetime of

the organism.60 Overall, this valuable resource offers potential microbes-metabolites casual relationships

that underlie sex differences for mechanistic and clinical studies. Future studies are expected to replicate

the causalities in more samples and populations, as well as to investigate the underlying mechanism using

germ-free mice and reference bacteria strains.

By applying this MR analysis to explore causalities, our results provided further support for several previ-

ously reported microbiome-metabolites relationships. For example, four taxa, Fusobacterium nucleatum,

Prevotella intermedia, Treponema denticola, and Porphyromonas endodontalis have been widely re-

ported to be associated with periodontitis diseases.61–63 Our data-driven MR confirmed these four taxa

in both niches causally contributed to periodontitis problems such as bleeding frequencies of gums and

dental calculus (Figure S6). Moreover, the four taxa also showed causal effects on multiple diseases in

our disease MR analyses (p < 0.05): Prevotella intermedia in saliva genetically increased risks of a dozen

of diseases, including CRC, T2D, ischemic stroke, chronic obstructive pulmonary disease, and hepatocel-

lular carcinoma; Porphyromonas endodontalis in saliva genetically increased risks of nephrotic syndrome

and arrhythmia; Treponema B denticola in saliva increased risks of lung cancer and endometriosis; and

Fusobacterium nucleatum in tongue genetically increased risks of lung cancer and esophageal cancer.

These pieces of evidence indicated that the periodontal pathogens could cause chronic inflammation of

the gum and even contribute to diseases by inducing local inflammation and aggravating insulin resis-

tance,64,65 in line with previous findings that chronic periodontitis is linked with systemic disorders like dia-

betes,66 cardiovascular disease,67 and certain cancers.68 Moreover, targeted therapies against specific

periodontal pathogens (such as P. intermedia and P. endodontalis) may help ameliorate specific periodon-

titis-related comorbidities, such as T2D and arrhythmia. Flossing was also a simple way to reduce abun-

dances of periodontal pathogens. We observed that flossing frequency was indeed negatively connected

with the periodontal pathogen Prevotella intermedia (b = �0.199, p = 6.07 3 10�6 for saliva) in the MR

analysis and Porphyromonas endodontalis and Treponema B denticola in the observational analysis.

Androstenedione was genetically positively correlated with the abundance of genus Pauljensenia species

such as P. odontolyticus in our metabolites’ MR analysis. Pauljensenia odontolyticus was causally linked to

increased risk of T2D in diseases’ MR analysis. These indicated sex hormone alters microbial community

and may regulate autoimmune disease fate through interaction with microbiota that are not only limited

to the intestinal tract but also existed in the sex dimorphism.7,20 The impacts of oral and intestinal microbial

dysbiosis on autoimmune disease are increasingly recognized,69 including the causal effects illustrated by

previous MR studies.70,71 Both Streptococcus parasanguinis B and Veillonella (V. dispar, V. parvula A) were

positively correlated with triglyceride and hyperlipidemia in observation analysis (p < 13 10�8), which sup-

ported the connection between the oral microbiome and cardiovascular disease, and these associations

were also observed between the gut microbiome and cardiovascular disease.72 Streptococcus parasangui-

nis B was also positively correlated with the frequency of mouthwash (p < 2.48 3 10�5), high-fat and high-

sugar diet (p < 6.52 3 10�13), and sleep past midnight (p < 3.30 3 10�7) (Table S5), which suggested that a

health manager of lifestyle may lower abundance of this taxon to reduce cardiovascular disease risk instead

of mouthwash.72 MR further revealed that Streptococcus parasanguinis B had a positive causal effect on the
12 iScience 26, 105839, January 20, 2023
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serum aldosterone in females’ tongue dorsum samples (Figure 5C, p < 6.12 3 10�6), and high aldosterone

was associated with the development and severity of hypertension, congestive heart failure, coronary

artery disease, chronic kidney disease, and metabolic syndrome.73 These causal understandings of host

microbiome-metabolites interactions and their roles in disease may help to translate toward the future

development of microbiome-targeted therapeutic interventions.

