
����������
�������

Citation: Li, Y.; Yin, Z.; Ma, Y.; Xu, F.;

Yu, H.; Han, G.; Bi, Y. Heuristic

Routing Algorithms for

Time-Sensitive Networks in Smart

Factories. Sensors 2022, 22, 4153.

https://doi.org/10.3390/s22114153

Academic Editor: Jose Manuel

Molina López

Received: 12 April 2022

Accepted: 26 May 2022

Published: 30 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Heuristic Routing Algorithms for Time-Sensitive Networks in
Smart Factories

Yue Li 1,2,3,† , Zhenyu Yin 1,2,3,*,† , Yue Ma 1,2,3 , Fulong Xu 1,2,3 , Haoyu Yu 1,2 , Guangjie Han 4,5

and Yuanguo Bi 6,7

1 School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049,
China; liyue161@mails.ucas.ac.cn (Y.L.); mayue@sict.ac.cn (Y.M.); xufulong16@mails.ucas.ac.cn (F.X.);
yuhaoyu@sict.ac.cn (H.Y.)

2 Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China
3 Liaoning Key Laboratory of Domestic Industrial Control Platform Technology on Basic Hardware and

Software, Shenyang 110168, China
4 College of Internet of Things Engineering, Hohai University, Changzhou 213022, China;

hanguangjie@gmail.com
5 Changzhou Key Laboratory of Internet of Things Technology for Intelligent River and Lake,

Changzhou 213022, China
6 School of Computer Science and Engineering, Northeastern University, Shenyang 110167, China;

biyuanguo@mail.neu.edu.cn
7 Engineering Research Center of Security Technology of Complex Network System, Ministry of Education,

Shenyang 110167, China
* Correspondence: congmy@163.com
† These authors contributed equally to this work.

Abstract: Over recent years, traditional manufacturing factories have been accelerating their trans-
formation and upgrade toward smart factories, which are an important concept within Industry 4.0.
As a key communication technology in the industrial internet architecture, time-sensitive networks
(TSNs) can break through communication barriers between subsystems within smart factories and
form a common network for various network flows. Traditional routing algorithms are not applicable
for this novel type of network, as they cause unnecessary congestion and latency. Therefore, this
study examined the classification of TSN flows in smart factories, converted the routing problem into
two graphical problems, and proposed two heuristic optimization algorithms, namely GATTRP and
AACO, to find the optimal solution. The experiments showed that the algorithms proposed in this
paper could provide a more reasonable routing arrangement for various TSN flows with different
time sensitivities. The algorithms could effectively reduce the overall delay by up to 74% and 41%,
respectively, with promising operating performances.

Keywords: time-sensitive network; smart factory; industrial internet; routing; heuristic algorithm

1. Introduction

With the rapid development of the industrial internet, real-time communication tech-
nologies with deterministic low latency have become a critical requirement in many in-
dustrial sectors. For example, most industrial automation networks require end-to-end
latency to be strictly controlled at no more than 1 millisecond [1]. In addition to the latency
requirements, most application scenarios also have diverse demands on transmission jitter,
packet loss rate, etc., while traditional Ethernet communication can only provide best-effort
and soft real-time transmission services. In response to the growing demand for industrial
real-time communication, industrial enterprises all over the world have developed various
industrial control network protocols based on standard Ethernet communication, such as
Real-Time TTEthernet, EtherCAT, PROFINET, SERCOIII, etc. These deterministic indus-
trial networks connect manufacturing equipment and controllers, constituting operation
technology (OT) networks [2] that are now widely used.

Sensors 2022, 22, 4153. https://doi.org/10.3390/s22114153 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0222-9859
https://orcid.org/0000-0002-0222-9859
https://orcid.org/0000-0001-5403-3922
https://orcid.org/0000-0001-8690-4649
https://orcid.org/0000-0001-8690-4649
https://orcid.org/0000-0001-9589-6791
https://orcid.org/0000-0002-6921-7369
https://doi.org/10.3390/s22114153
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114153?type=check_update&version=3

Sensors 2022, 22, 4153 2 of 25

However, incompatible network protocols lead to problems such as incompatible
applications, a lack of interoperability, difficulty in portability, and expensive costs for de-
velopment, deployment, and maintenance. With the relentless efforts of the AVnu Industry
Alliance and the IEEE TSN Working Group (formerly the AVB Working Group), TSNs [3]
have emerged as a brand new industrial communication technology that are now being
actively promoted by industrial communities. TSNs allow both periodic and non-periodic
data to be transmitted within the same network, giving standard Ethernet communication
the ability for deterministic transmission. TSNs are constructed on the standard 802.1 Ether-
net protocol stacks, which naturally have the advantage of interconnection and can achieve
open Layer 2 Forwarding while ensuring deterministic latency bounds and bandwidth
guarantees [4]. Therefore, TSNs are able to interconnect mutually isolated information
technology (IT) networks and OT networks to achieve the co-networked converged trans-
mission of multiple data flows with varying time sensitivities [5]. In recent years, TSNs
have received continuous attention from both academia and industry and have been identi-
fied as a key technology for the next generation of industrial communication systems [6–8].
With this continuous attention and the efforts of standardization organizations, including
the IEEE and IEC, a series of amendments and standards to improve TSN protocols [9–11]
have been released.

The continuous improvement of TSN-related standardization has become a research
trend in the building of a comprehensive industrial internet communication system that
is based on a TSN with deep integration of IT and OT [12]. Among many application
directions, smart factories, a key component of Industry 4.0, comprise an important appli-
cation scenario for TSN communication technology. A smart factory is a comprehensive
production system with multiple intelligent subsystems at different levels [13], with each
subsystem having different needs for industrial communication. While ensuring real-
time control data communication for smart factories, only TSNs can realize barrier-free
communication with other the subsystems mentioned above within the smart factory ar-
chitecture [14,15]. For TSNs in smart factories, a novel routing mechanism needs to be
established that considers their unique characteristics.

