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Milk production in Thailand has increased rapidly, though excess milk supply is one of

the major concerns. Forecasting can reveal the important information that can support

authorities and stakeholders to establish a plan to compromise the oversupply of

milk. The aim of this study was to forecast milk production in the northern region

of Thailand using time-series forecast methods. A single-technique model, including

seasonal autoregressive integrated moving average (SARIMA) and error trend seasonality

(ETS), and a hybrid model of SARIMA-ETS were applied to milk production data to

develop forecast models. The performance of the models developed was compared

using several error matrices. Results showed that milk production was forecasted to

raise by 3.2 to 3.6% annually. The SARIMA-ETS hybrid model had the highest forecast

performances compared with other models, and the ETS outperformed the SARIMA in

predictive ability. Furthermore, the forecast models highlighted a continuously increasing

trend with evidence of a seasonal fluctuation for future milk production. The results

from this study emphasizes the need for an effective plan and strategy to manage milk

production to alleviate a possible oversupply. Policymakers and stakeholders can use

our forecasts to develop short- and long-term strategies for managing milk production.

Keywords: milk production, forecast, time-series model, hybrid model, decision, Thailand

INTRODUCTION

Thailand’s dairy industry is one of the economically important agricultural sectors. In 2018, 1.29
million tons of raw milk were produced in the country (1). According to data fromMay 2020, there
were 24,229 dairy farmers operating dairy farms and the number of dairy cattle in Thailand was
8,11,756 head. The majority of dairy farmers were smallholders who utilized the tie-stall system for
farming. The primary breed of dairy cows was Holstein with a small fraction of other breeds. The
three most extensive dairy farming regions are central, northeast, and north (2). In the northern
region, dairy farms are located in six provinces and the majority of them are in ChiangMai (3). The
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average milk production in the north is 437 tons per day (4).
Dairy farmers in the north, similar to those in the rest of
Thailand, are members of dairy cooperatives that manage milk
collection centers (5, 6). Bulk tank milk from dairy farms is
collected, cooled, stored at milk collection centers, and then
transported to milk processing plants (7).

In recent years, an oversupply of milk has been a matter
of concern among policymakers and stakeholders in Thailand
(8, 9). Even though the milk supply has risen, the dairy sector
struggles to increase milk consumption in the country owing
to cultural hurdles (9). In 2020, Thailand’s per capita for dairy
products was ∼17 L per year, which is quite low, compared
with other Asian countries such as Japan (31 L per year) and
India (49 L per year) (10). The oversupply of milk may pose
challenges to several sectors in the supply chain. To control
situations of oversupply, authorities and stakeholders need to
formulate effective short- and long-term plans to manage milk
supply based on accurate estimations of milk production derived
from well-accepted prediction methods.

Forecasting is a vital element in economic decision-making.
Of the several time-series forecast methods demonstrated in the
literature (11–15), the autoregressive integrated moving average
(ARIMA) is one of the most commonly used. This method has
been extensively used in various domains such as economic (16,
17), human medicine (18–20), veterinary science (21, 22), and
agriculture science (23–25). ARIMA is extended by the seasonal
autoregressive integrated moving average (SARIMA) method
which is suitable for modeling time-series data with a seasonal
trend (26–28). Moreover, another commonly used method
for analyzing seasonality time-series data is the exponential
smoothing (ES) (15, 27). Within a state-space framework, the
ES method can combine error (E), trend (T), and seasonal (S)
components in a smoothing calculation which is referred to
as an error trend seasonality (ETS) model (29). A total of 30
possible ETS combinations within the state-space framework
render the ability to analyze any time-series data, even with
both heterogeneity and non-linearity (30). Furthermore, in the
last two decades, a hybrid modeling which combines forecasting
methods has been used in many disciplines to enhance the
accuracy of forecast models (11, 15, 31). For example, a study
of healthcare data demonstrates that combining SARIMA and
ETS (SARIMA-ETS hybrid) methods offers better performance
and forecast accuracy than models developed from a single
method (32). At present, numerous hybrid models have been
proposed; however, selectingmethods to be combined as a hybrid
model necessitates an understanding of the nature of each time-
series data (27). Interestingly, although hybrid models are widely
used with a variety of datasets such as medical (33, 34) and
environmental data (15, 35), their application to milk production
data is very limited.

