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Background: Citizen science, scientific research conducted by non-specialists, has the potential to facilitate
biomedical research using available large-scale data, however validating the results is challenging. The Cell Slider
is a citizen science project that intends to share images from tumors with the general public, enabling them to
score tumor markers independently through an internet-based interface.
Methods: FromOctober 2012 to June 2014, 98,293 Citizen Scientists accessed the Cell Slider web page and scored
180,172 sub-images derived from images of 12,326 tissue microarray cores labeled for estrogen receptor (ER).
We evaluated the accuracy of Citizen Scientist's ER classification, and the association between ER status and
prognosis by comparing their test performance against trained pathologists.
Findings: The area under ROC curve was 0.95 (95% CI 0.94 to 0.96) for cancer cell identification and 0.97 (95% CI
0.96 to 0.97) for ER status. ER positive tumors scored by Citizen Scientists were associated with survival in a
nd Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worth's Causeway, Cambridge

haroah).

. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2015.05.009&domain=pdf
http://dx.doi.org/10.1016/j.ebiom.2015.05.009
mailto:pp10001@medschl.cam.ac.uk
http://dx.doi.org/10.1016/j.ebiom.2015.05.009
http://creativecommons.org/licenses/by//
http://www.sciencedirect.com/science/journal/03064603
www.ebiomedicine.com


682 F.J. Candido dos Reis et al. / EBioMedicine 2 (2015) 681–689
similar way to that scored by trained pathologists. Survival probability at 15 yearswere 0.78 (95% CI 0.76 to 0.80)
for ER-positive and 0.72 (95% CI 0.68 to 0.77) for ER-negative tumors based on Citizen Scientists classification.
Based on pathologist classification, survival probability was 0.79 (95% CI 0.77 to 0.81) for ER-positive and 0.71
(95% CI 0.67 to 0.74) for ER-negative tumors. The hazard ratio for death was 0.26 (95% CI 0.18 to 0.37) at
diagnosis and became greater than one after 6.5 years of follow-up for ER scored by Citizen Scientists, and 0.24
(95% CI 0.18 to 0.33) at diagnosis increasing thereafter to one after 6.7 (95% CI 4.1 to 10.9) years of follow-up
for ER scored by pathologists.
Interpretation: Crowdsourcing of the general public to classify cancer pathology data for research is viable,
engages the public and provides accurate ER data. Crowdsourced classification of research data may offer a
valid solution to problems of throughput requiring human input.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The assessment of tissue protein expression by immunohisto-
chemistry (IHC) is widely used in both the clinical and the research
settings. IHC combined with tissue microarray (TMA) technology
(Wan et al., 1987; Kononen et al., 1998) provides an efficient ap-
proach to the study of multiple molecular markers in hundreds or
thousands of tumors. TMAs are produced by removing cylindrical
cores of tissue from up to donor paraffin blocks and embedding
these into a single recipient paraffin block at set array coordinates.
Several hundreds of tumors may be embedded in a single TMA.
This has the potential to reduce inter-assay variability and to reduce
the cost of research (Camp et al., 2008). Consequently, the large
sample sizes required for robust inference in clinical epidemiology
are achievable. A typical study may include over 10,000 cases (Ali
et al., 2014). However, the process still relies on manual scoring of
labeled sections by trained researchers. This is time consuming and
scoring remains a rate-limiting step in this type of research. One
solution to this bottleneck is to scan the labeled sections and to use
automated analysis of the digitized images of each core. Several
image analysis algorithms have been shown to perform reasonably
well for some IHC markers (Giltnane and Rimm, 2004; Bolton et al.,
2010; Ali et al., 2013; Howat et al., 2015). While automated image
analysis remains promising, its implementation may be complex
and it has not yet replaced manual scoring in large scale molecular
epidemiology studies in cancer.

An alternative approach to automated image analysis is crowd-
sourcing in which a function – here scoring of IHC labeled sections of
tumor cores – is outsourced to an undefined and generally large group
of people in the form of an open call. The crucial prerequisites are the
use of the open call format and the large network of potential contribu-
tors (Howe, 2006). Crowdsourcing relies onparallel independent inputs
from individuals allowing for large group size, maximizing cognitive
diversity and enhancing group performance (Page, 2008).

