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Abstract
Purpose of Review To discuss the neurological complications and pathophysiology of organ damage following malaria 
infection.
Recent Findings The principal advancement made in malaria research has been a better understanding of the pathogenesis 
of cerebral malaria (CM), the most dreaded neurological complication generally caused by Plasmodium falciparum infec-
tion. However, no definitive treatment has yet been evolved other than the use of antimalarial drugs and supportive care. The 
development of severe cerebral edema in CM results from two distinct pathophysiologic mechanisms. First, the development 
of “sticky” red blood cells (RBCs) leads to cytoadherence, where red blood cells (RBCs) get stuck to the endothelial walls 
and between themselves, resulting in clogging of the brain microvasculature with resultant hypoxemia and cerebral edema. 
In addition, the P. falciparum-infected erythrocyte membrane protein 1 (PfEMP1) molecules protrude from the raised 
knob structures on the RBCs walls and are in themselves made of a combination of human and parasite proteins in a tight 
complex. Antibodies to surfins, rifins, and stevors from the parasite are also located in the RBC membrane. On the human 
microvascular side, a range of molecules involved in host–parasite interactions, including CD36 and intracellular adhesion 
molecule 1, is activated during interaction with other molecules such as endothelial protein C receptor and thrombospondin. 
As a result, an inflammatory response occurs with the dysregulated release of cytokines (TNF, interleukins 1 and 10) which 
damage the blood–brain barrier (BBB), causing plasma leakage and brain edema. This second mechanism of CNS injury 
often involves multiple organs in adult patients in endemic areas but remains localized only to the central nervous system 
(CNS) among African children.
Summary Neurological sequelae may follow both P. falciparum and P. vivax infections. The major brain pathology of CM is 
brain edema with diffuse brain swelling resulting from the combined effects of reduced perfusion and hypoxemia of cerebral 
neurons due to blockage of the microvasculature by parasitized RBCs as well as the neurotoxic effect of released cytokines 
from a hyper-acute immune host reaction. A plethora of additional neurological manifestations have been associated with 
malaria, including posterior reversible encephalopathy syndrome (PRES), reversible cerebral vasoconstriction syndrome 
(RCVS), malarial retinopathy, post-malarial neurological syndrome (PMNS), acute disseminated encephalomyelitis (ADEM), 
Guillain-Barré syndrome (GBS), and cerebellar ataxia. Lastly, the impact of the COVID-19 pandemic on worldwide malaria 
control programs and the possible threat from co-infections is briefly discussed.
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malaria · Cerebral edema · Cytoadherence · Capillary leak · Post-malaria neurological syndrome · Delayed cerebellar 
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Introduction

Malaria is an infectious disease caused by parasites of the 
genus Plasmodium. The disease is transmitted to humans 
by the bite of an infected female Anopheles mosquito. Five 
species of Plasmodium exist, namely P. vivax, P. falcipa-
rum, P. ovale, P. malariae, and P. knowlesi which can infect 
humans. Plasmodium falciparum and Plasmodium vivax are 
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the main species responsible for most infections in humans, 
with P. vivax being more prevalent in Southeast Asian coun-
tries and India [1–3, and]. Persons living in or traveling to 
areas of high endemicity (Central America, South America, 
sub-Saharan Africa, Indian subcontinent, Southeast Asia, 
Middle East, and Oceania) are at risk of contracting malaria. 
The global burden of malaria is on the rise of late. In 2017, 
an estimated 219 million people were affected by malaria, 
resulting in 435,000 deaths in the same year across the 
world. Globally, the overall mortality from malaria ranges 
from 0.3 to 2.2%, while the mortality increases to 11–30% 
in cases of the severe forms of the disease in tropical coun-
tries [4, 5].

Life Cycle of Malarial Parasite

The malarial parasite passes its life cycle in two different 
hosts. In humans, the parasite residing inside liver cells 
(extra-erythrocytic) and RBCs (intra-erythrocytic) repro-
duces asexually (schizogony). Hence, humans represent the 
intermediate host. In the female anopheles mosquito, for 
the initiation of the mosquito cycle, sexual forms (male and 
female gametocytes) are first developed inside the human 
host. These are then transferred to the insect host, where they 
develop further and are transformed into sporozoites [6•]. 
These sporozoites are infective to humans. In view of this 
sexual form of reproduction, the mosquitoes represent the 
definitive hosts of the malarial parasite. Plasmodium mul-
tiplies in the liver prior to invading erythrocytes initiating 
the symptomatic blood phase of the malaria infection. The 
sporozoites multiplying in the liver generate thousands of 
merozoites capable of erythrocyte invasion. The merozoites 
are then released from infected hepatocytes as merosomes, 
packets of hundreds of parasites surrounded by the host cell 
membrane. The merosomes survive the subsequent passage 
through the right heart undamaged and accumulate in the 
lungs. The merosomes eventually disintegrate inside pulmo-
nary capillaries, thus liberating merozoites into the blood-
stream. Merosome packaging protects hepatic merozoites 
from phagocytic attack by the sinusoidal Kupffer cells in 
the liver, and their release into the lung microvasculature 
enhances the chance of successful RBC invasion [6, 7]. The 
essential difference between the hepatic and erythrocytic 
phases of the development of the Plasmodium is that pig-
ment granules (derived from hemoglobin) are not seen in 
the former, but are present in the latter. All Plasmodium 
species-infecting humans follow a similar life cycle pattern 
– the vector cycle and the human cycle, the latter having an 
intra-erythrocytic stage and an extra-erythrocytic stage in 
the liver. Some differences exist between P. falciparum and 
P. malariae infections. These parasites have a single liver 
schizont/sporozoite rupture even shortly after the sporozoite 
invasion. Conversely, P. vivax and P. ovale may “re-emerge” 

as quiescent forms of the schizonts/sporozoites in the liver 
(known as hypnozoites) may stay back for months to years in 
the liver from a single sporozoite exposure and continue to 
release merozoites into the circulation, causing recurrences 
of malarial symptoms [7]. Such relapses do not occur in P. 
falciparum and P. malariae infections for the reasons men-
tioned above.