Several researchers have applied time-series methods to
forecast milk production in Bangladesh (36), China (37),
Ethiopia (38), and India (39), but the methods used in those
studies were limited to ARIMA (11). Although several forecast
methods such as artificial neural network (ANN) and support
vector machines (SVM) are widely used in time-series models
(40, 41), this study focused primarily on the methods that are

capable of dealing with seasonality time-series data since milk
production is likely to follow a seasonal pattern (39, 42–45). As a
result, the SARIMA, ETS, and SARIMA-ETS hybrid models were
selected to analyze the milk production data in this study.

Milk production forecasting based on well-accepted statistical
methods is essential for government authorities, decision-makers
and stakeholders in Thailand to establish short- and long-term
plans to deal with future milk production, particularly when an
oversupply is anticipated. Hence, the objective of this study was to
develop forecast models to predict milk production in northern
Thailand using SARIMA, ETS, and SARIMA-ETS hybridmodels.
Meanwhile, the predictive performances of forecast models were
evaluated in order to identify the most accurate model, which
could subsequently be used to estimate future milk production.

MATERIALS AND METHODS

Study Area and Milk Production Data
The milk production data from all dairy cooperatives and private
milk collection centers in all northern provinces (n = 6) were
collected monthly and then verified by livestock authorities from
the Department of Livestock Development. Furthermore, data
on milk production were summarized in order to represent the
monthly milk production of the northern region’s dairy sector.
The provinces in northern Thailand from which milk production
data were collected are shown in Figure 1.

We have two different approaches for data management
and data analysis based on the objectives of the study. The
first approach was to develop forecast models and predict
the milk production using the entire dataset (full dataset).
The second approach was to build forecast models and then
compared forecast values with the actual data value by holding
the last 12 months of the data as a validation data (validation
dataset) and developing models from the remaining data
(training dataset). Hence, milk production data from the full
dataset (January 2016–December 2020) was divided into training
(January 2016–December 2019) and validation datasets (January
2020–December 2020). The training dataset was used for model
development. Furthermore, the final models obtained from this
training dataset were evaluated for their performance using the
validation dataset. By this process, we could compare the model
performances among models developed. Similar to the process
using the training dataset, the full dataset was used to develop
models to forecast milk production for the period of January
2021–December 2022. Notably, the advantage of using the full
dataset was its update. If the training dataset was used to forecast,
the models would be trained only for 2016–2019 data, which
might affect the forecast of milk production for 2021–2022 due
to the long-term forecast effect that may contribute to a decrease
in forecast accuracy. Since we used the full dataset to developed
the models, the forecast for the period of 2021–2022 is less likely
to be affected by this constraint, providing the relevant users and
policy makers a more accurate prediction.

Statistical Analysis
Data were analyzed using R statistical software version 4.0.4 and
relevant packages (46). Rawmilk production data were converted
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FIGURE 1 | A map of the provinces in northern Thailand where milk production data were collected. The map was created using QGIS (version 2.18.28), QGIS

Geographic Information System, Open Source Geospatial Foundation Project, all content is licensed under Creative Commons Attribution ShareAlike 3.0 license (CC

BY-SA), available at (http://qgis.osgeo.org).
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to time-series data using functions from the “xts” package and
then decomposed with functions from “TSstudio” packages. To
develop forecast models, several functions from a “forecast”
package were used.

Time-Series Data Decomposition
The time-series milk production data were decomposed into
trend, season, and error to facilitate separate examination for
each of them.

Additive time-series data consisted of trend, season, and
irregular (error) components, and the model is given as
follows (26):

yt = Tt + St + It (1)

where ytis the milk production value at time t, Tt is the trend-
cycle component at time t, St is the seasonal component at time t,
and It is the irregular (remainder) component at time t.

Model Development
For the pre-modeling steps, we examined the milk production
data by testing the following assumptions including (i)
the stationary of time-series data using Augmented Dickey-
Fuller Test, (ii) the heteroscedasticity in a time series using
an autoregressive conditionally heteroscedastic test (ARCH
test), and (iii) autocorrelation of time-series data using
autocorrelation function (ACF) and partial autocorrelation
function (PACF) plots.