The Citizen Science Alliance (http://www.citizensciencealliance.
org) is a collaboration of scientists, software developers and educa-
tors, who use the concept of crowdsourcing to develop, manage
and utilize internet-based citizen science projects in order to further
scientific research and to promote the public understanding of sci-
ence. Through citizen science projects, thousands of Citizen Scien-
tists have collected, organized and classified data for research
purposes. Some successful initiatives are: the investigation of galaxy
morphology (Lintott et al., 2008), the prediction of protein struc-
tures (Cooper et al., 2010) and the alignment of multiple sequences
in genomic studies (Kawrykow et al., 2012). The Cell Slider project
was established to enable the scoring of tumors labeled using IHC
by untrained members of the general public – Citizen Scientists –
through an internet-based interface. In this paper we report the
results of the first Cell Slider project in which Citizen Scientists
scored estrogen receptor (ER) expression in images of tumor cores
from a large number of breast cancers arrayed in TMAs.
2. Methods

2.1. Study Design, Setting, and Population

This study was performed using pathology data from the Breast
Cancer Association Consortium (BCAC), an international collabora-
tion that was established to provide large sample sizes for examining
risk factors, genetic associations and prognostic markers in breast
cancer (Breast Cancer Association Consortium, 2006). The BCAC re-
source comprised 12,326 scanned images from breast cancer TMA
cores stained for estrogen receptor (ER). A total of 3082 cores from
the SEARCH study (Lesueur et al., 2005) — that had been previously
been scored by the same pathologist under conventional microscopy
and without access to patient clinical records. The cores were from
the tumors of 6378 patients from 10 studies (Appendix 1). Informa-
tion on clinic-pathological characteristics of each patient was obtain-
ed from clinical records or centralized review of case notes. This
included ER status for which was either taken from independent
research-based pathology review or, where this had not been carried
out, from the clinical records. Relevant research ethics committees
approved all the studies and samples were anonymized before
being sent to two coordinating centers at Strangeways Research
Laboratory (University of Cambridge, UK) and the Breakthrough
Pathology Core Facility (Institute of Cancer Research, London, UK)
for analysis. Fig. 1 summarizes the study design.

TMA sections were immunostained in several centers and each
stained TMA slide was digitized using the Ariol platform (Genetix
Ltd, Hampshire, UK) and high-resolution images or each tumor
core were subsequently extracted for analysis. The ease of scoring
of TMA images before and after transforming the colors in a variety
of combinations was evaluated by beta-testing by experienced
Citizen Science Alliance volunteers. The preferred colors were then
used subsequently. The colors of the images were transformed
using the ImageMagick library. The colors of the image were first
negated (replacing each pixel by its complementary color) and
then the saturate was increased by 300% and the hue reduced by
82%. Finally the full image was divided into 16 sub-images which
were resized to 495 by 496 pixels each. The four corner sub-images
were removed as they often had no tumor material present and the
remaining 12 sub-images were uploaded to the Cell Slider project
web site.

2.2. Citizen Scientist Training and Scoring

Any member of the public (Citizen Scientists) can participate of
the project at http://www.cellslider.net/. Once in the website the
Citizen Scientist can register a user name and a password or proceed
without registration. At first entry the Citizen Scientist is provided
with a brief web based training tutorial in which the task and key
steps required to score each image are described. After completing
the training the Citizen Scientist is presented with an image to

http://creativecommons.org/licenses/by//
http://www.citizensciencealliance.org
http://www.citizensciencealliance.org
http://www.cellslider.net/


6,378 breast tumors
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Fig. 1. Flowchart of study design showing details of score calculation (sub-image, image and tumor), comparison with pathologist evaluation and survival analysis.
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score, which is done by clicking on the answers for up to four ques-
tions presented serially (Supplemental figure 1). The Citizen Scien-
tist is first asked to identify the presence of cancer cells in the sub-
image (yes/no). If they do identify cancer cells, the Citizen Scientist
is asked to estimate: the number of cancer cells on a scale of 1 to 4
corresponding to 1 to 5, 6 to 10, 11 to 20 and more than 20 cancer
cells; the proportion of nuclei staining positive on a scale of 0 to 5
corresponding to 0%, b1%, 1 to 9%, 10 to 33%, 34 to 66% and 67 to
100%; and the intensity of staining on a scale of 0 to 3 corresponding
to no staining, weak, moderate and strong staining. This scoring
was designed to approximate the Allred scoring system which is
commonly used in clinical practice (Howat et al., 2015). The Allred
system scores the proportion of nuclei staining positive on a scale
of 0–5 (0%, b1%, 1 to 9%, 10 to 33%, 34 to 66% and 67 to 100%) and
the intensity of staining on a four point scale (no staining, weak,
moderate and strong, 0–3). These scores are added together to provide
an overall score on a nine point scale (0 to 8). A tumor with an Allred
score N2 is conventionally considered to be ER positive. A pseudo-
Allred score for each Citizen Scientist sub-image evaluation was
generated by summing the proportion score with the intensity score.

