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THE BIGGER PICTURE For years, physicists were looking for experimental evidence to clarify the micro-
scopicmechanismof high-temperature superconductivity. A core issue here is how the electrons are bound
into Cooper pairs. Clues can be found in the patterns of how the transition temperature (Tc) varies. In this
work, enlightened by the results of machine learning, we found a close correlation between the supercon-
ductivity and electron orbital hybridization. It implies that the electrons at the bottom of the valence band
may play a crucial role in the high-Tc superconductivity and perhaps also in the strong correlation behaviors
of the exotic metal phase at normal state. We further demonstrate that high-Tc superconductivity needs not
only one but two pairing glues. By doing so,many conflicts and confusions in interpreting high-Tc supercon-
ductivity may be avoided.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY
Why are the transition temperatures (Tc) of superconducting materials so different? The answer to this ques-
tion is not only of great significance in revealing the mechanism of high-Tc superconductivity but also can be
used as a guide for the design of new superconductors. However, so far, it is still challenging to identify the
governing factors affecting the Tc. In this work, with the aid of machine learning and first-principles calcula-
tions, we found a close relevance between the upper limit of the Tc and the energy-level distribution of
valence electrons. It implies that some additional inter-orbital electron-electron interaction should be consid-
ered in the interpretation of high-Tc superconductivity.
INTRODUCTION

Predicting the critical temperature (Tc) of superconductors has

long been a great challenge.1–3 Although a number of correla-

tions between Tc and various parameters have already been

discovered,4–24 it is still a tough job to find new superconductors

with higher Tc.

Recently, the utilization of machine learning (ML) techniques

inspired high hopes.25–27 ML models using different algorithms

were trained to predict the existence of superconductivity and

the Tc of superconductors.28–54 Progress has been made in
This is an open access article under the CC BY-N
several areas, such as how Tc varies with doping,28–35 the de-

scriptors indicating superconductingmechanism,36–39 structural

factors affecting Tc,
43,44 and candidates of new high-Tc super-

conductors.46,51 So far, ML models predicting Tc have yielded

good predictive scores.28,43–46 The feature variables in those

models also indicated some governing factors for high Tc, such

as ‘‘flat band,’’ ‘‘atomic mass,’’ and ‘‘number of d valence

electrons,’’ which are in good agreement with the human

experience.43,44

However, it is too early to be optimistic because the ML

studies have not yet given any successful (experimentally
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verified) prediction on new high-Tc superconductors, as well as

any theoretical inductions beyond human expertise. Even

more, the state-of-the-art models by far gave inconsistent

results when proposing candidates of high-Tc superconductors.

In general, ML is a powerful tool for exploring patterns in

the variation of Tc, but ML models need better generalization

ability and interpretability to get trustable and useful results.

In this work, wewere looking for an approach to reveal key fac-

tors affecting the Tc of superconductors. ML and first-principles

calculations were exploited to investigate the connection be-

tween the Tc and band structure of electrons.

Considering the practical need in materials science, we took

the Tc maximum (Tc
max) of each kind of superconducting mate-

rials, instead of the Tc of each chemical composition, as the

target variable in the ML. The feature variables in the ML are

all derived from the electronic orbital characteristics with

explicit physical meaning, which is essential for the interpret-

ability of ML model.

Enlightened by the ML results, we found that high-Tc
superconductivity has a close connection with the energy-level

distribution of valence electrons. Then, based on high-throughput

calculations of band structure, a correlation between Tc
max and a

band structure parameter in diverse materials was discovered. It

can provide convenient guidance for the design of new supercon-

ducting materials and a clue to the pairing mechanism of high-Tc
superconductivity.

RESULTS

Goal and target variable in machine learning
First of all, the target variable in our ML study is the Tc

max of each

type of superconducting materials instead of the Tc of each

chemical composition. Here is a domain knowledge that for

each type of superconducting materials, there is a maximum of

Tc, no matter how the Tc varies with doping, pressure, or gate

voltage.

In practice, the Tc
max is often called ‘‘Tc’’ for convenience. But,

in fact, the Tc and the Tc
max are of distinct physical meanings and

practical application scenes. The key factors affecting Tc and the

key factors affecting Tc
max are also quite different (see more de-

tails in Table S1).