In summary, our work provides pieces of evidence on the potential interplay between the oral microbiome

and blood metabolites and has potential implications for disease. Our results also called on the necessity

to consider sex-aware analyses for future studies to shed light on possible sex-specific microbes-metabo-

lites interplay mechanisms.
Limitations of the study

There are two limitations in our current study. First, we defined the 3,589 SGBs as ‘‘species-level’’ according

to the two most frequently used criteria74–76: i) at least 95% average nucleotide identity (ANI) and ii) at least

30% overlap of the aligned metagenome-assembled genome (MAG). This may be a little inaccurate since

two or more SGBs could be annotated to the same most representative species. Despite this, we do not

rule out that they come from different species but not subspecies (commonly defined R 95% ANI77,78),

especially for those who show low abundance correlations and negative beta effects of associations in

the population. There are 16.7% (598 out of the total 3,589 SGBs) SGBs that could be annotated to the

same representative species, which will not significantly decrease the number of taxa for analysis. 485

(35%) out of the total 1,395 pairs of SGBs that were annotated to the same representative species showed

a less moderate correlation (spearman r < 0.6), especially for several Veillonella rogosae SGBs (id: 2362;

3333; 1190; 3494). They all showed a negative correlation with each other (spearman r < 0); such conditions

were also observed for the Aggregatibacter sp000466335 SGBs and Pauljensenia sp000278725 SGBs, sug-

gesting the possible inaccurate taxonomic annotations to the same species. In combination with these

listed facts, we thought the SGBs level exhibited better resolution and refrained from pooling the different

SGBs into the same species id by directly adding up their abundances, but the accurate taxonomy of ‘‘spe-

cies-level’’ merits further studies. We hope to achieve higher-quality assembled, binning, and assigned/

taxonomic results with the increasingly developed metagenomic technology, tools, and pipelines in the

future. Secondly, to reduce the complexity of correlations, associations, and causalities, we used a greedy

algorithm to obtain a minimal set of core taxa (Table S14). We filtered highly correlated bacteria and only

kept the more representative one among all highly correlated bacteria to reduce the number of GWAS

tests, as done by many relevant studies.70,79–81 However, the filtered-out bacteria may be biologically

more meaningful. The identification of driver species controlling the ecological network in the microbial

community may help to explain easier. We also hope to take the microbial functional network as the study

objective in the future but not only limited to the microbial taxa.
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summary statistics Liu X, Tong X, Zhu J, et al. Cell discovery, 2021;7:117.

https://doi.org/10.1038/s41421-021-00356-0

https://db.cngb.org/search/project/CNP0001664

Clean reads of metagenomics Zhu, J. et al. Genomics, Proteomics & Bioinformatics,
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Biobank Japan Ishigaki, K. et al. Nat Genet 52, 669–679,

https://doi.org/10.1038/s41588-020-0640–3 (2020)

http://jenger.riken.jp/en/result

Software and algorithms

metapi This paper https://github.com/ohmeta/metapi

Bowtie2(v2.3.564) Langmead B, Salzberg S. Fast gapped-read alignment

with Bowtie 2. Nature Methods. 2012, 9:357–359.

http://bowtie-bio.sourceforge.net/bowtie2

seqtk(v1.3) Heng Li(lh3) https://github.com/lh3/seqtk

PERMANOVA Anderson M J. Wiley statsref: statistics reference

online, 2014: 1–15.

https://doi.org/10.1002/9781118445112.stat07841

Fastp(v0.19.463) Shifu Chen, et al; Bioinformatics, Volume 34, Issue 17,

1 September 2018

https://github.com/OpenGene/fastp

PLINK(V1.9) Christopher Chang https://www.cog-genomics.org/plink/

ANNOVAR Wang K, et al; Nucleic Acids Research, 38:e164, 2010 http://www.openbioinformatics.org/annovar/

DAVID Jiao, X. et al. Bioinformatics 28, 1805–1806,

https://doi.org/10.1093/bioinformatics/bts251 (2012)

https://david.ncifcrf.gov/

FUMA K. Watanabe,et al. Nat. Commun. 8:1826. (2017) http://fuma.ctglab.nl/

AER(R package) Christian Kleiber et al https://cran.r-project.org/web/packages/AER/index.html

GCTA-GSMR Zhu, Z. et al. (2018). Nature Communications, 9: 224. https://yanglab.westlake.edu.cn/software/gsmr/
RESOURCE AVAILABILITY

Lead contact

Further information and request for resources and reagents should be directed to and would be fulfilled by

the lead contact, tao.zhang@genomics.cn.