Currently, research on TSNs is still in the development stage and existing data flow
route planning mechanisms are relatively simple. In our previous studies [16–18], we
contributed to the traffic shaping mechanisms along with real-time secure communication
methods for joint OPC UA–TSN IoT-based intelligent industrial production lines; however,
the depth of discussion around routing for TSNs has much room for improvement. In both
mainstream studies and our previous studies, the network topologies were not complicated,
routes of all kinds of traffic were determined using spanning tree protocols and shortest
path routing algorithms, and port queuing and time slot allocation in frame transmission
were performed. However, the composite routing problem for multiple flows within
large-scale networks is difficult to solve in polynomial time, so online routing algorithms
can hardly meet the growing needs of TSNs [19]. Researchers have turned to developing
offline routing methods, which aim to generate a reasonable network routing list in an
offline manner through exploiting the characteristics of TSN deterministic communication.
During actual communication, data flows are scheduled according to the preset routing
list. Compared to online algorithms, this approach avoids the strict computing time limits
and can perform more iterations to obtain a better approximate optimal solution. Therefore,
we propose an offline TSN routing method that covers both TT flow and non-TT flow
routing problems, based on heuristic algorithms. The main contributions of our study are
as follows:

1. We proposed an improved genetic algorithm to solve the TT flow routing problem
(GATTRP). We modeled the TT flow routing problem in the TSN systems of smart
factories and transformed the problem into a multiple traveling salesmen problem
(MTSP) to solve. Based on the existing genetic algorithms, we optimized the design
of the genetic evolution operators and algorithm processes and finally, formed an
improved genetic algorithm with faster convergence speed and better results;

Sensors 2022, 22, 4153 3 of 25

2. We proposed an adversarial ant colony optimization (AACO) algorithm to solve the
non-TT flow routing problem. We modeled the non-TT flow routing problem in the
TSN systems of smart factories and transformed the problem into a load balancing
pathfinding problem for multiple priority flows within a directed graph. Based on
existing ACO algorithms, we designed a novel pheromone update rule to balance the
impacts of higher priority tasks and path length on pathfinding. The algorithm could
effectively equalize the non-TT network load and reduce the network latency;

3. We established a simulation experiment platform for the smart factory TSN commu-
nication system and evaluated the performance of the proposed algorithm through
experiments. The results showed that both algorithms produced a certain improve-
ment in the corresponding evaluation indicators, which matched our expectations.

The remainder of this paper is organized as follows. In Section 2, we list the results of
our survey on related works. In Section 3, we parse and mathematically model the actual
problems. In Section 4, we propose the TT routing algorithm, named GATTRP. In Section 5,
we propose the non-TT routing algorithm, named AACO. In Section 6, we establish an
experimental environment and discuss performance evaluation. Finally, we conclude this
paper in Section 7.

2. Related Works

Our study combined several fields, such as time-sensitive network routing, task/volume-
balanced MTSPs, load balancing routing, etc. We reviewed many studies from the related
fields, which are listed below.

2.1. Time-Sensitive Network Routing

TSNs are composed of series of IEEE technical standards, including precise time
synchronization, network traffic shaping, network configuration, and other aspects. The
IEEE TSN Standardization Working Group issued a standard amendment [20] to address
the problem of path controlling and proposed shortest path bridging (SPB) as the basis for
establishing network bridging in Chapter 12. Based on this, a management information base
(MIB) was specified in Chapter 17, which formed the IEEE 8021-SPB-MIB standardization
framework. Furthermore, the amendment proposed a path control and reservation (PCR)
method in Chapter 45, which was based on the use of SPB and spanning tree protocols
to achieve the path control and traffic reservation of TSN flows. Following on from IEEE
standards, Schweissguth et al. and Falk et al. [21,22] proposed solutions for the joint traffic
scheduling and route planning problem, both of which were based on integer linear
programming (ILP). Schweissguth et al. [21] used two performance metrics (i.e., end-to-
end delay and scheduling capability) to evaluate their experimental results for different
traffic patterns and network topologies. Falk et al. [22] adopted an ILP solver for instances
with large parameter variations and evaluated the performance of their algorithm based
on the solution time. Mahfouzi et al. [23] proposed an iterative algorithm for joint routing
and scheduling based on SMT, but the performance of their algorithm was too sensitive
to the degree of transmission path conflicts between flows, which led to an unsatisfactory
success rate. Nayak et al. [24,25] proposed the concept of a time-sensitive software-defined
network (TSSDN), which forms a logically centralized control plane of SDN to compute
global routing schemes. The above studies provided feasible routing mechanisms for
TT traffic, but it is difficult to meet the requirements of the solution time for large-scale
routing scenarios and no relevant studies have been found that route for non-TT traffic.
Therefore, the existing methods can hardly cope with the routing challenges brought by
future large-scale TSN communication systems.

2.2. Heuristic Optimization Algorithms

Heuristic algorithms are intuitively or empirically constructed algorithms that search
for a feasible solution to each instance of an optimization problem at a limited cost (in
terms of computational time and space). Since heuristic algorithms can usually find

Sensors 2022, 22, 4153 4 of 25

promising solutions in a reasonable amount of time when dealing with many practical
NP-hard problems, they have become a research hotspot in recent years. Inspired by
various phenomena, such as animal behavior and natural laws, researchers have proposed
many novel and effective optimization algorithms and have proven their value in practical
applications. For example, based on the gravitational search algorithm (GSA), which was
inspired by the law of gravity and interactions between mass entities, Precup et al. [26]
proposed the tuning of a class of fuzzy control systems to obtain a reduced sensitivity.
Li et al. [27] proposed an effective rule classifying method, namely the heuristic algorithm to
reduce memory demand (HARD), for heterogeneous bit-split string matching architectures.
Based on the gray wolf optimization (GWO) algorithm, which was inspired by the action
of a gray wolf preying on its prey, Zamfirache et al. [28] proposed an RL-based control
approach to train neural networks. Pozna et al. [29] proposed a hybrid metaheuristic
optimization algorithm called the particle filter–particle swarm optimization (PF–PSO)
algorithm, which can effectively optimize the position control of a family of integral-type
servo systems. The above works have been proven to be successful in various applications
and thus, are valuable for the further improvement of heuristic algorithms. In order
to solve the multi-objective task scheduling problem of intelligent production lines, we
proposed a hybrid algorithm called the improved hybrid monarch butterfly optimization
and improved ant colony optimization algorithm (HMA) [30] to combine the advantages
of cloud computing and fog computing. Based on our previous research, we started trying
to solve the routing problems in TSN transmission using heuristic algorithms.