Tc is the transition temperature of superconductivity for a

specimen at a particular chemical composition. It is a physical

parameter. Each value of Tc is obtained through one single mea-

surement operation. Particularly, for unconventional supercon-

ductors, the variation of Tc with doping or pressure is known

as the ‘‘phase diagram’’ of cuprate, iron-based superconduc-

tors, or heavy-Fermion superconductors. Physicists are keen

to investigate the phase diagrams so as to get a deeper insight

into the mechanism of high-Tc superconductivity.

On the other hand, Tc
max is the Tc maximum of each type of

superconducting materials. It is a value of material performance.

Each type of superconducting material has one Tc
max value.

Particularly, in a phase diagram of an unconventional supercon-

ductor, the optimal Tc is the Tc
max. Driven by the desire to find

room temperature superconductors, materials scientists are

more interested in the variation of Tc
max.

In fact, for the issue of Tc, there are two different but equally

important questions: (1) how to understand the phase diagram
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of unconventional superconductors. Or, in other words, for one

type of materials, how the Tc varies with doping, pressure,

gate voltage, or other conditions. (2) How the Tc
max varies in

different types of materials. During the past decades, there

have been plenty of experimental and theoretical achievements

on the first question3,55 but much less on the second one. In this

work, we focus on question two, searching for unknown patterns

in the data of Tc
max. Accordingly, the Tc

max is taken as the target

variable in our ML investigation.

Dataset and data distribution in machine learning
The dataset of Tc

max is a subset of the dataset of Tc, which was

derived from the SuperCon database of NIMS.56 For the dataset-

Tc, the entries with doubtful Tc values, obvious typing errors in

the chemical formula, and Tc = 0 K were all removed. A few

well-known or newfound superconductors57,58 were added,

but the superconductors at ultrahigh pressure (e.g., H3S,

LaH10) are not included. Thus, dataset-Tc has 12,196 entries.

To get the dataset-Tc
max, superconductors in dataset-Tc were

categorized into 1,000+ groups, according to the chemical

composition (please see more details experimental procedures).

In each group, the superconductor having the highest Tc (re-

garded as the Tc
max of a type of materials) was picked out. The

dataset-Tc
max has 1,008 entries.

Twenty-four most-concerned superconductors (see Table S2)

were chosen as the test data (unseen during model training) to

assess the models’ generalization ability. The close neighbors

of those 24 superconductors were taken out from the dataset-

Tc
max. Here, ‘‘close neighbor’’ means a small Manhattan dis-

tance (<1.5) in the chemical composition (elemental contents)

space. At last, a subset of Tc
max was used to train the models.

The subset-Tc
max has 957 entries.

It should be stressed that the data distribution is vital for the

model’s performance. For the ML models predicting supercon-

ductors, their generalization ability is often in suspense because

of imbalanced data distribution, including data bias, dataset shift,

and clustered data distribution. Both the data bias and dataset

shift are due to the fact that the explored superconductors are

only a small proportion of all exploredmaterials. Specifically, there

are about 200,000 entries in ICSD,59 belonging to 70,000+ mate-

rials, while a typical dataset of Tc derived fromSuperCon56 usually

has 10,000+ entries after data washing, belonging to about 3,000

materials. For the dataset-Tc, some elements (e.g., Cu, O, Fe, As,

Se, H) dominate in high-Tc superconductors, leading to a signifi-

cant data bias. Meanwhile, when predicting new materials, the

chemical composition of each candidate (data to be predicted)

would be quite different from those of explored superconductors

(train and test data), which is a significant dataset shift. Mean-

while, in the dataset-Tc, many data are of the same material with

different doping contents. The chemical composition of those

data are close, resulting in a clustered data distribution. Imbal-

anced data distribution often causes overfitting. There is a good

chance to get a model having a high predictive score on the test

data, but the model may be no longer good when predicting

new materials. It is hard to get a reliable and trustable ML model

until the data distribution is improved.

In this work, the data distribution of the dataset-Tc and the

subset-Tc
max are quite different. It can be seen in Figure 1 that

the unconventional superconductors (only three materials
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Figure 1. Data distribution of dataset-Tc and dataset-Tc
max

(A) Number of entries for different materials families.

(B) Number of entries in different range of Tc. Yellow: dataset-Tc; green: da-

taset-Tc
max.

A

B

C

D

Figure 2. Data distribution of different datasets and extrapolation

distances of different test sets

(A) Data distribution of dataset-Tc (for each data in dataset-Tc, find its nearest

neighbor in dataset-Tc).