Neurological Complications

The Plasmodium falciparum parasite is responsible for most 
of the neurological complications associated with malaria, 
but P. vivax-associated seizures in children and neurologi-
cal complications like Guillain-Barré Syndrome (GBS) and 
cerebellar ataxia have also been reported in both adults and 
children [8, 9].

Nervous system involvement in malaria can manifest 
commonly as cerebral malaria or as late manifestations 
comprising of the post-malaria neurological syndromes 
(PMNS) after recovery from malaria, most commonly with 
complicated falciparum malaria [10••]. Other neurological 
manifestations include psychiatric manifestations, seizures, 
myelopathies, peripheral neuropathies, myopathies extrap-
yramidal syndromes, intracranial hemorrhage, and less 
commonly reversible cerebral vasoconstriction syndrome 
(RCVS) and posterior reversible encephalopathy syndrome 
(PRES). Neurological manifestations may also result as side 
effects of antimalarial medications.

Cerebral Malaria

A myriad of neurological complications may complicate 
P. falciparum infection, with CM causing the maximum 
number of deaths [1, 10–12]. Additionally, those patients 
who survive are often left with life-long sequelae, mostly 
neurological deficits, affecting activities of daily living and 
quality of life [13]. Clinical features of severe malaria due 
to P. falciparum infection with cerebral involvement vary 
between children and adults and also from region to region. 
Whereas mortality from pediatric CM is reportedly lower 
than mortality from CM in adults, pediatric CM is associated 
with a higher rate of seizures and post-CM neuro-cognitive 
deficits [14, 15]. The World Health Organization (WHO) 
has proposed the following definition of CM as “a clini-
cal syndrome characterized by coma (inability to localize a 
painful stimulus) at least 1 h after termination of a seizure 
or correction of hypoglycemia, detection of asexual forms of 
P falciparum malaria parasites on peripheral blood smears, 
and exclusion of other causes of encephalopathy.” [16••]
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Pathophysiology of Cerebral Malaria

CM is a multi-factorial syndrome characterized by a 
potentially reversible encephalopathy, which unfortunately 
still carries a mortality of 15–20% in spite of adequate 
antimalarial therapy and intensive care support, mostly 
due to the occurrence of multi-organ failure. The exact 
pathogenesis of fatal CM is still not very clear, although 
several probable pathogenetic mechanisms have been pro-
posed. These include (a) reduction in tissue perfusion due 
to clogging of the microvasculature by parasite bearing 
RBCs, (b) excessive release of potentially harmful pro-
inflammatory cytokines by hyperactivated host immune 
cells, and (c) associated coagulopathy induced as a result 
of the immune reaction. Two possible central mechanisms 
in the pathogenesis of CM have been proposed: vascular 
occlusion and inflammatory hypotheses [17, 18].

The unique characteristic of malaria caused by P. fal-
ciparum compared with the other species of malarial 
parasites is the sequestration of infected erythrocytes in 
the venules of various organs, particularly the brain. This 
feature is thought to cause many of the complications of 
malaria, especially the neurological features. Parasite-
infected RBCs tend to clog the microvasculature by bind-
ing erythrocyte membrane protein 1 (PfEMP1) of the 
parasitized erythrocyte surface to surface proteins of the 
endothelial cells, namely intercellular adhesion molecule 
1 (ICAM1), vascular cell adhesion molecule 1 (VCAM-1), 
and endothelial protein C receptor (EPCR). Microvascu-
lar clogging during P. falciparum infection may be made 
worse by the formation of rosettes and clumps resulting 
from the binding of non-infected RBCs by infected RBCs 
and aggregation of infected RBCs and platelets [17–19].

While the levels of both pro-inflammatory and anti-
inflammatory cytokines have been found to be raised 
following P. falciparum infection, the exact roles played 
by these molecules in disease pathogenesis are unclear. 
Levels of pro-inflammatory tumor necrosis factor (TNF), 
interleukin (IL)-6, and anti-inflammatory IL–10 are 
increased in patients with CM as compared with those 
without malaria. Several polymorphisms in the TNF gene 
promoter regions are associated with an increased risk of 
CM, neurological sequelae, and death [20].

A study among Vietnamese adults demonstrated that 
levels of IL-6, IL-10, and TNF were raised significantly 
in patients with multi-organ severe disease, but not so in 
patients with CM alone without multi-organ involvement 
[21]. This may suggest that these cytokines are involved 
in the pathogenesis of severe malaria, but not coma per se.

An association between elevated serum levels of IL-1 
receptor antagonist and severe malaria in children has been 
reported recently. Furthermore, plasma levels of inducible 

protein 10 (IP-10), the soluble TNF receptor TNF-R2, and 
soluble Fas proteins have been recently suggested as pos-
sible potential biomarkers of CM severity and mortality 
[22•]. By contrast, high levels of vascular endothelial 
growth factor were protective against death in CM. Post-
mortem analysis of brains from patients with CM has sug-
gested an increased local production of TNF, IL-1, and 
transforming growth factor in brain tissue. However, the 
production of or staining for these cytokines did not cor-
relate with parasite sequestration. IL-10 is increased in 
patients with CM compared with those without malaria 
[23, 24].

Nitric oxide (NO) may act as a key effector for TNF. 
Inflammatory cytokines like TNF upregulate inducible NO 
synthetase in brain endothelial cells. This increases the pro-
duction of NO, which diffuses into the brain tissue [25]. 
The increased NO level leads to a change in blood flow and 
reduction in glutamate uptake, leading to excite-toxicity. 
NO likely affects the level of consciousness rapidly and 
reversibly as this short-lived molecule can easily diffuse 
across the blood–brain barrier (BBB), resulting in neuronal 
dysfunction.