2.3. Task/Volume-Balanced MTSPs

The traveling salesman problem (TSP) is a typical NP-hard combinatorial optimization
problem, which comprises finding the best traversal route at the lowest cost (time, distance,
etc.) through a given number of cities, in which all cities are visited only once by a single
traveler, except for the starting city [31]. The MTSP, on the other hand, comprises M
travelers visiting a portion of cities separately and each city (except the starting city) is only
visited by any traveler once and, eventually, finding the minimum cost to finish traversing
all of the cities [32]. When M = 1, MTSP is transformed into classical TSP, so TSP is a
special case of MTSP [33].

The genetic algorithm (GA) has definite advantages for solving the task-balanced
MTSP problem. Carter et al. [34] proposed a two-stage chromosome encoding method
based on classical GA and designed corresponding genetic operators to solve the MTSP
both in terms of the shortest total distance and the shortest "longest distance", which could
effectively reduce the solution space and eliminate redundant solutions. Zhou et al. [35]
successfully proved the advantages of the improved uniparental GA for solving the MTSP,
as well as proposing three algorithms to solve the MTSP with multiple starting points
and closed loops. Lu et al. [36] combined the K-means clustering algorithm and the GA to
solve the multi-objective MTSP, which avoided travelers crossing paths and also reduced
computing time. However, the correctness of the results and the convergence performance
of the above algorithms still need to be improved as retaining good individuals while main-
taining the diversity of the population within the GA for the MTSP remains a challenging
problem.

2.4. Load Balancing Routing Assignment Problem

When routing in large-scale network systems, the load balancing problem needs to
be fully considered to avoid partial network congestion. To solve the load balancing
routing problem, some existing clustering protocols for wireless sensor networks (WSNs)
have appreciable reference value. The LEACH (low-energy adaptive clustering hierarchy)
algorithm [37] was the first proposed hierarchical routing algorithm, whose core idea is
to divide the network nodes into clusters and randomly select nodes in turn to be the
cluster head nodes. The other nodes forward their collected data to the cluster head node
and, eventually, the cluster head node consolidates the data and forward them to the sink

Sensors 2022, 22, 4153 5 of 25

node. Younis and Fahmy [38] proposed a HEED clustering approach. Its major difference
from the basic LEACH protocol is that HEED uses a multi-hop method to communicate with
the sink node, while LEACH uses a single-hop method. Inspired by these two important
clustering protocols, Tarhani et al. [39] proposed SEECH, Bhushan et al. [40] proposed
FLEAC, and Sert et al. [41] proposed MOFCA, forming a rich variety of clustering routing
methods for WSNs that have a better performance.

There are researchers continuously trying to apply ant colony optimization (ACO)
algorithms to solving the load balancing routing assignment problem. ACO is an intelli-
gent optimization algorithm that optimizes practical problems by imitating the foraging
behavior of ants in nature, which was first proposed by Italian scholar Marco Dorigo in
the 1990s [42]. Ramamoorthy et al. [43] proposed an enhanced hybrid ant colony opti-
mization routing protocol (EHACORP) to improve the efficiency of the routing process
using the shortest path. Belgaum et al. [44] explored two artificial intelligence optimiza-
tion techniques, including ACO and PSO, for load balancing in SDN. Govardhan and
Srinivasan [45] proposed a modified evolutionary computing-driven dynamic load bal-
ancing model, named intrinsically modified ant colony system (IMACS), for mega-cloud
infrastructures. The above algorithms have different degrees of optimization for the route
assignment problem of load balancing. However, to the best of our knowledge, there is still
a lack of well-performing load balancing route assignment methods for TSN multi-priority
scheduling characteristics.

3. Problem Modeling

To study the TSN routing problem within a complex network topology, the network
was abstracted as a directed graph G(V, E). The nodes in this network included two main
types: switch (SW) nodes and end system (ES) nodes, as shown in Figure 1. All of the
nodes formed a node set V and each SW had multiple incoming and outgoing ports, which
were responsible for forwarding the data frames received from the incoming ports to the
corresponding outgoing ports, according to the routing list. The ESs could be hard real-time
control units, such as servo drivers, or soft real-time or non-real-time units, such as sensors,
cameras, mobile operating terminals, etc. E ⊆ V × V was the set of edges, where each
element represents a unidirectional link from one node to another. The TSN connections
supported full-duplex, so the physical links between node vi and vj corresponded to two
directed edges [vi, vj] and [vj, vi] in the model. Each link [vi, vj] was defined by a triplet
< bij, cij, qij >, which denoted the bandwidth capacity, propagation delay, and queuing
delay of that link, respectively.

End Systems (Event triggered)SWITCHesEnd Systems (Time triggered)

SW 1 Controller

…

Servo 1

Servo 2

SW n

…

Mobile
monitors SensorsCameras

…

Figure 1. The architecture of a TSN in a smart factory and the composition of the TSN nodes.