(B) Data distribution of dataset-Tc
max (for each data in dataset-Tc

max, find its

nearest neighbor in dataset-Tc
max).

(C) Extrapolation distances from train set to test set (randomly 15%) for the

dataset-Tc (for each data in the test set, find its nearest neighbor in the

train set).

(D) Extrapolation distances from subset-Tc
max to the test set (24 most con-

cerned) (for each data in the test set, find its nearest neighbor in subset-Tc
max).

‘‘Rounded nearest distance’’ means the nearest distance values are rounded

to one decimal place. For each data, the nearest distance (dn) means the

Manhattan distance in chemical composition space (elemental contents as the

axes) between it and its closest neighbor within the dataset. The dn >10 part is

not shown for clarity.
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families, i.e., cuprates, iron-based, and heavy-Fermion super-

conductors) account for nearly 52% of the total, and the high-

Tc superconductors are only a small part of the total. It is an

obvious data bias. It can be seen in Figure 2 that the data distri-

bution of the dataset-Tc is highly clustered. A majority of data

have at least one close neighbor (Manhattan distance <1 in

chemical composition space). Whereas, in subset-Tc
max, the

Manhattan distance of any neighbors is larger than 1.5, which

means the data distribution is quite dispersed. Models trained

with subset-Tc
max are supposed to be more trustable because

of better data distribution, and the predictive score on the test

data (24 most-concerned superconductors) is a good measure

of the generalization ability due to the long extrapolation dis-

tances (in other words, dispersed data distribution).

Feature design and feature selection in machine
learning
For the feature set, all features are denoted as ‘‘[orbital attribu-

te].[shells selection].[math operator 1].[math operator 2]’’, where

[orbital attribute] means what attribute of the orbitals is consid-

ered, and [shell selection] means which electron shells are

considered. As shown in Figure 3, three [orbital attribute], nine

[shells selection], and seven [math operator] were defined by a

few simple rules. Discarding the features containing empty

values and the features having zero variance, we got 441 usable

features, each of which has explicit physical meanings.

After feature selection, a feature subset consisting of 4 fea-

tureswas selected to train the finalmodel. More details of feature
design and feature selection can be found in the experimental

procedures and Tables S3–S6.
Results of machine learning model
Figure 4 shows the result of the final model. The coefficient of

determination (R2) on the test data (24 most-concerned super-

conductors) is 0.84. This value is not as high as those in previous

ML studies (R2 is often better than 0.9), but please note that the

extrapolating distance of our test data (Manhattan distance >1.5)

is much larger than usual. In this case, our R2 can be considered

a reliable indicator of the generalization ability, especially for the

prediction of new materials.

According to the features in the final model, we can learn use-

ful information. It can be seen in Figures 4B and 4C that for the

feature ‘‘Nu.all.wavg.wavg’’ as well as ‘‘Nu.outer.min.wavg,’’ all

cuprates have similar values. ‘‘Nu.all.wavg’’ means the weighted

value of the unfilled number of all the valence electron shells in
Patterns 3, 100609, November 11, 2022 3



Figure 3. An example of features extraction

‘‘E.s.min.wavg’’ represents the weighted average value of the Es
min for each

element in a chemical formula, where Es
min means the minimum value of the

energy level of valence s shell(s) in an element.

A

B C

D E

Figure 4. Results of the ML model predicting Tc
max

(A) Plot of predicted Tc
max versus measured Tc

max.

(B–E) Plots of Tc
max versus selected features.

Colored circles: train data (subset-Tc
max, 957 superconductors), red: cuprates,

orange: iron-based, blue: heavy Fermion, and green: others. White dots: test

data (24 most-concerned superconductors).
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each element, while ‘‘Nu.outer.min’’ means the minimum of the

unfilled number of the outer valence electron shells (s and p

shells) in each element.

Asmost high-Tc superconductors are cuprates, those two fea-

tures are of much importance because they indicate some

unique characteristics of cuprates. Unfortunately, we cannot

know whether they are associated with the origin of high Tc
because the cuprates have many unique characteristics, but

not every of those characteristics is associated with high Tc.