2.3. User Performance Score

A set of 200 sub-images, selected to provide a range of scores,
were accessed and scored by a pathologist. This set of sub-images
was used as a standard to generate a user performance score
(UPS) for each Citizen Scientist according to their performance in
identifying cancer cells in the sub-images as follows: (1) All of the
Citizen Scientists are assigned a preliminary UPS of 0.5 and the
experts are assigned a UPS of 1 on initializing the algorithm.
(2) The preliminary UPSs of the Citizen Scientists who have scored
a sub-image that was scored by an expert are then increased to 0.7
if the Citizen Scientist agreed with the expert otherwise the prelim-
inary UPS remains as 0.5. (3) A modal classification (a pseudo-
likelihood that the image contains cancer) is then generated for all
the sub-images without an expert classification as the weighted
average of all the sub-image scores where a classification of cancer
cells present is scored as one and no cancer cells present is scored
as zero. The weights are the Citizen Scientist preliminary UPSs as
assigned in (2). (4) The UPS is then recalculated for each user
based on the modal classification for all the sub-images they have
scored. If the user identifies cancer cells and the modal classification
value is N0.5 their score for that sub-image is the modal value. If the
user does not identify cancer cells and the consensus value is b0.5
their score for that sub-image is 1 — the modal value. If the user
disagrees with the modal classification (cancer cells present and
the modal value b 0.5 or cancer cells not present and the modal
value N 0.5) the user is assigned a score of 0 for that sub-image. The
recalculated UPS is then the average user score for all images they
have scored. (5) The average change in mean UPS from (2) to (3) is
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Fig. 2. Engagement in Cell Slider by Citizen Scientists. (A) Number of classifications by day
since project launch; (B) histogram of number of classifications done by each Citizen
Scientist.
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then calculated. If this value is greater than 0.0003 then (3) and
(4) are repeated until the change in average UPS is less than 0.0003
and the final UPS is assigned to each user. This approach is an effi-
cient method for obtaining a UPS without the need for each Citizen
Scientist to score sub-images that have already been scored by a
pathologist.

2.4. Image Score

A single score for each image (tumor core) was obtained by first
combining the scores for each sub-image to generate a single sub-
image score and then combining the 12 sub-image scores. Three
different approaches were used to combine the data for multiple
scorers to generate a single score for each sub-image: i) the median
of individual readings, ii) the weighted median of individual scores
using the Citizen Scientist user performance score as the weight,
iii) the median of individual readings after excluding scores of
Citizen Scientists who had scored fewer than five sub-images. The
sub-image scores were then combined to obtain a single score for
each image by calculating a weighted median of the sub-image
scores using the number of cancer cells as the weight. To generate
the number of cancer cells score for each image, we calculated the
sum of the sub-image median for the number of cancer cells based
on the five-point ordinal scale described above. A pseudo-Allred
score (range: 0 to 8) for each image was generated by combining
the scores for each sub-image to generate a sub-image score and
then combining the sub-image scores. (1) The pseudo-Allred score
for each sub-image was the median of the individual pseudo-Allred
scores; (2) the pseudo-Allred score for the image was then the
weighted median of the sub-image scores using the number of
cancer cells as the weight.

2.5. Statistical Analysis

Spearman's correlation coefficient was used to assess correlations
between the Citizen Scientist's performance score and the number
of cores scored by each Citizen Scientist and between the Citizen
Scientist's ER scores for each TMA core and the Allred score assigned
by a pathologist. The receiver-operator characteristic (ROC) was
used to evaluate the accuracy of Citizen Scientists' classification of
the presence of cancers cells in a tumor core and classification of ER
status. Survival time analysis was conducted using Kaplan Meier
survival curves and Cox proportional hazards regression. The multi-
variable Cox proportional hazards model was stratified by study and
included ER status, patient age, tumor stage and tumor grade. Estro-
gen receptor status is known to violate the Cox proportional hazards
assumption (Blows et al., 2010) and so ER status was treated as a
time-varying covariate in the Cox models in which the ER status
specific hazard ratio was assumed to vary linearly with the natural
logarithm of time. Stage and grade were missing for 7.8% and 9.3%
of cases respectively. We used multiple imputations by chained
equations to deal with missing data as this has been shown to be
the method of dealing with missing data that is least likely to bias
parameter estimates (Ali et al., 2011; Graham et al., 2007; White
et al., 2011). Each data set was imputed 20 times and the parameter
estimates from the Cox regression models were combined using
Rubin's rules (Rubin, 1976). Statistical analysis was conducted
using STATA/SE version 13 (StataCorp).