Based on the common TSN traffic classification method [7,46,47], we classified the in-
dustrial data transmitted by TSN industrial communication systems in smart factories into
three main types. For high-precision servo motors in key manufacturing equipment, such
as computer numerical control (CNC) machine tools and six-axis robotic arms, the master
unit needs to periodically send control data, along with time-synchronized data, as de-

Sensors 2022, 22, 4153 6 of 25

fined in [9,48], which are collectively called time-triggered (TT) data. Meanwhile, some
upper-level industrial applications that rely on computer vision, such as object recognition
inspection systems for workpiece shapes, require access to audio and video surveillance
streams throughout the manufacturing process. These data, collectively called audio/video
bridging (AVB) data, are less time-sensitive than TT data and, therefore, need to be sched-
uled for transmission after the highest priority TT data. In addition, TSNs also provide
non-real-time transmission services for upper industrial integrated management systems,
such as ERP and MES, in smart factories. These communication systems are not consid-
ered within the QoS of real-time industrial networks, collectively called best-effort (BE)
communication. A summary of the above three types of data is depicted in Table 1.

Table 1. TSN data classification.

Category Sample Data Description Priority

TT

Control Data Frames Communicate with industrial control slave devices, such as servo motors, on
a strictly time cycle basis to control their actions and collect encoder feedback

7
Time-Synchronized Frames Traverse each network node following the rules of the optimal master clock

algorithm to complete precise time synchronization

AVB

Audio Bridging Data Sensing signals, such as vibration, sound, etc., typically requiring latency to
be less than 5 ms

5∼6Video Bridging Data Continuous image signals captured by industrial surveillance cameras with
large bandwidth consumption: allowable time delay range is 0∼100 ms

Key Sensor Data Event-triggered multi-source heterogeneous sensor signal data, which is an
important data source for realizing intelligent manufacturing management

BE
ERP, MES, etc. System Data Generic Ethernet data with no particular real-time QoS requirements

0∼4
Background Stream Data Deliver as much as possible

AVB and BE data cannot be transmitted in hard real-time, as with TT data, so we
defined them as the same type of data, i.e., non-TT data, in our study. In the following
sections, we define the two different routing problems, TT and non-TT, and propose two
different optimization algorithms to solve these routing problems.

4. Improved Genetic Algorithm to Solve TT Flow Routing Problem

When the controller conducts time-triggered communication with servo motors within
TT subnetworks, the communication method is the master–slave method, in which the con-
troller acts as the master station to send control-type frames to each slave station and slave
stations return the processed frames to the master station. In the IT–OT converged indus-
trial control network considered in this paper, the technical idea of aggregated forwarding
frames was adopted, in which the whole subsystem has only one frame that runs in a loop.
For the master, all devices with I/O information are considered as “logical” devices and the
address of the field device corresponds to the physical location in the control frame, accord-
ing to the protocol. When a message passes through a slave device, the slave only needs
to read the command data from the corresponding mapped address and simultaneously
resend the feedback data to the same place, so the effective utilization of the message can
reach up to more than 90%. The frame format for the control data and communication
mechanism design are shown in Figure 2.

In industrial control networks, the number of slaves that need to be traversed in
single time cycle increases as the network size continues to grow and the time cycle that is
required to traverse the nodes increases linearly. In this case, we considered a TT control
network based on the idea of distributed control, as depicted in Figure 3. In smart factories,
due to the high degree of integration of IT and OT networks, the central control server
can combine the requirements from upper-level industrial applications and the cloud
platform to simultaneously control CNC machine tools, industrial robots, and other key

Sensors 2022, 22, 4153 7 of 25

manufacturing equipment on multiple smart production lines in real time. Each CNC
system, six-axis robot arm, etc., forms a set of subnetworks with its own hard real-time
requirements within the system. The central control server accesses the submasters of each
subnetwork sequentially via SWs, controls them with TT frames, and collects feedback.
By optimizing the traversal route, we can reduce the traversal period as much as possible,
so that the access time interval from the central control server to each subnetwork can be
significantly reduced. The more frequent the access to the manufacturing equipment in the
same time slice, the faster the speed of command response and the higher the manufacturing
accuracy and flexibility of the smart production line. Therefore, the optimization objective
for TT flows in this paper was to reduce the traversal cycle from the central control server
to each real-time subnetwork.

TSN
head

identifier:
controlling

slave 1
command ... FCSslave

command ... slave
command

Centralized
controller

servo driver 1

RX

TX RX

TXprocess

replace

servo driver

RX

TX RX

TXprocess

replace

servo driver

RX

TX RX

TXprocess

replace

Figure 2. Aggregated forwarding frame-based TT communication.

subnet 2(TT)

subnet 1(TT)

Controller

…

control frame

Figure 3. Schematic of TT control flow network traversal.

4.1. Definition of the Optimization Problem in TT Routing

Based on the distributed traversal approach for TT communication that was proposed
above, the TT routing problem in TSNs could be transferred into the following: the central
control node v1 was directly connected to m SW nodes and periodically sent m control-
type data frames (noted as a1, a2, · · · , am) to n destination subnetworks at the same time.
After each subcontrol system finished receiving and processing, it overwrote the control
data field at the corresponding position within the frame with feedback data containing
operating status and then forwarded it downward. Finally, all frames converged at v1 after
the traversal. Every subnetwork that was connected to a SW node could be merged into

Sensors 2022, 22, 4153 8 of 25

the model. Considered as a single node, the processing delay of the node equaled the
total traversal time inside the node. We let the number of ES nodes inside subnetwork
vi be oi and the time granularity of traversing a single ES node be δ, then the total time
delay dij between node vi and vj included the propagation delay between the two nodes,
the queuing delay, and the processing delay required to traverse within the vi node:

dij = cij + qij + δ · oi. (1)

The minimum time that was required to complete a cycle equaled the time required
for the longest of all sent frames to complete forwarding and return to the source node,
i.e., the minimum value of cycle T was:

T = min

(
max

n

∑
i=1

n

∑
j=1

dij · ρk
ij

)
, ∀k ∈ {1, 2, . . . , m}, (2)

where ρk
ij is the transmission direction of the TT frame between nodes vi and vj, which is

defined as follows:

ρk
ij =

{
1, TT frame k goes from i to j
0, TT frame k goes from j to i

. (3)

For each kth TT frame, we planned a loop route starting from v1. Assuming the route
was v1 → v2 → v3 → · · · → v6 → v1, there had to be ρk

1,2 = ρk
2,3 = · · · = ρk

6,1 = 1,
while any other ρk

ij = 0. Then, we obtained the 1/m part of the solution: route ωk =

(v2, v3, . . . , v6).
In addition, we defined yk

i to mark whether the kth TT frame had visited node vi
as follows:

yk
i =

{
1, TT frame transmitted through node vi once
0, others

. (4)

Each node vi was marked one time per TT frame arrival; therefore, for every node vi,
there was:

yk
i =

n

∑
j=0

ρk
ji, ∀i ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , m}. (5)

By treating the node vi as a city, the links between nodes eij as inter-city paths, and the
m TT frames transmitted in parallel as m traveling salesmen, we could further transform
the TT routing problem into an MTSP problem.