SARIMA Model
The SARIMA model (26) is expressed as

φp (B)8P (Bs) (1− B)d (1− Bs)D yt = θq (B)2Q (Bs) εt (2)

where φ and θ are parameters of the autoregressive and moving
average, whereas 8 and 2 are parameters of the seasonal
autoregressive and seasonal moving average, respectively.
Meanwhile, p, d, and q are the order of autoregressive, degree
of differencing, and order of moving average, respectively.
Additionally, P, D, and Q are the orders of the seasonal
autoregressive, degree of seasonal differencing, and order
of seasonal moving average, respectively. S is the seasonal
length, yt is predicted variable, and εt is a random error at
time t.

The function auto.arima from the “forecast” package (47)
was applied to the milk production data to determine the best
fitting ARIMA model. The auto.arima algorithm performed
various steps to select the model (26). In brief, the steps
were given as follows—(i) if the data were non-stationary,
the algorithm would determine the number of differences in
the range of 0 ≤ d ≤ 2 using repeated Kwiatkowski-Phillips-
Schmidt tests until they became stationary, (ii) the values of
p and q were chosen by minimizing the corrected Akaike
Information Criterion (AICc) after differencing the data d times,
(iii) the algorithm searched for a combination of p and q
using a stepwise approach, and (iv) the algorithm repeated
the search to evaluate AICc, and variations could be found
until they reach the lowest AICc. The model with the lowest

AICc was defined as the final model and used for further
predictions (26, 47).

ETS Model
For ETS methods, the forecast was made considering a weighted
average of past observation. The latest observation is given
exponentially more weight than earlier observations (48). The
state-space model of the ETS was defined as ETS (., ., .) for
(Error, Trend, Seasonal). The possibilities for each component
are Error = (A, M), Trend = (N, A, Ad), and Seasonal =

(N, A, M). The letters A, M, N, and Ad refer to additive,
multiplicative, none, and additive damped, respectively (29).
For instance, the ETS (A, A, M) was the method with the
additive trend, multiplicative seasonality and additive errors (25,
26). By using the state-space structure, the optimal exponential
smoothing model could be determined. According to the
model building algorithm from the “forecast” package, the
ets function was utilized to determine the final ETS model,
defined as the model with the lowest AICc value among
models developed (26).

Hybrid Model
Several functions from the “forecast” and “forecastHybrid”
packages (26, 49) were employed to develop a hybrid model
of SARIMA and ETS (SARIMA-ETS). Since functions from
“forecastHybrid” R package developed by Shaub and Ellis offer
the automated procedure to obtain the best fitting model (27);
thus, the hybridModel function from this package was employed
to develop the SARIMA-ETSmodel. According to this procedure,
forecast values generated from auto.arim and ets functions were
combined equally to develop the hybrid model. The automatic
methodology from the hybridModel function provided results
obtained by optimizing the prediction features of the model-
based minimizing error (27). The detail of these procedures was
previously described (49, 50).

Model Assumption Diagnostics
Residuals from all final models were tested for model
assumptions. The Ljung–Box Q test would be used to diagnose
if the residual error sequence from the final model was a
white-noise sequence (51). In addition, residuals from the final
model were plotted to examine autocorrelation and partial
autocorrelation functions (26). All of these methods for checking
residuals were performed using a function checkresiduals from
the “forecast” package, which produced a time plot, ACF plot, and
histogram of the residuals (with an overlaid normal distribution
for comparison) and conducted a Ljung-Box test (26).

Model Performance and Forecast
With the validation dataset, error matrices that were commonly
used including mean absolute error (MAE), root mean square
error (RMSE), and mean absolute percent error (MAPE)
were calculated to determine forecast performances among the
developed models (26, 52). It is generally accepted that the lower
the measure error matric values, the better the method (33).

As described previously, the forecasts of milk production were
estimated from the models developed from training and full
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FIGURE 2 | Decomposition of time-series milk production data (January 2016–December 2020) into trend, seasonal, and error (remainder) components.

datasets. Thus, we forecasted milk production for the periods
of January-December 2020 and January 2021–December 2022
using training and full datasets, respectively. The performance
of forecast models was determined by comparing the milk
production forecast values from forecast models applied to
the training dataset with actual milk production values from
the validation dataset. In addition, forecast values for milk
production for the period of January 2021-December 2022 were
computed using forecast models applied to the full dataset.