Materials availability

This study did not generate new unique reagents.

Data and code availability

All statistical results were available in supplementary tables. The summary statistics including the associa-

tions between host genetics and tongue dorsum microbiome, host genetics and saliva microbiome are

publicly available from CNGBdb: https://db.cngb.org/search/project/CNP0001664. The release of these

summary statistics data was approved by the Ministry of Science and Technology of China (Project ID:

2021BAT1539). According to the Human Genetic Resources Administration of China regulation and the

institutional review board of BGI-Shenzhen related to protecting individual privacy, sequencing data are

controlled-access and are available via the application on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study subjects

All the adult Chinese individuals in this 4D-SZ cohort were recruited for a multi-omics study as previously

reported.15–18 This study at present included a total of 4,478 individuals, of which 3,504 had saliva samples
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and 3,694 had tongue dorsum samples (3,165 individuals having both sample types) for whole metage-

nomic sequencing (Table S1). The cohort could be divided into two independent parts, namely discovery

and replication. In the discovery cohort, 2,984 individuals were enlisted with blood samples in the city of

Shenzhen for high-depth whole genome sequencing (a mean depth of 33X), of which 2,017 had tongue

dorsum and 1,915 had salivary samples for whole metagenomic sequencing. In the replication cohort,

blood samples were collected from 1,494 individuals with low-depth whole genome sequencing (a mean

depth of 9X), out of which 1,333 had tongue dorsum samples and 1,299 had salivary samples for metage-

nomic sequencing (Table S1). The replication cohort was designed in the same manner but organized at

smaller scales in multiple cities (Wuhan, Qingdao, etc.) in China. The protocols for blood and oral collec-

tion, as well as the whole genome and metagenomic sequencing, were similar to our previous litera-

ture.15–18 For the blood sample, DNA was extracted using MagPure Buffy Coat DNA Midi KF Kit (no.

D3537-02) according to the manufacturer’s protocol. Tongue dorsum and salivary samples were collected

with the MGIEasy kit. For the salivary sample, a 2x concentration of stabilizing reagent kit was used and

2 mL saliva was collected. DNA of oral samples was extracted using MagPure Stool DNA KF Kit B (no.

MD5115-02B). The DNA concentrations from blood and oral samples were estimated by Qubit (Invitrogen).

500 ng of input DNA from blood and oral samples were used for library preparation and then processed for

paired-end 100 bp sequencing using the BGISEQ-500 platform.82

The study was approved by the Institutional Review Boards (IRB) at BGI-Shenzhen, and all participants pro-

vided written informed consent at enrollment.
METHOD DETAILS

Whole genome sequence and quality control

In the discovery cohort, 2,984 individuals with blood samples were sequenced to a mean of 33x for the

whole genome. For replication, 1,494 individuals were sequenced to a mean of 9x for the whole genome.

Full study designs including inclusion and exclusion criteria are described elsewhere.18 In brief, after variant

and sample quality control, 2,984 individuals (out of which 2,017 had matched tongue dorsum and 1,915

hadmatched salivary samples) with 10 million common and low-frequency (MAFR0.5%) variants in the dis-

covery cohort were left for M-GWAS and MR analyses. 1,494 individuals (out of which 1,333 had matched

tongue dorsum and 1,299 had matched salivary samples) with 8.6 million common and low-frequency var-

iants (MAF R0.5%) in the replication cohort were left for validation analysis of M-GWAS and MR discovery

results.
Oral metagenomic sequencing and profiling

Metagenomic sequencing was done on the BGISEQ-500 platform, with 100 bp of paired-end reads for all

samples and four libraries were constructed for each lane. We generated 19.18 G 7.90 Gb

(average Gstandard deviation) and 19.90 G 7.73 Gb raw bases per sample for tongue dorsum samples

in discovery and replication cohorts, respectively (Table S1). We also generated 13.64 G 2.91 Gb and

13.66 G 2.80 Gb raw bases per sample for salivary samples in discovery and replication cohorts, respec-

tively. After using the quality control module of the metapi pipeline followed by reads filtering and trim-

ming with strict filtration standards (not less than a mean quality Phred score of 20 and not shorter than

51 bp read length) using the fastp v0.19.463, host sequences contamination removing using the Bowtie2

v2.3.564 (hg38 index) and seqtk65 v1.3, we finally got an average of 3.1Gb (host rate:77%) and 9.9Gb

(host rate:31%) raw bases per sample for salivary and tongue dorsum samples, respectively.