4.2. Optimization Goal and Constraints of TT Routing

Through the description of the above formula, our goal formula became clear: com-
paring the completion times of all m salesmen to find the longest route. Our goal was to
minimize the completion time of the salesman who traveled the longest route by adjusting
the routing plans for all of the salesmen, namely:

Minimize{T},

s.t. (c1) :
m

∑
k=1

yk
1 = m,

(c2) :
m

∑
k=1

yk
i = 1, ∀i ∈ {2, 3, . . . , n},

(c3) :
n

∑
i=1

yk
i ≥ 2, ∀k ∈ {1, 2, . . . , m},

(c4) : T ≤ MaxTime.

(6)

In Equation (6), (c1)–(c4) are the constraints that needed to be obeyed by any solution.
Constraint (c1) ensured that m TT frames all returned to the central control node within

Sensors 2022, 22, 4153 9 of 25

a single common traversal cycle. Constraint (c2) ensured that every node vi, except for
v1, was visited only one time because a node being accessed two or more times within
one cycle would break the transmission periodicity and thus, cause chaos in the whole
network. Constraint (c3) ensured that each route included at least one node in addition to
the central control node. Constraint (c4) ensured that the final result T was less than the
preset threshold MaxTime, otherwise its real-time performance could not be guaranteed.

4.3. Description of GATTRP

In this section, we propose an improved GA named GATTRP. Through GATTRP, we
could encode the routes of the TT flows and seek the optimal solution for this problem in
a genetic evolutionary way. In the following content, we describe how the improved GA
works, starting with the rules by which the chromosomes are encoded.

4.3.1. Chromosome Encoding Rules

In order to reduce the search space and eliminate redundant solutions, this paper
adopted a two-segment chromosome encoding method. The first segment represented
the order of salesmen traversing each node and the second segment represented the
breakpoints between each salesman. When there were n nodes, the first node v1 was fixed
as the starting and destination node for salesmen to traverse; the other n− 1 nodes were
randomly arranged to be visited by m salesmen. The fixed starting node was not encoded in
the chromosome and the length of the first part of the chromosome was n− 1, indicating the
random arrangement of n− 1 nodes. The length of the second part was m− 1, indicating
that when the nodes needed to be divided into m salesmen’s paths, m− 1 breakpoints were
needed. The breakpoints in the second part were stored in increasing order.

In the following example, we made n = 10, m = 3, and the number of the fixed starting
node be 1. We let the randomly generated breakpoints be 4 and 6. Then, we could encode
the chromosome as is depicted in Figure 4. The traversal route of the first salesman was
1→ 5→ 6→ 9→ 4→ 1, the traversal route of the second salesman was 1→ 2→ 8→ 1,
and the traversal route of the third salesman was 1→ 10→ 3→ 7→ 1.

5 6 9 4 4 610 732 8

Traveler 1 Traveler 2 Traveler 3

Cities Breakpoints

breakpoint 1 breakpoint 2

1 2 3 4 5 6 97 8

Figure 4. Encoding method for an example chromosome.

The above chromosome corresponds to the route of TT flows traversing in the actual
network as depicted in Figure 5.

2

3

4

5 6

7

8

9

10

1

Traveler 1

Traveler 2 Traveler 3

Figure 5. The traversal route of the chromosome in Figure 4.

Sensors 2022, 22, 4153 10 of 25

4.3.2. Population Initialization

We initialized a population with an initial chromosome number of U0 and we set the
maximum population size allowed throughout the iteration as Umax and the maximum
number of iterations as Imax. The gene segments of U0 chromosomes were randomly
initialized and the fitness of individuals on each chromosome was calculated.

4.3.3. Genetic Evolution Operator Design

We combined simple operators, such as the flip, slide, swap mutation, to design rela-
tively complex operators, which improved the diversity of the mutation process, accelerated
the evolution process, and, eventually, enhanced the efficiency of the GA.

In existing mutation operators, the route length of each traveling salesman is constant,
which is not enough to effectively improve the population diversity and it is detrimental
to locally search for new possible solutions. Therefore, for the second segment of the
chromosome, the operation of +n, -n or +0 was randomly applied to the breakpoint gene
segments on the premise that the breakpoints were not equal to each other and were
arranged in ascending order. The effect of the above operations was a change in the length
of the salesmen’s routes. The mutation process is depicted in Figure 6.

5 6 49 62 8

breakpoint 1 breakpoint 2

1 2 3 4 5 6 97 8

10 73 4

−1 +1

5 6 49 72 8 10 73 3

1 2 3 4 5 6 97 8

breakpoint 1 breakpoint 2

Figure 6. Example process of drift mutation.

4.3.4. Offspring Breeding

The optimization goal of the improved GA proposed in this section was to find
the traversal route with the earliest "latest arrival" time of multiple traveling salesmen.
Therefore, Equation (2) was determined as the fitness function for this section. We defined
fitness f iti as the evaluation criteria when breeding the ith chromosome, where f iti =
1/min(T). After generating the primary population according to the above chromosome
encoding method, chromosomes with better fitness were selected to breed more offspring,
so that they could keep their genetic advantages in the evolutionary iteration process. The
specific number of reproductions of each chromosome was:

Oi =

⌊
(Omax −Omin)

f iti − f itmin
f itmax − f itmin

⌋
+ Omin, (7)

where Oi represents the number of offspring of the ith chromosome, Omax and Omin are
the maximum and minimum allowable numbers of breeding offspring, respectively, and
f itmax and f itmin are the maximum and minimum fitness values in the formed population,
respectively.