Given that parasites are largely confined to the intravas-
cular space, one major question regarding the pathogenesis 
of CM is how these parasites cause neuronal dysfunction 
[26••]. The BBB seems to be impaired in patients with CM 
[27••] and in those with other neurological manifestations of 
malaria. Post-mortem analysis of brains of adults with CM 
has shown widespread vascular endothelial cell activation 
with disruption of cell junctional proteins (zonula occludens, 
occludin, and vinculin), particularly in vessels containing 
infected erythrocytes [24]. This process might be sufficient 
to allow metabolites to impair consciousness or precipitate 
seizures.

Even if these factors may explain the presenting features 
like coma or seizures, these do not seem to be adequate to 
explain the reversibility of the condition in most cases. Lack 
of proper therapy to deal with the cytoadherence of the para-
sitized RBCs and the resultant vasculopathy seems to be the 
principal cause of the high mortality seen in cases with CM 
[21, 28]. Imaging techniques have helped us to understand 
exactly what happens in the brain in CM patients ante mor-
tem [29••]. Both head CT and brain MR imaging show fea-
tures of brain swelling or diffuse cerebral edema. This edema 
may in part be vasogenic resulting from the disturbance in 
microcirculation and in part cytotoxic resulting from the 
release of inflammatory cytokines and other toxic chemi-
cals released because of ischemia. Other mechanisms which 
may contribute are increased cerebral blood volume result-
ing from microvascular congestion generated by sequestered 
RBCs and decreased venous outflow and increased cerebral 
blood flow in response to fever, anemia, and seizures [30••]. 
It has been suggested by some workers that the distinction 
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between vasogenic and cytotoxic edema may possibly be 
made with the use of diffusion-weighted sequences during 
MR imaging, and this may be helpful in developing more 
specific supportive therapies in the future [31••]. In addi-
tion to a generalized increase in brain volume, MR imaging 
may also demonstrate localized changes in the basal gan-
glia, pons, cerebral white matter, and splenium of the corpus 
callosum. Interestingly, while the increased brain volume 
accounts for the clinical manifestations of CM, a decrease 
in the elevated brain volume can be seen in imaging during 
the recovery phase of the CM [32••]. Additional roles of 
MR imaging to reveal the ongoing brain pathology during 
the acute phase of CM include diffusion tensor imaging to 
show axonal changes with tractography and damaged white 
matter with fractional anisotropy maps, MR spectroscopy 
to follow lactate in ischemic zones, susceptibility-weighted 
imaging to reveal hemozoin (a pigment derived from hemo-
globin) deposition, and perfusion imaging to demonstrate 
the blocked arterioles by parasitized RBCs [29–32].

Autopsy studies have demonstrated sequestration of 
infected erythrocytes in all parts of the brain in patients with 
CM. Although the brain is often swollen, suggesting dif-
fuse cerebral edema, features suggestive of frank herniation 
are uncommon in adults, but found to be more common in 
children. Extra-erythrocytic hemozoin is found inside cer-
ebral vessels [33], suggesting rupture of sequestered infected 
erythrocytes. This might lead to an inflammatory process 
within and around brain capillaries. These findings are not 
seen consistently in adults and might reflect a difference 
between adults and children [34]. Brains of Asian adults 
dying of CM reveal this combination of vascular clogging, 
mononuclear cell migration, and enhanced vascular perme-
ability [34, 35]. Additionally, pathogenic roles for heme acti-
vation of the blood coagulation cascade and platelet-induced 
clumping of P. falciparum-infected erythrocytes have been 
proposed in the pathogenesis of CM [36, 37]. However, the 
way the various pathological mechanisms discussed above 
are linked and how they are influenced by the host (genetic), 
parasitic, and environmental (possible co-infections) factors 
remains to be elucidated. Furthermore, the reason why cir-
culating cytokines, coagulation factors, or parasitized RBCs, 
specifically target only the brains in African children, and 
the brains plus other organs, in Asian adults, still remains a 
mystery. The mere difference in pace of the disease between 
the two groups of patients, not giving adequate time for the 
involvement of other organs (before death from CNS dis-
ease), may not be the complete explanation.

Plasmodium vivax is known to cause relapsing malaria 
but rarely causes severe malaria with cerebral involvement. 
Only a little over fifty cases have so far been reported prin-
cipally from India, Pakistan, and China [2, 3, 8, 9]. Serologi-
cal and in some molecular genetic studies had been done to 
carefully exclude co-existent P. falciparum infection. The 

pathophysiology of multi-organ involvement in Plasmodium 
vivax infection may be similar to what had been discussed in 
relation to P. falciparum infection, but cytoadherence is not 
a characteristic feature with P. vivax infection.

Clinical Features

Presenting features of CM are those of diffuse encepha-
lopathy as encountered in metabolic conditions. Occasion-
ally, focal neurological signs may be present. Onset may 
be abrupt or may develop later in the progressive course 
of the worsening clinical condition of falciparum malaria 
with multi-organ involvement. In a typical case, there is a 
fever with severe headache and delirium which may rapidly 
progress to stupor, with hyperthermia (temperature >40°C). 
The stuporous state progresses to a coma with fluctuations in 
levels of consciousness. In some patients, the high fever is 
associated with irritability, restlessness, or psychotic behav-
ior, suggesting cerebral involvement. Travel history and his-
tory of blood transfusions in the recent past often provide 
diagnostic clues [38••].

Some differences in clinical presentations between chil-
dren (mostly African) and adults (mostly Asians) have 
already been highlighted. Coma usually develops rapidly 
in children with CM, often following a cluster of seizures. 
Coma develops gradually in adults, and seizures are less 
frequently encountered (around 20% compared to around 
80% in children). In most instances, seizures are general-
ized tonic-clonic in nature. EEG may reveal a focal onset 
with secondary generalization. Rarely only electrographic 
seizures may be noted [39, 40]. With disease progression, 
brainstem dysfunction may be noted, especially in children 
with abnormal pupillary and corneal reflexes, dysconjugate/
upward gaze, and irregular/stertorous breathing patterns. 
Decerebrate posturing is more common in children than in 
adults [38••]. While hypoglycemia needs exclusion in such 
cases, more commonly, such abnormal body posturing sug-
gests raised intracranial pressure. Extrapyramidal signs may 
develop during convalescence when a strong pout reflex and 
a brisk jaw-closing reflex may also be elicited [38, 40]. In 
children with retinopathy, markedly increased brain volume, 
abnormal T2 signal intensity, and DWI abnormalities in the 
cortical, deep gray, and white matter structures had been 
noted [41••]. Focal abnormalities rarely respect arterial vas-
cular territories [41••]. This increased brain volume suggest-
ing raised intracranial pressure (ICP) has been more often 
noted among children who subsequently died. In survivors, 
the raised ICP had been a transient phenomenon [42].