Meanwhile, for the other two features, ‘‘E.all.range.range’’ and

‘‘E.s.sum.range’’ (Figures 4D and 4E), there is a monotonic trend

in the Tc
max-feature plot, respectively. The Tc

max only can reach

high values when the values of those two features are large. It is a

necessary but not sufficient condition of high Tc
max. In other

words, it defines an upper ceiling of the Tc
max.

The latter two features are of importance in physics. For each

element, ‘‘E.all.range’’ means the span of the energy level of all

valence electron shells, and ‘‘E.all.range.range’’ for a crystal is

comparable to the width of the valence band in crystal.

‘‘E.s.sum’’ for a crystal means the summary value of the energy

level of valence s shells, and ‘‘E.s.sum.range’’ for a crystal is basi-

caflly determinedby the energy level of the deepest valence s shell

in the whole crystal, which is usually at the bottom of the

valence band.

As those two features are both derived from the energy-level

distribution of valence electrons, and they can be traced to

particular electron shells, further discussion would better be

made based on the band structure of crystals.

Correlation between Tc
max and a band structure

parameter
First-principles calculations were performed to see the energy-

level distribution in the energy band of various superconductors
4 Patterns 3, 100609, November 11, 2022
(more details can be found in data and code availability). After

checking tens of well-known superconductors, we found a

band characteristic parameter corresponding to the selected

features in the final ML model.

Figure 5 shows the orbital distribution characteristics of four

representative superconductors. It can be seen that for a typical

high-Tc superconductor, (Sr,Ca)CuO2, there is an orbital

coupling at the bottom of the valence band, between O 2s and

Sr 4p (Ca 3p). Particularly, for all cuprates, the O 2s shell has a

deep energy level, leading to a large value of ‘‘E.s.sum.range.’’

Meanwhile, the energy level interval between O 2s and O 2p

shells is large, hence the value of ‘‘E.all.range.range’’ is large.

It is also can be seen from Figure 5B that the energy levels of

those involved orbitals can be roughly estimated according to

their corresponding energy levels in isolated atoms,60 which

are used as the input data in the feature design of ML. Thus,

the results of ML and band structure simulation aremutually veri-

fied. They both indicate a materials-dependent law about the

variation of Tc
max.
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Figure 5. Band structure characteristics of four typical superconductors: (Sr,Ca)CuO2 (Tc
max = 110 K), (Ba,K)Fe2As2 (Tc

max = 38 K), MgB2

(Tc
max = 40 K), and Nb (Tc

max = 9.3 K)

(A) Partial density of electron states in crystals. E is the energy level of electrons, and EF is the Fermi-level.

(B) Energy-level distribution of electron shells in isolated atoms. Zero energy is of the state of complete free electrons. Colored lines: valence shells (blue: s shells,

red: p shells, green: d shells). Gray lines: core shells.
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As shown in Figure 6, there is a monotonous trend of Tc
max for

various superconductors. It can be expressed as high Tc
max asks

for larger DE. This trend is universal because each data shown in

Figure 6 represents not only itself but also a series of similar ma-

terials (e.g. ‘‘Y-123’’ is not only YBa2Cu3O7; it also represents all

LnBa2Cu3O7, Ln = rare-earth elements). So, Figure 6 actually

covers hundreds of superconducting materials, including all su-

perior superconductors (Tc
max > 15 K) as far as we know.57

Like many well-known Tc laws (see Table S7), the Tc
max-DE

trend in Figure 6 is informative. Here, DE represents the energy

level interval between the hybridized valence orbitals, usually

the lowest unsaturated shell (LUS) and the highest saturated

shell (HSS). DE is related to the magnitude of orbital hybridiza-

tion, orbital coupling, and orbital interactions.

For instance, among all known superconductors at ambient

pressure, the cuprates have the deepest valence band. Particu-

larly, the superconductors Tc
max >100 K are all Ca-containing

cuprates (e.g., Hg-1223, Bi-2223), in which the calcium ions

are sandwiched between Cu-O planes. The energy level of the

HSS of Ca (i.e., Ca 3p; see Figure 5A) is deeper than that of

most other elements. It is often overlooked that the Ca 3p and

O 2s orbitals are also valence orbitals. Although their energy

levels are as deep as about 15–20 eV below the Fermi level,

they still can participate in orbital hybridization and coupling.