3. Results

3.1. Citizen Scientists Participation

Cell Slider was launched on 23 October 2012. The press release
was picked up by several media outlets, with coverage in the
Huffington Post and on the UK terrestrial television channel ITV.
From October 2012 to June 2014, 98,293 Citizen Scientists accessed
the Cell Slider web page and scored 180,172 sub-images derived
from images of 12,326 stained TMA cores (Fig. 2A). A further article
on Reddit.com on 25 November 2012 resulted in over 15,000
additional visitors within a short time. Subsequent media exposure
and advertising on Facebook resulted in three spikes of classifica-
tions in 2013 with a peak of 107,710 on 30thMay 2013, but the effect
was generally short-lived; after a few days, user numbers returned to
a few hundred per day. A total of 1,939,984 sub-image classifications
were available for analysis. The median number of sub-images
evaluated by each citizen scientist was 6 (5th percentile = 1; 95th
percentile = 47; Fig. 2B). The distribution of the number of scores
for each sub-image is bimodal: there were five scores for 46%
of sub-images and 20 scores for 29% of the sub-images. The total
number of sub-image scores for each image was also bimodal
and ranged from 60 to 361, with 64% having 60 to 157 scores
(median = 70) and 36% having 251 to 361 (median = 306) Citizen
Scientists.

3.2. Citizen Scientists Performance

We first assessed the individual performance of Citizen Scientists
in identifying the presence of cancer cells in sub-images based on the
final UPS. The distribution of the Citizen Scientist UPSs is shown in
Fig. 3. The UPSs were weakly correlated with the number of images
scored (Spearman rho = 0.26, P b 0.0001). Eight percent of the
Citizen Scientists (7835) were assigned a UPS of zero. Most of these
(80%) had scored only one or two sub-images.
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We evaluated the accuracy of the Citizen Scientists in identifying
the presence or absence of cancer cells using data from a subset
of the TMA cores – 3082 from the SEARCH study (Lesueur et al.,
2005) – that had been previously scored by a pathologist. This took
10 h of pathologist time. The pathologist identified cancer cells in
2138 (69%) of these cores. The number of cancer cells was calculated
for each image as the sum of the median number of cancer cells
scored by the Citizen Scientists for each sub-image. This score ranged
from 0 to 64 across the 3082 images. A threshold of at least one
cancer cell correctly classified 2121 of the 2138 cores containing
cancer cells according to the pathologist (sensitivity 99%) and 296
of the 944 cores with no cancer cells (specificity 31%); overall 78%
of all classifications were correct. The receiver operator characteris-
tic curve plots the sensitivity against 1 minus the specificity at
different cut-offs for classification of cancer cells present or absent
(Fig. 4A). The area under the ROC curve was 0.95 (95% CI 0.94 to
0.96). Maximum accuracy was achieved using a threshold of at
least ten cancer cells to classify tumor cores as cancer cells present,
which resulted in a sensitivity of 97%, a specificity of 77% and an
overall accuracy 91%.