Persistent residual neurological deficits are common 
among children who survive, and these include hemiple-
gia, tetraplegia, ataxia, seizure disorders, language deficits, 
altered behavior, and cognitive impairments [43]. Compared 
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with controls, children surviving either retinopathy-negative 
or -positive CM are at similarly high risk for adverse neuro-
logic outcomes like the occurrence of epilepsy or develop-
mental disabilities [44••]. Cortical blindness is not uncom-
mon but may improve over time [43].

Psychiatric Manifestations

Psychosis may develop in subjects with CM because of 
encephalopathy [45, 46]. Paranoid and manic syndromes 
may develop in the acute stage; depression often occurs 
as late sequelae. Disinhibitory behavior has been reported. 
Acute confusional state, agitation, delirium with hallucina-
tions, transient amnesia, and schizophrenic features have also 
been described. Long-lasting personality disorders and even 
dementia might develop, albeit rather uncommonly [45–47]. 
On occasions, psychiatric problems may be the presenting 
feature in patients with acute uncomplicated malaria when 
associated with hyperpyrexia [45, 46]. It must, of course, be 
remembered that neuropsychiatric manifestations can also be 
caused by side effects of antimalarial drugs [48].

Neuro‑cognitive Sequelae

Neurological sequelae of CM are more severe among chil-
dren. The prevalence of neurological deficits varies between 
6 and 29% at the time of hospital discharge [49–51] – Of 
these, some may be transient (like ataxia and psychoses) 
while others like paralytic sequelae and extrapyramidal fea-
tures may be long lasting.

Residual neurological and/or psychiatric deficits are less 
common among adult patients. In India, 10% of adults had 
neurological sequelae on discharge, including psychosis, 
cerebeller ataxia, and extrapyramidal rigidity or hemiplegia 
[52••]. The depth and duration of coma and multiple sei-
zures were independent risk factors for the development of 
significant residual neurological/psychiatric disorders [53].

African children with severe neurological sequelae fol-
lowing falciparum malaria (spastic quadriparesis and veg-
etative states) often die within a few months of discharge 
from hospitals. Epileptic seizures may ensue following CM 
[54, 55].

In one study, 10% of children recovering from CM devel-
oped at least one mental health issue within the next six to 
twelve months’ post-infection (median 21 months follow-
up). The major ones included attention deficit hyperactivity 
disorder, conduct disorder, and oppositional defiant disorder 
[56••].

Cognitive impairment has been reported in a wide range 
of functions including memory, attention, executive func-
tions, and language. Neuro-cognitive impairments can be 
associated with protracted seizures, deep and prolonged 
coma, hypoglycemia, and severe anemia [57–59].

In a study of 187 Ugandan children, 26% of children with 
CM and 13% with uncomplicated malaria had cognitive defi-
cits in one or more areas at a 2-year follow-up examination, 
as compared with 8% of healthy children. The deficits in 
children with CM were primarily in the area of attention 
(18% CM vs. 3% controls) [60]. High levels of TNF pro-
duction in the brain in CM may be responsible for residual 
neurological and cognitive morbidity.

Malarial Retinopathy

This had been described in African children with P. falci-
parum infection as well as in Bangladeshi and Indian adults 
[10, 15, 61, 62]. These retinal abnormalities, when properly 
evaluated, are 90% sensitive and 95% specific for detecting 
African children who have CM caused by Plasmodium fal-
ciparum [63••]. The degree of retinal changes bears some 
correlation with the severity of the disease process but can-
not predict the ultimate prognosis. However, Malawi chil-
dren with retinopathy-negative CM share a common clinical 
phenotype which seemed to have lower rates of mortality 
compared with those who have malarial retinopathy [44, 64]. 
It is possible that the clinical course, severity, or features of 
a patient infected with P. falciparum may vary depending on 
the presence or absence of a yet identified factor (alone or in 
combination) or perhaps co-infections, the latter being not 
uncommon in a tropical country. Malarial retinopathy has 
three components: retinal whitening, vessel changes, and 
retinal hemorrhages [10, 63]. Retinal whitening is similar 
to the patchy ischemic retinal changes seen in central vein 
occlusion and indicative of areas of hypoperfusion caused 
by the presence of infected erythrocytes clogging the reti-
nal microvasculature [65]. Malarial retinopathy detection 
in an endemic region may have clinical diagnostic value: 
The presence of retinal whitening in a patient with altered 
sensorium hailing from an endemic area strongly suggests 
the possibility of CM with cerebral microvasculature seques-
tration [63••]. Proper diagnosis of retinal whitening, espe-
cially in the peripheral part, would need the use of indirect 
ophthalmoscopy [10••], of which physicians usually do not 
have much expertise. A trained ophthalmologist needs to be 
consulted. The recent availability of infra-red fundus pho-
tography is of much help. Disc changes and retinal hemor-
rhages can be detected more easily with direct ophthalmos-
copy [15, 63].