Furthermore, after checking the crystalline structures of those

superconductors, we found that in addition to the energy level of

the involved electron orbitals, the atomic distance of the two

involved ions also matters. For instance, as shown in Table 1,

a parameter l is defined as ‘‘l = d – r1 – r2’’ to compare the

bond length in different crystals. Smaller l means a compacted

lattice and usually stronger orbital coupling. It can be seen that

the l of Ca–O bond in Ca-containing cuprates is much smaller

than that in other Ca-containing superconductors. It also can
be seen in Table 2 that for some compounds having similar crys-

talline structures (La-214), smaller l (more compacted lattice)

leads to higher Tc
max.

It should be noted that the green dashed line in Figure 6 is not a

fitting line but an upper ceiling of Tc
max. Actually, for the super-

conductors shown in Figure 6, their l are relatively small. It is

not shown in Figure 6, but is partially in Figure S1, that there are

also many superconductors, far below the ceiling line of Tc
max,

each of which has a large l.

DISCUSSION

Guidance for exploring superior superconductors
Figure 6 and Tables 1 and 2 lead to a useful criterion for

screening candidates of high-Tc superconductor. It suggests

two necessary conditions for high Tc
max: (1) having a deep-en-

ergy-level orbital coupling and (2) small bond lengths between

the ions providing those deep-energy-level orbitals.

Although it cannot tell which materials are superconductors, it

does can tell which superconductors can have higher Tc
max and

which ones do not stand a chance at all. It suggests that high

Tc
max can be supported only by some particular elements.

For example, calcium-containing superconductors should

have relatively high Tc
max because the energy level of Ca 3p is

rather deep (�33.77 eV). In fact, the Tc
max of many calcium-con-

taining cuprates are over 100 K, higher than all other supercon-

ductors at ambient pressure. It is somehow unexpected

because for years, it has been the Cu-O planes that have been

regarded as the origin of high Tc
max in cuprates, whereas the

ions nearby the Cu-O planes are thought to have a minor influ-

ence. However, our results indicate that the role of Ca cations

may be much more important than we used to think. Moreover,

most earlier studies on cuprates have focused on the band
Patterns 3, 100609, November 11, 2022 5



Figure 6. Dependence of Tc
max on a characteristic parameter of the energy-level distribution of valence electrons (DE)

DE represents the energy-level interval between the lowest unsaturated orbitals and the highest saturated orbitals (or the coupled orbitals at the bottomof valence

band). ‘‘HP’’ means high pressure. The green dashed line is an upper ceiling of Tc
max. Inset: a schematic illustration of the band characteristics, DE, for different

superconductors. The red dash lines are a guide to the eye.
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structure and electron interactions around the Fermi level, which

is mostly derived from Cu 3d and O 2p orbitals. Now, according

to this work, the orbital coupling between Ca 3p and O 2s should

also be dragged into the spotlight.

The distribution of electron orbitals could be dramatically

altered at ultrahigh pressure. First-principles calculations have

shown that either LaH10 or H3S has a wide valence band at ultra-

high pressure.63–65 There is a strong orbital hybridization be-

tween La 5p (or S 3p) and H 1s. The bottom of their valence

band is deeper than �20 eV, respectively. As a comparison,

the bottom of the valence band of the cuprates is slightly less

than �20 eV. Besides, the lattice of LaH10 and H3S is greatly

compacted at ultrahigh pressure. Although the compressed hy-

drides are usually thought to be BCS superconductors, which

rest upon the electron-phonon interaction, our results show

that their high Tc could have another explanation. In compressed

hydrides, the elements other than H are not arbitrary. They

should have deep-energy-level valence electrons.

Therefore, to design a high-Tc superconductor, the elements

having deep-energy-level valence orbitals are preferred. Only

some of the elements (alkali, alkaline, rare earth, as well as O,

S, Se, As, F, Cl, .) can provide deep-energy-level valence or-

bitals (see also Figures S2 and S3). However, those elements
6 Patterns 3, 100609, November 11, 2022
are liable to form ionic crystals, which are usually insulators. To

get itinerant carriers, a third element is needed to provide cova-

lent bonds, making the crystal metallic. In general, a high-Tc su-

perconductor is supposed to consist of more than two elements,

including at least one transition element and at least one element

having deep-energy-level valence orbitals.

It should be emphasized that it is still unfeasible so far to make

confident predictions on new high-Tc superconductors. To the

best of our knowledge, superconductivity is affected by many

factors, and high-Tc superconductivity has multiple necessary

conditions, some of which may yet be unknown. High Tc would

not exist unless those necessary conditions are met altogether in

a superconductor. Sometimes, a material meets all the conditions

of high Tc, but it is just not a superconductor but rather an insulator

or a magnet.