The high-quality oral genome catalogue was constructed in a previous study.17 The oral metagenomic

sequencing reads were mapped to the oral genome catalogue (http://ftp.cngb.org/pub/SciRAID/

Microbiome/human_oral_genomes/bowtie2_index) using Bowtie2 with parameters: ‘‘–end-to-end –very-

sensitive –seed 0 –time -k 2 –no-unal –no-discordant -X 1200’’, and the normalized contigs depths were ob-

tained by using jgi_summarize_bam_contig_depths, then based on the correspondence of contigs and

genome, the normalized contig depth was converted to the relative abundance of each species for each

sample. Finally, we merged all representative species’ relative abundance to generate a taxonomic profile

for oral samples. The profiling workflow was implemented in the metapi jgi_profiling module (https://

github.com/ohmeta/metapi/blob/v1.1.0/metapi/rules/profiling.smk#L585). The complete metapi pipeline

could be found on this website: https://github.com/ohmeta/metapi/tree/v1.1.0/metapi/rules.
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Sex difference/comparison in the oral microbiome

A generalized linear model (the ‘glm’ function in R) was used to compare the sex difference of each SGB or

each host factor (mainly the metabolic parameter) after adjusting for the potential confounders (age, sex,

BMI, drugs, mouthwash frequency, and whether suffering from respiratory infection disease or not). The

results with Benjamini–Hochberg adjusted p < 0.05 was reported.

The modified RFCV classifier function from the randomForest package in R was used to evaluate the sex

classification performance based on the oral microbiome. That was classified with varying numbers of

SGBs (1, 3, 7, 14, 28, 56, 112, 223, 446, 892, 1784, 3569). The best ROC was achieved with 223 SGBs for saliva

and 112 SGBs for tongue dorsum. ROC was plotted with the pROC package in R.

Major factors associated with the oral microbiome

The connections between microbiota composition and host metabolic traits were identified utilizing the

PERMANOVA24 analysis (adonis test, based on SGB-level Bray–Curtis dissimilarity, 4999 permutations) in

the vegan R package. To remove potential confounding effects, age, sex, BMI, drugs, mouthwash

frequency, and respiratory infection disease were included in the PERMANOVA regression model. To

test the sex bias metric measured by beta-diversity-based F statistics of the metabolic parameter, a boot-

strapping method was used to assess the dispersion of differences in the microbiota community as

described previously.83 More specifically, we bootstrapped F statistic values by resampling the sample

25 times for each sex. For all analyses, a Mann–Whitney U-test was performed to compare the bootstrap-

ping F statistic from male cohorts to that from female cohorts, after which Benjamini–Hochberg false dis-

covery rate corrections were applied.

Sex-stratified GWAS analysis for oral microbial features

As previously described,18 we filtered the bacteria to keep those with an occurrence rate over 90% and

average relative abundance over 1 3 10�5 (The represented genus of these microbial taxa covered

between 99.63% (tongue dorsum) and 99.76% (saliva) of the whole community) in the cohort. As many

oral microbial taxa are highly correlated, we performed many Spearman correlation tests and kept only

one member of pairs of bacteria showing a >0.8 correlation coefficient. Spearman’s correlations were

calculated pairwise between all taxa, and the correlations were used to generate an adjacency matrix

where correlations of >0.8 represented an edge between taxa. A graphical representation of this matrix

was then used for the greedy selection of representative taxa. Nodes (microbiota taxa) were sorted by

degree and the one with the highest degree was then chosen as a final taxon (selecting at random in

the case of a tie). The taxon and its connected nodes were then removed from the network and the process

was repeated until a final set of taxa sets was found such that each of the discarded taxa was correlated with

at least one taxon. This filtering resulted in a final set of 1,583 and 1,685 independent microbial taxa for

tongue dorsum and saliva, respectively, that were used for association analyses. These remaining indepen-

dent taxa and their highly correlated taxa were listed in Table S14.