Post‑malaria Neurological Syndrome

Post-malaria neurological syndrome (PMNS) is an uncom-
mon, monophasic disorder occurring within two months 
after recovering from Plasmodium falciparum malaria. 
Senanayake in 1987 and then Senanayake and Román in 
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1992 were the early investigators to report on this condition 
[66, 67]. Later, in 1994, the cases of seventy-four patients 
from Sri Lanka who developed a self-limiting delayed cer-
ebellar ataxia (DCA) syndrome 3–41 days after fever onset 
were reported [68••]. However, in this study, it was difficult 
to establish a causal relationship with a post-malaria phe-
nomenon as the onset of neurological signs occurred while 
almost half of the subjects continued to have peripheral 
smear parasitemia and some had not received any antima-
larial treatment [66–68]. In 1996, Hong Mai and colleagues 
from Vietnam, in a large series of patients with falciparum 
malaria, reported on 22 patients (including 3 children) with 
subsequent PMNS [69••]. Clinical features included acute 
confusional state, psychosis, generalized seizures, prolonged 
confusional state following generalized convulsions, and 
new-onset tremors. All symptoms resolved spontaneously; 
in some cases, malarial treatment included oral mefloquine.

PMNS has now been defined by Yadava et al. (2019) as 
“the occurrence of de novo neurological signs following 
a symptom-free period after acute malaria (regardless of 
the Plasmodium species), associated with a negative blood 
smear and no retainable differential diagnosis.” [70]

It is important to remember that the demonstration of 
a symptom-free interval is a crucial criterion along with a 
negative peripheral blood smear. The incidence of PMNS 
in patients after falciparum malaria ranges from 0.7 to 1.8 
per 1000, and it is 300 times more common in patients with 
severe rather than those with uncomplicated malaria [69••].

Schnorf and co-workers classified PMNS into three cat-
egories based on clinical severity: a mild form characterized 
by isolated cerebellar ataxia or postural tremors; a diffuse, 
relatively mild encephalopathic form associated with acute 
confusion or seizures; and a severe form with encephalopa-
thy, aphasia, generalized myoclonus, postural tremors, and 
cerebellar ataxia [71].

The symptom-free period between remission of malarial 
fever and onset of PMNS symptoms is usually around 15 
days [69••]. PMNS onset is often heralded by the recur-
rence of fever, confusion, seizures, psychosis, cerebellar 
ataxia, and paralysis [69, 70]. Less commonly, there may be 
involvement of cranial nerves, visual impairment, sphinc-
teric disturbances, and headaches [70–73]. The cerebrospi-
nal fluid (CSF) may be abnormal with high protein content 
(>1 g/L) and a lymphocytic pleocytosis [68, 69]. Brain MRI 
is generally normal following infection with P. falciparum 
and P. vivax infection (in contrast to post-malarial ADEM), 
but may occasionally demonstrate white matter signal altera-
tions in some patients [70]. Clinical cerebellar syndromes 
may not always be accompanied by MRI signal changes. 
EEG may show diffuse slowing.

The Vietnam study suggested that mefloquine may be 
a risk factor for PMNS after severe malaria [69••]. How-
ever, only a small number of patients in other studies of 

PMNS had been treated with mefloquine. PMNS has also 
been observed in falciparum malaria patients who received 
treatment with other drugs including artemisin [74]. P. 
vivax infection-related PMNS patients were not treated with 
mefloquine. Mefloquine thus seemed not to have an impor-
tant role in the pathogenesis of PMNS.

Delayed cerebellar ataxia (DCA) is a post-infectious syn-
drome following P. falciparum malaria and is characterized 
by gait ataxia without cerebral involvement [75]. PMNS and 
DCA are often viewed by some investigators as part of a 
single neurological spectrum [75, 76]. However, PMNS pre-
senting as the brainstem and/or spinal cord syndrome has not 
yet been described. Cerebellar signs have been observed in 
cases of severe malaria responding to standard antimalarial 
treatment, with the absence of parasites. This would support 
a possible immune-mediated mechanism. Overall, 30% of 
the studied PMNS cases presented with cerebellar involve-
ment with or without other neurological signs and symptoms 
[75]. PMNS thus should include DCA as they share the same 
prognosis and outcome [68–70, 76].

Some authors classify PMNS as a variant of ADEM [77, 
78] rather than a distinct nosological entity due to their 
similarity. While both PMNS and ADEM are often acute 
monophasic illnesses [73, 77, 78], and both respond to cor-
ticosteroids, there indeed are important differences between 
these two conditions. Firstly, PMNS appears to be more 
common in adults, while ADEM occurs more frequently in 
children. Secondly, many patients with PMNS have normal 
MRI, while patients with ADEM almost invariably have 
abnormal imaging studies. Thirdly, all patients with PMNS 
appear to recover completely, while patients with ADEM, 
despite carrying a favorable prognosis, may have long-term 
neurological sequelae.

Several pathogenetic mechanisms have been postulated 
for the development of ADEM following malarial infection 
[79]. These include an abnormal immune reaction to some 
cerebral antigens after a neurotropic infection, initiated by 
molecular mimicry between some protein of the infective 
agent and the cerebral myelin, and a T cell-activated cer-
ebral aggression. However, the relationship between infec-
tion with P. falciparum and P. vivax and the development of 
ADEM-like features is, in fact, an indirect one.

The exact pathogenesis of PMNS is unknown. It has been 
suggested [69, 80] that blockage of the brain microvasculature 
by parasitized RBCs might result in cerebral hypoxemia caus-
ing neurological and psychiatric dysfunction similar to what 
had been postulated for CM. Hsieh et al. [81] described brain 
single-photon emission computed tomography (SPECT) find-
ings with markedly decreased radioactivity, a feature which 
would support this hypothesis. However, this mechanism 
seemed unlikely as features of PMNS develop only after a 
clear period of clinical remission when obstruction of the 
microvasculature by parasite-loaded RBCs would unlikely to 
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occur. Another postulated hypothesis is immune-mediated-
based, supported by a positive response to corticosteroid ther-
apy in some patients and delay of onset of PMNS symptoms 
after resolution of malaria symptoms [70]. Further evidence 
in favor of the immunological hypothesis is the increased lev-
els of inflammatory cytokines like TNF-alpha, IL 2, and IL 6 
in serum and CSF, described in some cases of delayed post-
malaria cerebellar syndrome [75].