We then compared the ER staining as measured by the Allred
score assigned by the pathologist with the Citizen Scientist pseudo-
Allred score for the subset of 2121 cores with cancer cells identified
by both the pathologist and the Citizen Scientists. The correlation
coefficient was 0.90 (P b 0.0001) and the mean of difference (Pathol-
ogist score–Citizen Scientists score) was 1.09 (95% CI 1.04 to 1.15)
(Fig. 4B). Under the standard Allred scoring system, a score of N2 is
conventionally classified as ER positive (Harvey et al., 1999). Sixteen
hundred and eleven of these tumors were classified as ER positive by
the pathologist. Using a cut-off for the pseudo-Allred score of N2, the
sensitivity of ER status determined by the Citizen Scientists was 88%,
with a specificity of 98%. There was agreement between pathologist
and Citizen Scientists for 1912 tumors (90%). There were nine
discordant tumors with pseudo-Allred score N2 and Allred score ≤2
and 200 tumors with pseudo-Allred score ≤2 and Allred score N2.
The sensitivity and specificity for classifying ER status using
different cut points of the pseudo-Allred score is shown using a
ROC curve (Fig. 4C). The area under the ROC curve was 0.96 (95% CI
0.95 to 0.97). ER status (positive or negative) without an Allred
score was available for 2842 additional tumors from other BCAC
studies. The area under ROC curve for the Citizen Scientists ER
classification was 0.83 (95% CI 0.82 to 0.85) (Fig. 4D). The distribu-
tion of the pseudo-Allred score by known ER status is shown in
table 1.

The pseudo-Allred scores were calculated using three alternative
approaches. The results of combined scores from the unweighted
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median of individual readings were slightly better than those from
weighted median of individual scores or those including only Citizen
Scientists with five or more scored sub-images (Table 2).

3.3. Estrogen Receptor Expression and Survival

Survival time data were available for 4947 patients in
whom there were 734 deaths from breast cancer by fifteen years of
follow-up. We used these data to compare the association with
prognosis for ER status classified by a pathologist and ER status
classified by Citizen Scientists. The Kaplan–Meier survival functions
by ER status are shown in Fig. 5. There was a significant association
(log rank test P b 0.001) for both determinations of ER status.
Based on Citizen Scientists classification, the Kaplan–Meier survival
probability estimates at 15 years were 0.78 (95% CI 0.76 to 0.80) for
ER-positive and 0.72 (95% CI 0.68 to 0.77) for ER-negative tumors.
Based on pathologist classification, survival probability estimates at
15 years were 0.79 (95% CI 0.77 to 0.81) for ER-positive and
0.71(95% CI 0.67 to 0.74) for ER-negative tumors.

We estimated the hazard ratios for breast cancer specific death
using Cox regression implemented in a multiple imputation frame-
work to deal with missing data on stage and grade (Table 3). ER
status was treated as a time-varying covariate with the log hazard
ratio varying linearly with time. This generates two parameter
estimates for ER status, β1 and β2, such that the hazard ratio at
time t, HR(t), is given by

HR tð Þ ¼ exp β1 þ β2tð Þ:

Based on a comparison of log likelihood statistics, the model
using ER status determined by pathologists fit substantially better
than that based on the Citizen Scientist data (log likelihoods
−3580.84 and −3589.38 respectively). The parameter estimates,
β1 and β2 were −1.41 (95% CI −1.71 to −1.10) and 0.21 (95% CI
0.16 to 0.26) for the model based on pathologist-determined ER
status and −1.34 (95% CI −1.69 to −0.98) and 0.21 (95% CI 0.14
to 0.27) for the model based on Citizen Scientist based ER status.
Thus, the hazard ratio for ER positive tumors based on pathologist
determination was 0.24 (95% CI 0.18 to 0.33) at diagnosis increasing
thereafter to one after 6.7 (95% CI 4.1 to 10.9) years of follow-up.
Similarly, the hazard ratio for ER positive scored by Citizen Scientists
was 0.26 (95% CI 0.18 to 0.37) at diagnosis and increased thereafter
to one after 6.5 (95% CI 4.1 to 12.0) years of follow-up.

4. Discussion

The principles of crowdsourcing, which enable sufficiently
accurate analysis of a variety of types of scientific data from classify-
ing images of galaxies to categorizing the sounds made by killer
whales, are well established. However, it is not self-evident that
this approach will be useful for other types of scientific data.
We have shown that Citizen Scientists with minimal training can
accurately score ER expression in breast tumors.

Assessing individual Citizen Scientist performance is challenging
in group aggregate work. In this study, a user performance score was
developed to assign weights to Citizen Scientist results according to
the level of their agreement with a specialist. However the overall
performance of the group was not improved by weighting individual
results. This is because of the effective loss of data for those Citizen
scientists assigned a weight of zero. Our results agree with previous
observations that the average of decisions from a group aggregate is
accurate and multiple readings by a large number of individuals can
correct for divergent results (Mattingly and Ponsonby, 2014).