RESULTS

Decomposition
Overall, the actual monthly milk production showed an
increasing trend with the existence of seasonal fluctuation
(Figure 2). Upon decomposition of the actual data into trends,
it was revealed that a consistently increasing trend in milk
production could be observed over the period 2017–2018, and
the milk production was gradually raised from 2019 to 2020.
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TABLE 1 | Error matrices for time series and hybrid models applied to the

validation dataset.

Model* MAEa RMSEb MAPEc

SARIMA 600.11 652.64 3.96

ETS 382.60 458.40 2.52

SARIMA-ETS 342.36 467.71 2.21

*SARIMA, seasonal autoregressive integrated moving average; ETS, error trend

seasonality; SARIMA-ETS, hybrid model of SARIMA and ETS.
aMAE, mean absolute error.
bRMSE, root mean square error.
cMAPE, mean absolute percent error.

When the data was decomposed into a seasonal component, a
seasonal pattern was clearly shown, with the predominant peak
in milk production occurring between March and May every
year (Figure 2).

Models
Based on the ARIMA approach, the SARIMA (1,0,0) (1,1,0)12 was
defined as the final model. This model is interpreted as follows:
the number of lag observations included in themodel or lag order
is equal to one (p= 1), the degree of differences is equal to zero (d
= 0), the order of moving average is equal to zero (q= 0), the last
seasonally offset observation is used in themodel (P=1), seasonal
differences are equal to one (D= 1) and moving average order in
seasonality is equal to zero (Q =0), and yearly seasonal is set (m
= 12). For the ETS approach, the ETS (M, A, A) was selected
as the final model which could be interpreted as the model with
an additive trend (A), additive seasonality (A), and multiplicative
errors (M). Moreover, the hybrid model of SARIMA-ETS was
determined as well.

Results according to model assumption testing including
ACF plots and the Ljung–Box test are shown in the
Supplementary Material S1.

Model Performance
The SARIMA-ETS model performed better than other models
as it had the lowest MAE, RMSE, and MAPE values (Table 1).
This finding implied that the hybrid model approach had a better
forecast accuracy compared with the single model approach. The
actual and predicted values for milk production based on the
validation dataset are shown in Figure 3. It was demonstrated
that several SARIMA-ETS forecast values were remarkedly closer
to the actual values of milk production than those from other
models. Notably, for the last six months of the testing dataset,
the hybridmodel predictedmilk production with a high degree of
accuracy, whereas the ETS appeared to performwell in prediction
over the course of a year.

Milk Production Forecast
According to the ETS, SARIMA-ETS and SARIMA models, milk
production was expected to increase by 3.2, 3.4 and 3.6% per
year between 2021 and 2022, respectively. The forecast values
of milk production from all model are illustrated in Figure 4

and presented in the Supplementary Material S2. Results from

the best performance model (SARIMA-ETS) highlighted an
increasing trend of milk production with fluctuation due to the
seasonality. The SARIMA-ETS hybrid model delivered forecast
values that were all in themiddle of forecast values from SARIMA
and ETS methods. Notably, the SARIMA provided the highest
forecast values for 14 of the 24 months of the prediction.

DISCUSSION

Oversupply of milk is a matter of serious concern for Thailand’s
dairy industry (7, 53). Therefore, establishing accurate forecast
models for milk production becomes the cornerstone of efficient
planning and management. In this study, we developed and
evaluated forecast models using various time-series statistical
methods to predict milk production. The novelty of this study lies
in the fact that milk production data were firstly analyzed using
the hybrid forecasting model.