There also exist shared clinical features between PMNS 
and auto-immune encephalitis (AIE). Much attention has been 
devoted toward neurological disorders caused by neuronal 
auto-antibodies, commonly referred to as AIE [82]. Such dis-
orders commonly occur in the setting of malignancy or post-
viral infections [82, 83]. No neuronal auto-antibodies have yet 
been found to be related to malaria [83]. But there are striking 
similarities between PMNS and AIE in the sense that both 
conditions tend to develop after a symptom-free interval fol-
lowing the offending infection, both conditions have normal 
MRI studies in the majority of cases, and lastly, improvements 
occur in both with corticosteroids, often with full resolution. 
Such common features would argue in favor of a post-infec-
tious immunologically mediated cerebral disorder. Sahuguet 
and colleagues reported a case of AIE with anti-voltage-gated-
potassium-channel antibodies in the setting of PMNS [84••]. 
This observation would raise the need for evaluation of an 
encephalitic autoantibody profile in patients who otherwise 
would have been diagnosed as simply PMNS. Perhaps, PMNS 
with normal MRI findings should be investigated in the line of 
an AIE as therapeutic strategies may be different.

In cases of ADEM, MRI is a key point for diagnosis as it 
is almost always abnormal, and a normal MRI is often cited 
as against the diagnosis of ADEM [85]. Although the exact 
mechanisms underlying PMNS are poorly understood, delayed 
onset, negativity of blood smears, association with fever, and 
sometimes elevated CRP levels all suggest an inflammatory 
process. As mentioned earlier, some studies of DCA have 
reported increased levels of blood and CSF pro-inflammatory 
cytokines [86]. The brain microvasculature could be the site of 
this immune reaction since parasites and pigments are known 
to be sequestered there due to cytoadherence. Cytoadherence is 
less frequent in cases of P. vivax infection which could explain 
why most PMNS cases follow P. falciparum infections rather 
than P. vivax [87–90].

If corticosteroids are ineffective, the diagnosis of PMNS 
should be reconsidered, and thereafter, the role of intravenous 
immunoglobulin or plasma exchange needs to be entertained.

Other Neurological Manifestations

Guillain-Barré syndrome (GBS) following malaria is rare. 
A review of 12 cases of GBS following malaria included 
eight patients who had preceding falciparum malaria and 

four had P. vivax infections [8•]. Four patients with falci-
parum malaria had severe paralysis with respiratory failure, 
and three of these patients died. Other forms of neuropathies 
described in association with malaria include mononeuritis 
like facial palsy, trigeminal neuralgia, optic neuritis, ulnar, 
circumflex, and lateral popliteal nerve involvement. The 
pathogenesis of these peripheral nerve disorders is not pre-
cisely known. Possibilities include parasitized red blood cell 
corpuscles obstructing the vasa nervorum, liberation of neu-
rotoxins from the parasite, and/or metabolic or nutritional 
disturbances [91–93].

There have also been isolated case reports of RCVS asso-
ciated with CM. Yamamoto et al. reported one of the first 
such cases in an adult patient of CM where brain MRI and 
MR angiography demonstrated narrowing and dilatation in 
multiple cerebral arteries [94•]. With the demonstration of 
cerebral arterial vasoconstriction during the acute phase of 
CM, the possibility of primary angiitis of the CNS (PACNS) 
[95] may be raised. However, histopathological evidence of 
cerebral vessel infiltration by inflammatory cells has not yet 
been observed in autopsy studies of patients dying of CM 
[96, 97].

Mohanty et al. reported that in about 41% of patients 
with non-fatal CM, brain MRI showed findings of PRES 
or PRES-like features [21]. Such changes improved within 
48–72 h [21]. Although the pathogenesis of CM may be 
associated with microcirculatory dysfunction, damage to the 
BBB, and the effects of cytokines, vasoconstriction of large 
cerebral arteries may also occur. P. falciparum-parasitized 
RBCs, adhering to endothelial cells causing endothelial 
dysfunction, likely play a key role. Newton et al. reported 
that 15 of 50 Kenyan children with CM had increased cer-
ebral blood flow velocities suggestive of narrowed cerebral 
blood vessel diameters [98••]. Malarial infection can also 
result in various hematological and hemorrhagic complica-
tions associated with thrombocytopenia [99]. Ocular and 
intracranial hemorrhagic complications are rare [100–104]. 
Although falciparum malaria is known to be associated with 
both intracerebral and subarachnoid hemorrhages, there have 
also been reports of intracranial hemorrhagic complications 
associated with P. vivax infection [105].

Cerebellar syndrome

Cerebellar involvement is a major neurological manifesta-
tion of malaria [106, 107]. The Purkinje cells are commonly 
damaged, possibly due to hyperpyrexia. Cerebellar involve-
ment may dominate the clinical manifestations of CM and 
generally resolve along with other cerebral manifestations. 
Presentation is characterized by gait and truncal ataxia due 
to midline cerebellar involvement. A clear gap of several 
days of apyrexia generally precedes the onset of cerebellar 
symptoms [108, 109]. Opsoclonus-myoclonus is rare and 
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may respond to clonazepam; co-activation of some neuro-
tropic viruses may be the causative mechanism [110–112].

Neurotoxicity of Antimalarial Drugs

Chloroquine is usually very well tolerated, but it may rarely 
produce transient neuropsychiatric disturbances or cerebellar 
dysfunction. Precipitation of acute intermittent porphyria 
(AIP) has also been reported with its use [113]. Prolonged 
use of chloroquine may also result in vacuolar myopathy. 
Cinchonism, characterized by nausea, tinnitus, and high-
frequency hearing loss, may be associated with quinine and 
quinidine. Mefloquine, a new antimalarial drug, may be 
associated with serious but self-limiting neuropsychiatric 
reactions. Confusion has been reported in 0.5 to 1.0 per-
cent of Europeans and Africans, but only 0.1% of South-
east Asian patients [114]. Furthermore, a case of “central 
anticholinergic syndrome” associated with mefloquine 
use has been described [115••]. In patients with epilepsy, 
mefloquine should be avoided as it has potent epilepto-
genic effects. Similarly, van Hensbroek et al., in a com-
parative study of artemether and quinine in children with 
CM, observed an increased incidence of convulsions in the 
artemether-treated group [115••]. Ataxia and slurring of 
speech have been described after artesunate treatment for 
falciparum malaria [116].