ML models often mistake insulators or magnets for high-Tc
superconductors, due to the lack of relevant information in the

input data. In the absence of that essential information, the

ML models were only able to give a candidate list of ‘‘mate-

rials that could be high-Tc superconductors, but not neces-

sarily superconductor.’’

To get a full guidance, we need to collect all the indispensable

information, including but not limited to ‘‘energy level distribution



Table 1. A comparison of several Ca-containing materials

Material X Involved orbitals Eorb (eV)
60 dCa-X (pm)59 rX (pm)a l (pm) Tc

max (K)

CaO O Ca 3p – O 2s �29.17 239 140 0 N/A

Ca (ambient pressure) Ca Ca 3p – Ca 3p �33.77 395 99 197 N/A

CaLi2
56 Ca Ca 3p – Ca 3p �33.77 383 99 185 13

Ca (216 GPa)b Ca Ca 3p – Ca 3p �33.77 231c 99 33 29

Bi2Sr2Ca2Cu3O10-x
d O Ca 3p – O 2s �29.17 252 140 13 110

HgBa2Ca2Cu3O9-x
57 O Ca 3p – O 2s �29.17 236 140 �3 134

‘‘X’’ represents the neighboring atom of Ca. Eorb is the energy level of the involved orbital in X. dCa-X is the bond length. rCa and rX are ionic radii of Ca and

X, respectively. l = d � rCa � rX is a characteristic parameter for the Ca–X bond.
aPauling ionic radii.
bHamlin.61

cDFT simulated value.
dChu, et al.62
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of valence electrons,’’ ‘‘bond lengths,’’ ‘‘energy dispersion near

the Fermi level,’’ ‘‘strength of spin fluctuation,’’ and ‘‘strength

of magnetism order.’’ Unfortunately, the latter three are usually

not easy to obtain. That is why it is so hard to find another mate-

rial family of high-Tc superconductors.

Nevertheless, more superior superconductors may be found

in two-dimensional (2D) materials, although their bulk materials

are insulators. Gate voltage or lattice strain may produce

adequate carriers in such materials.

In brief, the existence of deep-energy-level valence shells can

be seen as a necessary, but not sufficient, condition of the high

Tc. Although it could not directly point out which materials must

have high Tc, at least it gives a criterion that greatly narrows the

search for high-Tc superconductors.

A clue to the pairing mechanism
What is the pairing glue in high-Tc superconductors? It is a core

issue in the mechanism study on superconductivity. The pairing

glue (strictly speaking, the electron interaction causing the

attractive potential between the two pairing electrons) is sup-

posed to be derived from some kind of quasi-particle, elemen-

tary excitation, or fluctuation, in the lattice. For instance, in cup-

rates, spin fluctuation is a promising candidate for pairing glue.8,9

In compressed hydrogen-rich materials,66 it is the lattice vibra-

tion. However, neither spin fluctuation nor lattice vibration can

explain the Tc
max-DE trend in this work. The Tc

max-DE trend

shows that the excitation and fluctuation of the deep-energy-

level valence electrons can also serve as a pairing glue in high-

Tc superconductivity. Please note that we did not rule out spin

fluctuation or lattice vibration. Our results imply a physical pic-

ture of the pairing mechanism:

The unconventional high-Tc superconductors may need two

pairing glues (qk and qs). One (qs) gives rise to the angular mo-
Table 2. A comparison of several O-containing materials

Parent compound M Involved orbitals Eorb (eV)60

La2CuO4
a La O 2s – La 5p �26.36

Sr2RuO4
57 Sr O 2s – Sr 4p �27.69

Sr2IrO4 Sr O 2s – Sr 4p �27.69

‘‘M’’ represents the neighboring atom of O. Eorb is the energy level of the invo

M, respectively (rO = 140 pm). l = d � rO – rM is a characteristic parameter
aChu et al.62

bPauling ionic radii.
mentum conservation of the Cooper pair, and the other (qk)

causes the momentum conservation of the Cooper pair. In cup-

rates and iron-based superconductors, the spin fluctuation can

function as qs, while the fluctuation of deep-energy-level valence

electrons can function as qk.