We performed sex-specific GWAS analysis in males and females separately. To test the associations

between host genetics and oral bacteria, we used a linear model via PLINK v1.984 based on the relative

abundance of oral bacteria. Specifically, the relative abundance was transformed by the natural logarithm

that performed better than CLR transformation (Figure S9). the outlier individual who was located away

from themean bymore than four standard deviations was removed so that the abundance of bacteria could

be treated as a quantitative trait. Given the effects of environmental factors such as diet and lifestyles on

microbial features, we included all potential cofounders that were significantly associated with the b-diver-

sity (Benjamini–Hochberg FDR < 0.05) estimates in the explained variance analysis, as well as the top four

principal components (PCs) as covariates for the M-GWAS analysis.

Male-specific variants were identified as (i) significantly associated with taxa in males (pmale < 53 10�8) and

not significant in females (pfemale > 0.05), and (ii) had nominal significant sex difference (testing p-value for

difference in sex-specific effect size estimated by beta value, pdifference < 0.05). Female-specific variants

were identified as (i) significantly associated with taxa in females (pfemale < 5 3 10�8) and not significant

in males (pmale > 0.05), and (ii) had nominal significant sex difference (pdifference < 0.05, as explained below).

For each variant and the phenotype (relative abundance of taxa), we computed p values (pdifference) testing

for the difference between the male-specific and female-specific beta-estimates bm and bf using the

t-statistic
20 iScience 26, 105839, January 20, 2023
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t =
bm � bfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
m + SE2

f � 2 � corrðbm;bf Þ � SEm � SEf

q

with SEm and SEf being the standard errors of bm or bf . The correlation between the sex-specific beta-es-

timates was computed as the Spearman rank correlation coefficient across all variants for each phenotype.

GWAS analysis for host traits

For each of the host phenotypic traits (anthropometric, diets, metabolic traits, etc.), if it’s continuous data,

the log10-transformed of the median-normalized values was used as a quantitative trait in a linear model

implemented in PLINK. If the host trait (bleeding frequency of gums, whether having dental calculus or not,

etc.) is discrete data, it’s treated as a binary trait in a logistic model for association analysis. For a quanti-

tative trait, samples with missing values and values beyond 4 s.d. from the mean were excluded from the

association analysis. Each of the 10 million common and low-frequency variants identified in the discovery

dataset and the 8.6 million common and low-frequency variants identified in the replication dataset was

tested for association analysis independently. Age, sex, and the top four PCs were included as covariates.

Likewise, the sex-stratified GWAS analyses were performed on males and females separately.

Functional analysis of sex-specific significant loci

The significant genetic variants identified in the association analysis were mapped to genes using ANNO-

VAR.85 Given that some significant genetic variants were low-frequency in the M-GWAS results, it’s most

suitable to input gene lists for enrichment analysis. We mapped variants to genes based on physical dis-

tance within a 20 kb window and got the gene lists for the enrichment analysis. DAVID (https://david.

ncifcrf.gov/) was utilized to perform functional and pathway enrichment analysis. DAVID is a systematic

and integrative functional annotation tool for the analysis of the relevant biological annotation of gene lists

and provides the functional interpretation of the GO enrichment and KEGG pathway analysis.86 The

p-value < 0.05 was considered statistically significant. In addition, the mapped genes were further investi-

gated using the GENE2FUNC procedure in FUMA (http://fuma.ctglab.nl/), which provides hypergeometric

tests for the list of enriched mapping genes in 53 GTEx tissue-specific gene expression sets, 7,246 MSigDB

gene sets, and 2,195 GWAS catalog gene sets.87 Using the GENE2FUNC procedure, we examined whether

the mapped genes were enriched in specific diseases or traits in the GWAS catalog as well as whether

showed tissue-specific expression. Significant results were selected if a false discovery rate (FDR)-corrected

p < 0.05 was observed.