Malaria and COVID‑19 Infection: Threat 
of a Syndemic?

The devastating effects of the COVID-19 pandemic on the 
health care systems of most countries in the world, rich 
or poor, have been felt in one way or another in the past 
two–three years. The pandemic’s effects on the occurrences 
of malaria and the consequent alterations in the morbidity 
and mortality have been a subject of much interest and seri-
ous public health concerns due to the fact that malaria hap-
pens to be endemic mostly in the low- or middle-income 
countries in Asia, Africa, and South America. These coun-
tries have not escaped the ravages caused by the COVID-19 
pandemic and, being resource deficient, have experienced a 
tremendous burden on their health care systems as well as 
on their overall economy. Interestingly, the WHO noted an 
important difference between the incidence and mortality 
from COVID-19 disease between North America, Western 
Europe, and South Asia on the one hand and most African 
countries on the other hand, especially among the malaria-
endemic countries as “nine scenarios for potential disrup-
tions in access to core malaria control tools during the pan-
demic in 41 countries, and the resulting increases that may 
be seen in cases and deaths. Under the worst-case scenario, 
in which all insecticide-treated net campaigns are suspended 

and there is a 75% reduction in access to effective antima-
larial medicines, the estimated tally of malaria deaths in 
sub-Saharan Africa in 2020 would reach 769 000, twice the 
number of deaths reported in the region in 2018. This would 
represent a return to malaria mortality levels last seen in the 
year 2000.” [https:// www. who. int/ publi catio ns- detail/ thepo 
tenti al- impact- of- health- servi ce- disru ptions- on- the- bur]

Travel restrictions, lockdowns, and other COVID-appro-
priate behaviors had their impact on health care services, 
causing significant delays in diagnosis and treatment for 
other diseases, including malaria. A similar situation hap-
pened in African countries during the Ebola epidemic, with 
a rise in cases of malaria and increased mortality [117]. On 
the brighter front, of course, travel restrictions and social 
distancing are likely to curtail the spread of vector-borne 
diseases like malaria or dengue.

Another possibility that has been raised is of SARS-
CoV-2 virus (or the resultant immune reaction) interacting 
with parasitic infections and altering the rate of severe out-
comes, particularly among younger populations that have 
been relatively less affected by COVID-19 in 2020 [118].

Returning to the darker sides, the chances of misdiagnosis 
and co-infections are likely to be factors for concern. The 
initial clinical features of both malaria and SARS-CoV-2 
infections are similar, and hence with the dearth of proper 
laboratory-based diagnostic facilities, the chances of misdi-
agnosis for one condition for the other would remain high 
with delays in delivering appropriate therapeutic measures 
[119••]. This would certainly affect both morbidity and mor-
tality from either condition.

Syndemics or synergistic epidemics occur when two or 
more concurrent epidemics have a deleterious interaction 
[120]. For example, (a) malaria plays a role in Epstein–Barr 
virus (EBV) infection, leading to Burkitt’s lymphoma by 
contributing to B-cell proliferation and increased viral loads 
[121]. (b) HIV-infected individuals experience a higher fre-
quency of severe malaria and increased HIV viral load fol-
lowing co-infection with Plasmodium falciparum and other 
parasites [122]. Co-infections may also result in altered 
immune dynamics. Malaria can induce a cytokine storm and 
a pro-coagulant state similar to that seen in severe SARS-
CoV-2 infections. A co-infection could also possibly result 
in substantially worse outcomes than singular infections with 
either pathogen and could alter the age pattern of severe 
SARS-CoV-2 infection in younger age groups. The balance 
between pro- and anti-inflammatory responses to either of 
these two diseases (malaria and SARS-CoV-2 infection) 
determines the ultimate fate of the infection in individual 
patients [123, 124].

Two further immunogenic mechanisms have been pos-
tulated in relation to the interaction between SARS-CoV-2 
infection and malaria. By now, it is well established that 
SARS-CoV-2 (except perhaps some very new variants like 
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Omicron) uses the angiotensin-converting enzyme 2 (ACE2) 
receptor to enter the host cells, and such receptors are highly 
expressed in the heart and type II alveolar cells of the lungs. 
In addition to the membrane-bound form, there are soluble 
forms in the plasma and urine as well. The ACE2 recep-
tors can produce Ang-(1–7) from angiotensin II (ANG II), 
the former having a protective activity on lung parenchymal 
cells [125]. Downregulation of the ACE2 receptor would 
result in the accumulation of ANG II which is the substrate 
for ACE2 in the alveolar cells. Accumulated ANG II would 
increase neutrophilic aggregation and enhance vascular per-
meability leading to pulmonary edema and ARDS [126]. 
Conversely, it had been demonstrated that ANG II decreases 
the build-up of sporozoites in mosquitoes’ salivary glands 
by directly disturbing the parasite membrane [127••]. Thus, 
ANG II appears to have a dual role – harmful for the host 
but beneficial for the host by way of its role in the vector.

Various types of interferons are produced by lympho-
cytes as an immune response to infection by malaria para-
sites. Interferons can have both in vitro and in vivo effi-
cacy against the corona viruses causing SARS, MERS, and 
COVID-19 [128–130]. Malaria-affected patients develop 
antibodies (IgG types) against Plasmodium antigens. These 
IgG antibodies target Glycosyl-phosphatidyl-inositol (GPI) 
molecules, which bind some membrane proteins of Plas-
modium species. SARS-CoV-2 has various glycoproteins 
(GPs), namely, membrane GPs, spike GPs, and GPs that 
have acetyl esterase and hemagglutination features. The anti-
GPI antibodies in a malaria-affected patient could identify 
and bind to different GPs on the virus, inactivating them and 
thus may provide protection against virus infection or result 
in a milder form of the disease [131].