It is generally accepted that there is no one-size-fits-all forecast
method for various data types and each one comes with its
own merits (27, 54). Thus, numerous models based on several
forecast methods to predict milk production were developed.
The findings from this study demonstrated that the ETS model
performed better than the SARIMA model. This finding can
be explained by the fact that each method has a different
capacity for dealing with the data. Although both methods have
a great capability to analyze data with seasonal patterns, the
SARIMA has difficulties in detecting and considering the non-
linear pattern of the data (15, 55) which may exist in our data. On
the other hand, the state-space methods of the ETS can capture
both linear and non-linear patterns of the time-series data (32,
56). Hence, it provided a higher forecast accuracy. Our study
also highlighted that the hybrid model outperformed the single
model, which has been supported by numerous previous studies
(33, 52, 57, 58). In this study, the SARIMA tend to overestimate
the milk productions, but the ETS appeared to underestimate
them. The most accurate forecast model was obtained from the
SARIMA-ETS hybrid model. The better forecast performance of
the hybridmodel over the singlemodel observed in this study was
likely attributed to its capability to capture irregular fluctuations,
seasonality patterns, and other data behaviors (27, 52) because
the hybrid model combined strengths of the single model. While
the SARIMA performed well in dealing with the autocorrelation
in data, the ETS has a great capability to deal with the trend and
irregular patterns (59). Indeed, the hybrid model combines the
strengths of each model that can work on its own expertise. In
addition, the hybrid model can make the model work together
to overcome other weaknesses (60). Thus, the hybrid model was
expected to deliver more accurate predictions compared to the
single model (61) as observed in the present and numerous
previous studies (11, 55, 57, 60).

The present study provided the estimation of future milk
production from the northern region, which policymakers
could combine with other milk production data from other
regions to establish a plan for managing the overall milk
production in Thailand. In this study, we identified the major
challenges regarding the future milk production in the north
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FIGURE 3 | The actual milk production (blue circles) from the full dataset (January 2016–December 2020) and forecast milk production values (red circles) for

January-December 2020 derived from seasonal autoregressive integrated moving average (SARIMA), error trend seasonality (ETS), and SARIMA-ETS hybrid models

applied to the training dataset. The performance of time series models was measured by comparing forecasted and milk production values from January to

December 2020.
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FIGURE 4 | Forecasts of milk production (January 2021–December 2022) using the seasonal autoregressive integrated moving average (SARIMA), error trend

seasonality (ETS), and SARIMA-ETS hybrid models applied to the dataset of January 2016–December 2020. Green, red and blue circles represent to the forecast

values from SARIMA, ETS and SARIMA-ETS, respectively.

including the increasing trend of milk production for the period
of 2021–2022 and the fluctuation in the production due to
seasonality (Figure 4). The upward trend of milk production
poses a challenge to authorities and stakeholders along the milk
supply chain to formulate a strategic plan to organize future
milk production. Identifying new potential target consumers or
expanding milk markets may be a part of the plan. Moreover,
our prediction results suggested that the milk production during
some months was relatively high compared with other months
due to the seasonality. Thus, we suggested that milk marketing
should be planned to manage this fluctuation.

Regarding previous reports from other countries such as
Bangladesh, India, and Pakistan, milk production forecasts are
limited to ARIMA models (43, 62, 63). Accordingly, the lack of
the application of other classical and hybrid models to fit the
data may result in some knowledge gaps in the pursuit of a
better forecasting strategy for this type of data. To the best of our
knowledge, this was the first study to forecast milk production
utilizing ETS and hybrid models. However, it’s worth noting that
the best-fitting model in this study may not be well-suited for
all milk production data. Thus, for future studies, we suggest
applying several appropriate forecast models to a particular milk
production dataset and then determine the best-suited model.
For a follow-up study in Thailand, we recommend establishing
forecast models for milk production using nationwide data.
Herein, it was the first study for our ongoing project, and the
method selected to be utilized was based on the nature of milk

production data in Thailand, which obviously has a seasonal
pattern; however, an application of other advanced forecast
models is warranted for follow-up studies.

In summary, we applied time-series statistical methods
including SARIMA, ETS, and SARIMA-ETS hybrid models to
analyze and forecast milk production. Our findings indicated a
continuously increasing trend of milk production in the northern
region of Thailand from 2016 to 2020. The most preferred
model was the SARIMA-ETS model yielded the lowest values
of error matrices. Our results have provided policymakers and
stakeholders with useful information for developing an effective
strategic plan for managing milk volumes in the coming years.
This approach is not limited to the data used in this study; it can
be applied to an updated dataset to produce ongoing forecasts.
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