In addition, we proposed an adaptive regeneration strategy to improve the searching
ability and robustness of the GATTRP. We recorded the elite chromosomes with the top
fitness rankings in each round of iterations. When the elite chromosomes were not evolved
within 20% of Imax rounds in a row, the chromosomes in the bottom 10% of the genetic
population were selected to perform a swap crossover with the elite chromosomes. By

Sensors 2022, 22, 4153 11 of 25

adopting an adaptive regeneration strategy to replace evolutionarily stagnant chromo-
somes, the diversity of the population was increased to improve the evolutionary ability of
the algorithm.

4.4. Algorithm Flow

Based on the above theory, the pseudo-code of the GATTRP proposed in this paper is
described in Algorithm 1.

Algorithm 1: GATTRP.
Input: m, n, {dij}, G(V, E)
Output: ω1, ω2, . . . , ωm, 1/ f itmax

1 Initialize parameters U0, Umax, Omin, Omax, Imax;
2 Randomly initialize U0 chromosomes of length n + m− 2;
3 for iterator from 1 to Imax do
4 Calculate the fitness { f iti} of each chromosome according to Equation (2);
5 Sort chromosomes according to fitness;
6 if population size > Umax then
7 Eliminate the last chromosomes until the population size = Umax;
8 end
9 if There is no elite chromosome records then

10 Mark the top 20% of chromosomes as elite chromosomes and record them;
11 else
12 if The top 20% of chromosomes are consistent with the elite chromosome records

then
13 The number of iterations without valid evolution +1;
14 if The number of iterations exceeds the allowable range then
15 Take postposition chromosomes to swap with elite ones;
16 end
17 else
18 Update elite chromosome records;
19 Reset the number of iterations without valid evolution;
20 end
21 end
22 forall chromosomes in the current population do
23 Calculate the number of child breeding Oi according to Equation (7);
24 for iterator from 1 to Oi do
25 Select other chromosome by roulette to swap and obtain a child;
26 The child have Pmut probability of mutation. Mutation of flip, slide,

and drift occurs in the proportion of Pf lip, Pslide, and Pdri f t respectively;
27 end
28 end
29 Mix offspring chromosomes into current population;
30 end
31 Decompose the chromosome with the highest fitness into m sub-segments;
32 for k from 1 to m do
33 In the kth sub-segment, sequentially obtain the values of the connected

segments i, j, make ρk
ij = 1, generate ω1, ω2, . . . , ωm;

34 end

4.5. Working Pattern of GATTRP

We added a TT routing program based on GATTRP into the central control server
of the smart factory TSN to optimize the TT routing. When a new TT subnetwork sent a
registration message to apply to join the current TSN, the transmission continued normally

Sensors 2022, 22, 4153 12 of 25

while the GATTRP process was created to perform offline route planning. The newly
joined subnetwork was treated as a node in V and the delay cost between it and other
nodes was calculated to generate the new {dij}. The updated G(V, E) and {dij} were input
to the GATTRP process to calculate m new routes. Starting from the next time period,
the central control server traversed the entire TT network with m new paths to complete
the registration of the new subnetwork.

4.6. Convergence of GATTRP

GATTRP is based on a heuristic algorithm and the average time complexity of its
convergence is complex and can be influenced by various factors, including population
size, number of iterations, and randomness. Thus, it was difficult to produce an accurate
expression. For its convergence, we could only estimate its time complexity as O(Umax ×
Omax × Imax).

4.7. Key Innovations and Contributions of GATTRP

To the best of our knowledge, GATTRP transforms, for the first time, the TT transmis-
sion problem in a smart factory TSN into an MTSP problem for optimization, which is the
key innovation of this paper in terms of the TT routing problem. In addition, in contrast to
existing genetic algorithms, GATTRP adds an elite chromosome mechanism that alleviates
the problem of the GA tending to fall into premature and difficult-to-search-for solutions.
With this optimization, GATTRP has a higher probability of obtaining better results after
the iterations.

5. Adversarial Ant Colony Optimization Algorithm for Solving Non-TT
Routing Problem

Non-TT flows in TSNs are used for soft real-time or non-real-time applications, provid-
ing bounded worst-case end-to-end delay (WCD) but with a looser delay constraint than TT
flows. Multiple types of data flows, including TT, AVB, and BE, are sent from multiple ESs,
as well as presequential SWs, which are connected to ingress ports in a single SW. To solve
the composite traffic scheduling problem, the IEEE 802.1 Qbv standard [49] defined the
time-aware shaper (TAS) mechanism to achieve traffic scheduling for different priority
queues in time windows by establishing gate control lists (GCLs). Under the condition
of network clock synchronization, the GCL in TAS periodically controls the opening and
closing of the egress gates of the corresponding priority queue. With the adoption of GCLs,
the transmission rate can match the egress bandwidth while segregating traffic of different
priority levels, thereby reducing the interference of low-priority traffic on high-priority
traffic and avoiding the starvation of low-priority traffic as much as possible.

Typically, the SWs keep a total of eight priority queues, so the sequence of gates is
Gate 7 to Gate 0. In the examples in this paper, “o” means gate open, “C” means gate
closed, and each action is based on the time window. Correspondingly, the GCL can tell
the time sequence of each type of traffic that is allowed to be sent to the output ports in a
scheduling cycle, as shown in Figure 7.