Unfortunately, none of the aforementioned hypotheses 
have been adequately tested in a real-world clinical setting, 
and hence, at this time, these should not evoke any false 
sense of security in the minds of the scientific community 
neither the people living in malaria-endemic areas.

Malaria per se can induce immunosuppression/immu-
nomodulation in some co-infections, significantly inhibit-
ing immune responses to the other infection, as had been 
seen in Salmonella infection, and also this can be protective 
against the severity of some respiratory viruses [132–134]. 
It is possible that similar phenomena could occur during 
Plasmodium–SARS-CoV-2 co-infection; on the one hand, 
malaria-induced immunosuppression might lead to a clini-
cally milder form of COVID-19 but at the same time, poten-
tially increasing or sustaining viral loads, hamper virus con-
trol, thereby increasing the potential for viral transmission. 
Predicting outcomes in cases of syndemics thus become 
quite complex.

In malaria-endemic countries, especially in Africa, age-
related vulnerability to malaria and COVID-19 cases is dif-
ferent. Younger children are more vulnerable to malaria, 

especially falciparum infections, with a higher risk for 
severe malaria, including the cerebral form. For SARS-
CoV-2 infections, children are less likely to develop severe 
disease, whereas older adults are more likely to be affected, 
with a higher risk of severe disease and death. This may 
be related to differences in age-related immune status as 
well as residual immunity provided by past malarial infec-
tions. Severe respiratory distress may also occur in SARS-
CoV-2 infection. This combined respiratory compromise, 
thus, often would lead to a worsened outcome in cases of 
co-infections.

The occurrence of coagulopathy is a major pathogenetic 
mechanism underlying a number of complications in both 
SARS-CoV-2 and malaria infections. Clinically, this hyper-
coagulable state in COVID-19 patients presents with a high 
occurrence rate of venous thrombosis, arterial thrombosis, 
and also DIC caused by consumption coagulopathy [135, 
136] with associated thrombocytopenia. Thrombocytopenia 
develops in 60–80% of falciparum malaria cases. A pro-
coagulant state may also develop in severe falciparum infec-
tions due to activation of the coagulation cascade, mediated 
by TNF-alpha and IL-6 [137••]. In addition to micro-throm-
botic complications, thrombosis of large vessels, including 
cerebral venous thrombosis, and pulmonary embolism may 
also occur [138, 139]. All of these factors would be addi-
tive in assessing the outcome of co-infections in a syndemic 
situation.

Finally, outcomes from both severe malarial infection 
and also SARS-CoV-2 depend upon the nutritional status of 
children, and malnutrition is related to poor immune status. 
Malnutrition or undernutrition is a major health problem 
in parts of the developing world which are also endemic to 
malaria infections [123••]. The effect of a syndemic in such 
regions would thus probably be devastating.

Rapidly developing surveillance platforms to monitor sig-
nals of SARS-CoV-2 co-infection with malaria will be criti-
cal. One early indication of a potential interaction would be 
a shift in the age pattern of severe COVID-19 with increased 
occurrence in children. Unfortunately, our knowledge of epi-
demiology and clinical course of SARS-CoV-2 infections 
in countries with substantial burdens of malaria and other 
vector-borne diseases is still rather limited, as community 
transmission, on the whole, started later in these countries 
and surveillance had been poor because of resource defi-
ciency. The immune status of the population in countries 
with low socioeconomic status and being breeding grounds 
for vectors transmitting multiple diseases is bound to be 
variable, and hence, the outcomes of co-infections would 
remain variable as well.

India has witnessed a significant decline in the numbers 
of malaria cases in recent times through the Malaria Elimi-
nation efforts which had been in vogue since 2015 and 
subsequently enhanced through the National Framework 
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for Malaria Elimination in 2016 and the National Stra-
tegic Plan for Malaria Elimination (2017–22). Between 
2000 and 2019, there had been a 71.8% drop in malaria 
infections and a 73.9% decline in mortality [140••]. As 
happened elsewhere in the World, the existing health care 
system in India became extremely stretched out with the 
onslaught of the pandemic. All available resources were 
directed toward containing the COVID-19 infection. No 
doubt, routine malaria monitoring was also hampered in 
the past couple of years or so, with frontline workers being 
shifted to pandemic-related activities, including vaccina-
tion. As a result, there had been an under-reporting of 
malaria cases, with a lesser number of tests being per-
formed. Hence, a correct estimate of the number of cases 
of malaria while the pandemic had been at its peaks (2020 
and 2021) could not be made. Notwithstanding the funding 
issues and lack of qualified clinicians in village/slum areas, 
India has been able to contain the virus’s growing trends 
over time, as this undoubtedly seemed to be of top most 
priority [141]. As expected, the country faced difficulties 
in the epidemiological control of infectious diseases, and 
the danger of a malaria epidemic to escalate in the near 
future is indeed a real one. The need of the hour would 
be the re-implementation of methods to combat malarial 
infection, which would include chemoprophylaxis as well 
as steps to stop the spread of parasites from vector to host 
by removing breeding sites of mosquitoes and educating 
people about how to prevent mosquito bites.

Concluding Remarks

Even in the 21st century, malaria continues to be a major 
infectious disease in tropical and sub-tropical countries. 
Cerebral malaria, a complex and potentially reversible 
encephalopathy, is a severe complication of P. falcipa-
rum infection, which may lead to multi-organ failure and 
death. The mortality remains high even with the use of 
highly effective antimalarial drugs and intensive care 
management.

It is heartening that the World Health Organization 
(WHO) has recommended the widespread use of the RTS, 
S/AS01 (RTS,S) malaria vaccine among children in sub-
Saharan Africa and in other regions with moderate-to-high 
P. falciparum malaria transmission. This recommendation 
has been based on results from ongoing pilot programs in 
Ghana, Kenya, and Malawi that have reached more than 
900,000 children since 2019.
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