In a direct comparison in which the immunohistochemistry stain-
ing of over 3000 breast tumors cores arrayed on a TMA were scored
by a pathologist and the Citizen Scientists, the Citizens performed
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well. The major weakness of the Citizen Scientists was in the identi-
fication of cancer cells on any given image. In the construction of tis-
sue micro arrays small cores (typically 0.6 mm) of representative
areas of tumors are selected. However, the density of cancer cells
may vary substantially across a tumor. Consequently, some cores
contain no cancer cells at all (Ali et al., 2011). Other cores may
include cancer cells but these may be unevenly distributed so that
some of the sub-images of a core may not have cancer cells. Citizen
Scientists tended to overestimate the presence of cancer cells,
probably because of the presence of stained normal cells or technical
artifacts. Lymphocyte expression of ER can cause false positive
results (Pierdominici et al., 2010). The poor calling of cancer
cells is also reported in studies with automated algorithms
Table 1
Distribution of pseudo Allred scores according to ER status.

ER status Pseudo Allred score

b2 2–3 4–5 N5

SEARCH TMAs
(2121 tumors)
ER negative 481 (22.68%) 26 (1.23%) 2 (0.09%) 1 (0.05%)
ER positive 101 (4.76%) 228 (10.75%) 386 (18.20%) 896 (42.24%)

BCAC TMAs (2842
tumors)
ER negative 265 (9.32%) 177 (6.23%) 127 (4.47%) 200 (7.04%)
ER positive 69 (2.43%) 132 (4.64%) 284 (9.99% 1588 (58.88%)
(Ali et al., 2013, Howat et al., 2015). This limitation is, perhaps, not
surprising given that breast cancer cells are morphologically hetero-
geneous. Furthermore, the pattern recognition skills needed
to identify cells with a large nucleus, irregular size and shape, prom-
inent nucleoli, and scarce cytoplasm are greater than those required
to simply identify the presence or absence of IHC staining.

The accuracy of the Citizen Scientist classification of estrogen
receptor status was extremely good for the subset of images on
which there was agreement between pathologist and Citizen Scien-
tist on the presence of cancer cells. The concordance between the
pseudo-Allred score assigned by Citizen Scientists and Allred score
by the pathologist was 0.84, slightly inferior to the reported concor-
dance between pathologists using the Allred score which varies from
0.87 (Harvey et al., 1999) to 0.90 (Badve et al., 2008). The area under
ROC curve was 0.97 (0.96–0.97) for ER status dichotomous classifica-
tion that was slightly better than the reported value for automated
algorithms of 0.92 (0.90–0.94) (Ali et al., 2013). The accuracy of the
Citizen Scientists was reduced in the subset of cases for which the
comparison was the results of ER status as recorded in the BCAC
database. There are several reasons for this difference. The ER status
as recorded in the BCAC database was primarily derived from clinical
records or central review of cases by individual studies and thus
derived from whole tumor sections, whereas the Citizen Scientist
scores were based only on the TMA cores. In the presence of within
tumor heterogeneity, the whole section and tumor core scores are
likely to differ and this is likely to be a particularly problem for



Table 2
Performance of Citizen Scientists to identify cancer cells and classify ER staining.

Identification of cancer cells in SEARCH study Obs. ROC area 95% CI

All original scores 3082 0.951 0.943 to 0.960
Scores from CS with 5 or more scores 3082 0.951 0.942 to 0.960
All original scores with UPS-weighting 3082 0.951 0.942 to 0.959

Classification of ER in SEARCH study Obs. ROC area 95% CI

All original scores 2121 0.968 0.961 to 0.974
Scores from CS with 5 or more scores 2121 0.967 0.960 to 0.974
All original scores with UPS-weighting 2121 0.965 0.958 to 0.972

Correlation with the pathologist in SEARCH study Obs. Spearman rho 95% CI

All original scores 2121 0.898 0.890 to 0.906
Scores from CS with 5 or more scores 2121 0.896 0.888 to 0.904
All original scores with UPS-weighting 2121 0.894 0.885 to 0.902

Classification of ER in BCAC Obs. ROC area 95% CI

All original scores 2842 0.822 0.804 to 0.840
Scores from CS with 5 or more scores 2842 0.821 0.803 to 0.839
All original scores with UPS-weighting 2842 0.820 0.802 to 0.838

CS: Citizen Scientists.
UPS: final user performance score.
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those cores containing no cancer cells. Preliminary assessment of
each core by a pathologist using rapid visual inspection to identify
unsatisfactory cores might improve the performance. However, this
would be time consuming, and the added effort to improve scoring
would diminish the relative value of crowdsourcing. These effects
are likely to be exacerbated in the BCAC data set by the additional
variability in tissue preparation from multiple specimen sources.