In this scheduling mechanism, the number of time windows allocated to each priority
queue within a common time period is limited. Therefore, as the number of queueing flows
increases, it inevitably leads to relative congestion, which eventually causes an increase in
the time needed to complete the transmission of each single task. For non-TT flows, ESs
connected to each SW may send multiple types of non-TT data with different priorities, such
as audio, video or sensor signals. The destination of non-TT flows is basically concentrated
on one centralized data server. In this case, when the routing mechanism assigns too many
time-consuming non-TT flows to the same data link, it is difficult to meet the soft deadlines
of all flows due to severe time slot contention, resulting in a waste of bandwidth resources.
When planning routes for low-priority non-TT flows, we considered changing their routing
scheme from simply taking the shortest routing approach. When there were already higher

Sensors 2022, 22, 4153 13 of 25

priority flows causing queue congestion, we considered “bypassing” the congested SWs
in exchange for a relative balance of SW loads at the cost of a partial loss of route length.

Gate 7

Gate 6

Gate 1

Gate 0

…

guard band

open close

close open

Scheduling period

… …

Figure 7. An example of TAS scheduling timing in a TSN (corresponds to Figure 8).

SW

……

gate 0

C C Co C oC

C o CC o Co

o C CC C oo

C C oC C CC

time triggered

priority 6

priority 1

priority 0

flo
w

 c
la

ss
ifi

er

ES

ES

ES

…

other SWs
ou

tp
ut

 p
or

ts

gate 7

gate 1

gate 6

…

Figure 8. TAS scheduling mechanism with GCLs in a TSN.

5.1. Definition of the Optimization Problem in Non-TT Routing

Based on the above conditions, the non-TT routing problem in TSNs could be defined
as follows: in a given G(V, E) with n nodes, the planning of m routes for m non-TT flows
with the sets of source nodes of these routes was defined as SRC = {vsrc1 , vsrc2 , . . . , vsrcm},
where the nodes are all repeatable. The destination of all non-TT flows was a centralized
data server node vdst. The priority of the kth non-TT flow was pk, which was also repeatable,
and the set of its packet lengths was PCK = pck1, pck2, . . . , pckm. The route of the kth non-
TT flow was denoted as ωk = (vsrck , v2, v3, . . . , vdst), which represented a path passing
through n nodes of vsrck → v2 → v3 → · · · → vdst.

We retained the description of the time delay from Section 4.1, with the difference
that for this problem, the non-TT flow did not need to traverse each ES node inside the
subnetworks, so the time delay of the kth non-TT flow between vi, vj nodes in the routes
ωk was:

dk
ij = cij + qk

ij, (8)

where qk
ij is the queueing delay of the kth non-TT flow between vi, vj. The higher the

number of non-TT flows involved in queuing on any single SW node, the larger the WCD
of the flows with a higher priority than the current kth flow, thereby making qk

ij increase
correspondingly. The correspondence between the number of non-TT flows in a queue

Sensors 2022, 22, 4153 14 of 25

and qk
ij was determined by the GCL-based scheduling mechanism in the TSN, which was

obtained through the simulation experiments detailed in later sections of this paper.
Since the traffic scheduling principle of a TSN requires planning higher priority non-

TT flows first, the ωi with the highest pi had to be prioritized, followed by planning the
rest of flows in order of priority. The minimum value of the overall time delay T was:

T =
m

∑
k=1

n

∑
i=1

n

∑
j=1

dij · ρk
ij, (9)

where ρk
ij is the transmission direction of the non-TT frame between nodes vi and vj, which

was defined as follows:

ρk
ij =

{
1, non-TT frame k goes from i to j
0, non-TT frame k goes from j to i

. (10)

In addition, we defined yk
i to mark whether the kth non-TT frame had visited the node

vi. Similarly, each node vi was marked one time per non-TT frame arrival; therefore, for
every node vi, there was:

yk
i =

n

∑
j=0

ρk
ji, ∀i ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , m}. (11)

5.2. Optimization Goal and Constraints of Non-TT Routing

When non-TT flows with multiple priorities participate in queuing within the same
SW, TAS schedules all priority queues in units of time windows. In a single SW, as the
number of flows participating in the priority queue increases, the WCD of each data flow
gradually increases, which is brought about by the deterioration of the queuing situation.
The optimization goal of the AACO algorithm was to avoid unnecessary queuing as much
as possible and, therefore, reduce the overall WCD for all flows, realize the relative balance
of the TSN data link loads, and improve the response speed and bandwidth utilization of
the non-TT networks, namely:

Minimize{T},
s.t. (c1) : Ti < Tj, ∀pi > pj

(c2) : yk
i ≤ 1, ∀i 6= dst, k ∈ {1, 2, . . . , m},

(c3) :
n

∑
k=1

yk
dst = m,

(c4) : T ≤ MaxTime.

(12)

In Equation (12), (c1)–(c4) are the constraints that needed to be obeyed by any solution.
Constraint (c1) ensured that non-TT flows with higher priority always reached the destina-
tion earlier, where Ti and Tj are time delay for two different routes ωi and ωj. Constraint
(c2) ensured that every node vi, except for vdst, was visited by the kth non-TT flow no more
than one time, so that there were no loops in the routes. Constraint (c3) ensured that the
m non-TT flows all converged at the destination node vdst. Constraint (c4) ensured that
the final result T was less than the preset threshold MaxTime, otherwise its soft real-time
performance was unsatisfied.

5.3. Description of AACO

To solve the problem described above, we proposed a novel AACO algorithm to
achieve load balancing routing among multi-priority non-TT flows. We set up m ant
colonies, each of which represented a non-TT flow. Unlike classical ACO algorithms, there
were strong and weak colonies among these ant colonies and the strength of the ith ant
colony was equal to the priority pi of the ith non-TT flow. When the pheromone was

Sensors 2022, 22, 4153 15 of 25

updated, the pheromone left by the ant colonies with higher priorities greatly suppressed
the pheromone increment of the weak colonies and reduced the probability of picking
identical routes. Weak ant colonies would rather choose detouring than repeating the
route of stronger colonies. Meanwhile, the distance to be detoured was also taken into
account. When the extra cost of detouring was too large, weak ant colonies would choose
to participate in the queuing process with stronger ant colonies, after weighing up the
costs. Taking a small network consisting of six SWs with m = 3 as an example, a sample
procedure of the AACO algorithm solving the non-TT route assignment problem is shown
in Figure 9.