qk is always indispensable to any superconductor, whereas

the necessity of qs depends on the coherent length. When the

coherent length is long, it is easy for an electron to find its

mate (the electron having opposite spin and momentum)

within the range of coherent length (usually dozens of nano-

meters). The condition of angular momentum conservation

(having opposite spin) is naturally met. In that case, only qk

is necessary, and it can be contributed from the electron-

phonon interaction. When the coherent length is short (the

case of most high-Tc superconductors), the pairing electrons

need to find their mates, respectively, within several nanome-

ters. However, in the range of several nanometers, there are

only a few electrons available. The condition of angular mo-

mentum conservation is no longer naturally met. In that

case, qs is indispensable, too.

Thus, a fresh understanding of the pairing mechanism of high-

Tc superconductivity is obtained. The pairing mechanism of all

known superconductors can be put into a unified framework.

Briefly, the pairing of two electrons needs two necessary condi-

tions: momentum conservation and angular momentum conser-

vation. Themomentum conservation always needs a pairing glue

of charge fluctuation, and the angular momentum conservation

needs a pairing glue of spin fluctuation if the coherent length is

too small.

Conclusion and prospects
In summary, MLmodels were used to predict the upper limit of Tc
(Tc

max) of superconducting materials. Enlightened by the ML
dO-M (pm)59 rM (pm)b l (pm) Tc
max (K)

255 115 0 35

270 113 17 1.5

277 113 24 N/A

lved orbital inM. dO-M is the bond length. rO and rM are ionic radii of O and

for the O–M bond.
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Figure 7. Flowchart of feature selection
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results, we found a correlation between Tc
max and a band struc-

ture parameter. It suggests that the energy-level distribution of

valence electrons is crucial for high-Tc superconductivity. It

should be noted that the Tc
max trend is in fact based on the

band structure simulation results. Here, the role of ML is just to

give a hint. Thanks to the explicit meaning of the features in

the ML model, theoretical induction based on our ML results is

effective and efficient. It implies a physical picture of electron

pairing in high-Tc superconductors. It also reveals a necessary

condition of the high Tc, which provides convenient guidance

for designing superior superconductors.

Although artificial intelligence nowadays can give useful

clues and guidance, they are still not good enough to predict

new high-Tc superconductors with confidence. Improvements

may beachieved by means of graph neural network algo-

rithms, which are good at dealing with structural information,

including both the crystalline structures and the electron

band structures.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact is Haiyou Huang (huanghy@mater.ustb.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The source code and input data of ML, and the results of density functional

theory (DFT) calculations, are available Data S1.

Machine learning

Dataset

Dataset-Tc
max is a subset of dataset-Tc. According to the chemical compo-

sition, superconductors in the dataset-Tc were categorized into 1,000+

groups, according to the component number and the content of each

element in the chemical formulas. Each group can be labeled as ‘‘n-E-c,’’
8 Patterns 3, 100609, November 11, 2022
where n is the component number (the compound consisting of how many

elements), E is the element, and c is the content of the element. Before

the categorization, all the values of c are rounded to integers. A supercon-

ductor can appear in multiple groups. For example, YBa2Cu3O6.85 appears

in four groups: 4-Y-1, 4-Ba-2, 4-Cu-3, and 4-O-7; Mg0.81Al0.19B2 appears

in two groups: 3-Mg-1 and 3-B-2; and FeSe0.5Te0.5 appears in three groups:

3-Fe-1, 3-Se-1, and 3-Te-1. In each group, we picked the entry having the

highest Tc value and considered it the Tc
max. Sometimes, several groups

give the same picked entry of Tc
max. After merging the duplicate entries, da-

taset-Tc
max has 1,008 entries.

Twenty-four well-known or most-studied superconductors in the dataset-Tc
were picked out and retained as the test set to assess the generalization ability

of the final model. In pursuit of long extrapolation distances when testing

models, the train set should not include those 24 superconductors, as well

as their neighboring data.

In those 24 superconductors, 10 entries are in dataset-Tc
max (1,008), and 42

entries in dataset-Tc
max (1,008) are found to be the neighbors of those 24 su-

perconductors. Here, the word neighbor means a small Manhattan distance in

the composition space (<1.5). So, those entries (10 + 42 = 52) were removed

from the dataset-Tc
max, resulting in a subset of dataset-Tc

max. The subset-

Tc
max has (1,008 � 52 = 957) entries.