The group of voluntary Citizen Scientists was constituted through
advertising the Cell Slider on several mass media. However this
strategy was very successful for recruiting volunteers, the effect
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Fig. 5. Kaplan–Meier estimates of cumulative survival of 4947 patients. (A) ER status
classified by Citizen Scientists. (B) ER status as recorded in BCAC database.
was generally short-lived. Two characteristics of Citizen Scientist
participation were evident: there were peaks of participation imme-
diately after media advertisement, and the number of participants
who scored just few sub-images is high. One important challenge
for future projects is how to maintain the participants after the first
interaction with the platform.

Another challenge in citizen science projects is the training of
participants. The performance of Citizen Scientists was positively
associated with the number of readings performed; however the
number of readings by each Citizen Scientist was relatively small,
with 64% of participants scoring fewer than eight sub-images, and
an additional of 19% scored between 9 and 17 sub-images. The train-
ing for Cell Slider was very brief and given without any feedback or
response to queries. Nor was there any feedback provided to Citizens
after they had scored any images. There may be potential to improve
the accuracy, particularly for the identification of cancer cells, by
using a more comprehensive training. For example, recent evidence
has emerged that the training of Citizen Scientists can be improved
using video tutorials (Starr et al., 2014). The Cell Slider platform
does not allow Citizen Scientists to go back to an image previously
scored and update their classification. Because of this limitation, we
were not able to evaluate the impact of belief update on the accuracy
of Citizen Scientist classification.
Table 3
Estimated hazard ratios (HR) for all-cause mortality in 4947 breast cancer patients from
multi-variable Cox proportional hazards model after multiple imputations ofmissing data
for stage and grade.

Variable Cox model with ER evaluated
by Citizen Scientists

Cox model with ER reported in
BCAC data base

HR 95% CI p-Value HR 95% CI p-Value

Age 1.00 0.99–1.00 0.998 1.00 0.99–1.00 0.875
Stage

I Ref Ref
II 2.33 1.91–2.84 b0.001 2.32 1.90–2.83 b0.001
III 4.97 3.76–6.57 b0.001 4.97 3.76–6.56 b0.001
IV 18.84 12.36–28.73 b0.001 18.39 12.12–27.89 b0.001

Grade
1 Ref Ref
2 1.58 1.24–2.01 b0.001 1.55 1.22–1.98 b0.001
3 2.45 1.91–3.13 b0.001 2.30 1.79–2.97 b0.001

ER positive 0.26 0.18–0.37 b0.001 0.24 0.18–0.33 b0.001
ER positive TVC⁎ 1.23 1.15–1.31 b0.001 1.23 1.17–1.30 b0.001

⁎ Time varying covariate.
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Any method used to carry out scoring of immunostaining for
large-scale molecular pathology studies will be subject to a degree
of measurement error, and all such methods will be sub-optimal
compared to review by a single highly-trained pathologist. However
the key question is whether other methods are sufficiently accurate
to detect important associations (Camp et al., 2008). We have
shown that Citizen Scientist scoring of breast cancer cores is
sufficiently accurate to detect an association between ER status and
prognosis, with effect sizes only slightly attenuated compared to
the effects estimated from clinical data. In our study, each Citizen
Scientist was random and uncorrelated with others. Therefore,
because of the large size of the group, discrepant inputs should
cancel each other out.

We have shown that involving the participation of the general
public is a very promising approach to reducing a key bottleneck in
the conduct of very large molecular pathology studies. Whether or
not it has any advantages over automated image analysis needs to
be established and further work is required to establish its utility
across a range of markers including proteins in other subcellular
compartments. This proof-of-principle study demonstrates that
crowdsourced research which engages the general public is a viable
method of overcoming key bottlenecks in cancer research studies
with great potential for wider application.

5. Research in Context

There were evidences that citizen scientists can accurately collect
data from the environment and classify data collected by high
throughput equipment. We have shown that crowdsourced research
which engages the general public is a viable method of overcoming
key bottlenecks in cancer research studies. Citizen scientists were
able to classify estrogen receptor expression in breast tumors with
high accuracy. Our data along with current evidence suggest that
citizen science has great potential for wider application in cancer
research.
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