Independent instrumental variables (IVs) selection

For each whole-genome-wide association result of microbial features and host phenotypic traits (mainly

metabolic traits), we selected genetic variants that showed association at p < 13 10�5 and then performed

the linkage disequilibrium (LD) estimation with a threshold of LD r2 < 0.1 for clumping analysis to get inde-

pendent genetic variants as IVs. The p-value threshold of 13 10�5 was used for the selection of genetic IVs

associated with microbial features by maximizing the strength of genetic instruments and the amount of

the average genetic variance explained by the genetic predictors in an independent sample. For each

microbial feature, we got genetic instruments in the discovery dataset using different p thresholds,

including 5 3 10�8, 1 3 10�7, 1 3 10�6, and 1 3 10�5. We tested the strength of these instruments under

different P thresholds by checking whether they predicted correspondingmicrobial features in an indepen-

dent sample (Figure S10), we observed that the mean value of instrumental F statistics is 3.57 and on

average only 0.28% phenotype variance could be explained by instruments on microbial features when us-

ing 53 10�8 as an instrumental cut-off. Therefore, we used amore liberal threshold of p < 13 10�5 to select

the instruments for microbial features, and the instrumental mean F statistics reached 22 for tongue dorsum

microbiota and 18 for salivary microbiota (greater than 10) which indicated a strong instrument. For consis-

tency, we used the same threshold and procedure for selecting genetic IVs of metabolic traits in both the

discovery and the replication cohort. The LD estimation between variants was calculated in corresponding

samples for the discovery cohort and the replication cohort, respectively.

One-sample MR analysis

To investigate the causal effects between microbial features and host phenotypic traits available from this

multi-omics cohort, we first performed a one-sample bidirectional MR analysis in the discovery dataset. As

above described, we specified a threshold of p < 1 3 10�5 to select SNP instruments and a threshold of LD
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r2 < 0.1 for clumping analysis to get independent genetic variants as IVs for MR analysis. Then, an

unweighted polygenic risk score (PRS) was calculated for each individual using independent genetic vari-

ants fromGWAS data. Each SNP was recoded as 0, 1, and 2, depending on the number of trait-specific risk-

increasing alleles carried by an individual. We performed Instrumental variable (IV) analyses employing the

two-stage least square regression (TSLS) method.88 In the first stage, for each exposure trait, the associa-

tion between the GRS and observational phenotype value was assessed using the linear regression model

and predicted fitted values based on the instrument were obtained. In the second stage, linear regression

was performed with outcome traits and genetically predicted exposure levels from the first stage. In both

stages, analyses were adjusted for age, sex, and the top four principal components of population structure.

For each trait, TSLS was performed using ‘ivreg’ command from the AER package in R. We next attempted

to replicate the causal effects between traits in the replication dataset. When stratified by sex, we per-

formed the same MR analyses in males and females separately as done above, except with no adjusting

for sex.
Two-sample MR analysis for diseases in Japan biobank

To investigate the causal effect betweenmicrobial features and diseases, we performed a two-sample bidi-

rectional MR analysis using summary statistics of oral microbiota from our cohort and disease information

from Biobank Japan. We downloaded both sex-combined and sex-stratified summary statistics data for

42 diseases from Biobank Japan52 (http://jenger.riken.jp/en/result). Both sex-combined and sex-stratified

MR were performed for disease phenotypes. The two-sample bidirectional MR analysis was performed by

applying the GCTA-GSMR (Generalised Summary-data-based Mendelian Randomization) method89

using the HEIDI-outlier analysis to remove horizontal pleiotropic SNPs. For consistency, genetic variants

with p < 1 3 10�5 and LD r2 < 0.1 were selected as instrumental variables for oral microbiota in our

cohort. For disease exposures, SNP instruments were selected at a genome-wide significant threshold

(p < 5 3 10�8) in the Biobank Japan study.
QUANTIFICATION AND STATISTICAL ANALYSIS

A generalized linear model (the ‘glm’ function in R) was used to compare the sex difference of each SGB or

each host factor. The modified RFCV classifier function from the randomForest package in R was used to

evaluate the sex classification performance based on the oral microbiome. The connections between

microbiota composition and host metabolic traits were identified utilizing the PERMANOVA24 analysis

(adonis test, based on SGB-level Bray–Curtis dissimilarity, 4999 permutations) in the vegan R package. In

the statistics analysis, the results with Benjamini–Hochberg adjusted p < 0.05 was reported. Spearman cor-

relation test was used to filter highly correlated taxa. A linear model was used to performM-GWAS analysis

based on the relative abundance of oral bacteria. TSLS model (‘ivreg’ from the AER package in R) was used

to perform one-sample MR analysis. The two-sample bidirectional MR analysis was performed by applying

the GCTA-GSMR method.
22 iScience 26, 105839, January 20, 2023
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