During the feature selection, the subset-Tc
max was used to train the ML

models in genetic algorithm (GA). For each model, the subset-Tc
max was

randomly split into a train set (85%) and a test set (15%). The predictive accu-

racy of the models on the test set was used as the criterion to select better

features.

For the final model after feature selection, all 957 entries of the subset-Tc
max

wereusedas the traindata, and the testdataare the retained24superconductors.

Feature design

For the feature set, all features were designed based on the orbital attributes of

valence electrons. The orbital attributes include the energy level and the occu-

pancy of valence orbitals of isolated atoms.60

The feature extraction imitates the way of MAGPIE.67 Each feature is de-

noted as: [orbital attribute].[shells selection].[math operator 1].[math operator

2], where orbital attribute means what property of the orbitals is considered,

while shell selection means which electron shells are considered.

We defined three [orbital attribute], nine [shells selection], and seven [math

operator]. That’s 33 93 73 7 = 1,323 features in total. Discarding the features

containing empty values and the features having zero variance, we got 441 us-

able features.

It should be noted that valence electrons here stands for the electrons

participating in the orbital hybridization and coupling. The valence electrons

usually come from the outmost saturated orbital and the unsaturated orbital(s).

Here, we took an energy cutoff of�36 eV, and the electrons in the energy levels

range [0, �36] (eV) are deemed valence electrons.

More details and two examples of feature extraction can be found in

Tables S3–S5.

Feature selection

As shown in Figure 7, the feature selection consists of two steps: (1) the 441

features were filtered by their Pearson correlation coefficient (P),68 and (2)

feature subsets were filtered by GA, according to their performance in ML

models.

In step 1, the 441 features were eliminated one by one. At first, we found

the two features having the highest Pearson correlation coefficient in all fea-

tures. Between those two features, we eliminated the one having the lower

coefficient of variance (relative standard deviation). We repeated the proced-

ure above until the highest P was less than 0.9. After this step, we got 124

features.

In step 2, GAwas used to find the ‘‘best’’ subset of the 124 features. Random

forest regression (RFR) models were trained to give the coefficient of determi-

nation (R2)69 to measure the fitness of the feature subsets. For each RFR

model, the dataset (subset-Tc
max, 957 entries) was randomly split into a train

set (85%) and a test set (15%).

We ran the GA codes 500 times. Each GA run had 15 generations, and the

population in each generation consisted of 100 feature subsets. Each feature

subset had 4 features at most, which were randomly picked from the 124 fea-

tures. Each GA run recommended a feature subset that had the highest R2

score on the test data.

mailto:huanghy@mater.ustb.edu.cn


Figure 8. Performance of feature subsets

Each data point is corresponding to a feature subset, which is selected out by

each GA run. R2
GA,15% is the R2 score on the test data (randomly 15% of the

subset-Tc
max) for each GA run. R2

957,24 is the R2 score given by a RFR model

that trained with subset-Tc
max, and test data are the 24 most-concerned su-

perconductors. The red ‘‘X’’ in the plot represents the feature subset in the

final model.
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Within the feature subsets recommended by the 500GA runs, some features

appeared more often than others. Statistical analysis was made to find the

best feature subset. We counted the number of appearing times of each

feature (nfea). For each feature subset,
P

nfea was considered a score of perfor-

mance. In general, a larger nfea meant that the feature was better, and a larger
P

nfea meant that the feature subset was better. At last, the feature subset hav-

ing the highest
P

nfea was selected to train the final model. It can be seen in

Figure 8 that the model trained with the selected feature subset had a good

performance in predicting the 24 most-concerned superconductors, implying

a credible generalization ability.

First-principles calculations

DFT simulationswere performed usingCASTEP.70 In this work, we do not need

to see the fine structure of the energy band around the Fermi level. What we

care about is theholistic characteristicsof theband. Therefore, theDFTmethod

is competent, even for the strong-correlated superconductors. The primitive

cell is set to an antiferromagnetic supercell for each of the cuprates, iron-based

superconductors, and heavy-Fermion superconductors. The lattice parame-

ters were optimizedwhen necessary. The values ofDE (in Figure 6) are not sen-

sitive to the approximation functionals chosen in the calculation. Please note

thatwhenchoosing thepseudopotentials, all the deep-energy-level valence or-

bitals should be taken into account.
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