SW ES ES

strongest colony

SW

SW
SW

weakest colony

SW SW

weaker colony

Figure 9. A sample procedure of the AACO algorithm solving the non-TT route assignment problem.

5.3.1. Ant Colony Initialization

For the route assigning task of m non-TT flows, we initialized m ant colonies with Z
ants per colony. All ants from the ith colony were located at the corresponding source node
srci. We also initialized m different pheromone concentration values for each edge in E,
denoted as τk

ij:

τk
ij = C0, ∀i, j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , m}. (13)

5.3.2. State Transition Probability

We then calculated the state transition probability of the ants and selected the next
node to visit by roulette, based on the state transition probability. The state transition
probability was calculated as follows:

Pkl
ij (t) =


[τk

ij(t)]
α [ηij(t)]β

∑
s∈allowedl

[τk
is(t)]

α [ηis(t)]β
, j ∈ allowedl

0, otherwise.

, (14)

Sensors 2022, 22, 4153 16 of 25

where Pk
ij(t) is the probability that the lth ant in the kth ant colony chooses to visit vj from

the current node vi at the time t, allowedl is the set of nodes that are directly accessible and
have not been visited yet, τk

ij(t) is the pheromone concentration left on the edge eij by the
kth ant colony, and α is the pheromone influence factor and β is the cost function influence
factor, both of which are preset constants. The cost function was defined as:

ηij(t) =
1

cij + δhi
, (15)

where hi is SW hops between vi and vj.

5.3.3. Pheromone Update Rules

In each time window, the pheromone τk
ij(t) was volatilized in a fixed ratio. At the

same time, the pheromone concentration was increased on the edges, according to the route
traveled. For each ant in the kth colony:

τk
ij(t + 1) = (1− ρ)τk

ij(t) + ∆τk
ij(t), (16)

where ρ is the volatility coefficient (preset between 0 and 1), ∆τk
ij(t) is the sum of the

pheromone increments in the kth population, which is accumulated by the pheromone
increment of each ant ∆τkl

ij (t), and Q is a preset pheromone increment constant. ∆τkl
ij (t)

was calculated by:

∆τkl
ij (t) =

{
Q/csrck ,dst, tour(i, j) ∈ tour ωl(vsrck , . . . , vdst)

0, otherwise
. (17)

Compared to existing ACO algorithms, the main improvement of the ACO in this
paper was the calculation of pheromone increment ∆τk

ij(t). The pheromone increment of
each ant colony was calculated in decreasing order of priority. When calculating the kth
pheromone increment, the pheromone increments of the previous k− 1 ant colonies were
taken into account. Ant colonies with higher priorities had a stronger suppression effect
on the current colony. Therefore, when we calculated ∆τk

ij(t), the sum of the pheromone
increments of stronger ant colonies on the path to vj had a proportional negative impact on
the current pheromone increment. ∆τk

ij(t) was calculated by:

∆τk
ij(t) =


m
∑

l=1
∆τkl

ij (t)− γ
max(p)

∑
s=pk+1

∆τs
∗j

s·pcks

∑
max(p)
h=1 h·pckh

, i f > 0

0, otherwise
, (18)

where γ is a preset constant whose purpose is to adjust the influence of stronger colonies on
the current colony, ∆τs

∗j is the sum of pheromone increments on the edges of all paths whose
priority is s and whose destination is vj, and max(p) is the maximum value of priority p.
The colonies with higher priorities than the kth colony were (pk + 1, . . . , max(p)).

5.4. Algorithm Flow

Based on the above theory, the pseudo-code of the AACO algorithm proposed in this
paper is described in Algorithm 2.

Sensors 2022, 22, 4153 17 of 25

Algorithm 2: AACO algorithm for non-TT flow route planning.

Input: m, {dk
ij}, p1,...,m, PCK, SRC, G(V, E)

Output: ω1, ω2, . . . , ωm
1 Initialization parameters Z, Q, C0, α, β, γ;
2 Establish m two-dimensional pheromone matrices and combine them into a

three-dimensional pheromone array [V ×V, m] = C0;
3 Initialize k colonies with Z ants;
4 for iterator from 1 to Imax do
5 forall m ant populations do
6 foreach ant in colony do
7 if The node is not the destination node dst then
8 Add the current node to the tabu list;
9 Get the set of adjacent nodes, exclude nodes in the tabu list;

10 Calculate state transition probabilities according to Equation (14);
11 Visit next node by roulette, record the path;
12 else
13 Return to the source node src and collect path set;
14 Calculate the total delay csrc,dst of the path ;
15 end
16 end
17 foreach edge e ∈ E do
18 Calculate the pheromone increments according to Equation (17,18);
19 Update pheromone according to Equation (16);
20 end
21 end
22 end
23 for i from 1 to m do
24 Add the nodes in the path set to ωi;
25 end

5.5. Working Pattern of AACO

We added a non-TT routing program based on the AACO into the central control server
of the smart factory TSN to optimize non-TT routing. When a new non-TT application sent
a registration message to apply to set up a data flow with the data server, the transmission
continued normally while the AACO process was created to perform offline route planning.
The ES node where the application was running was treated as the source node vsrck

and the delay cost between it and other nodes was calculated to generate the new {dk
ij}.

The updated G(V, E), {dk
ij}, and the priority of this data flow pk were input to the AACO

process to calculate m new routes. Starting from the next time period, all non-TT flows were
transmitted with m new routes to complete the registration of the new non-TT application.

5.6. Convergence of AACO

AACO is also based on a heuristic algorithm and the average time complexity of its
convergence is complex and can be influenced by various factors, including the number of
non-TT flows, number of ants, number of iterations, and randomness. Thus, it was difficult
to produce an accurate expression. For its convergence, we could only estimate its time
complexity as O(m× Z× n× Imax).

5.7. Key Innovations and Contributions of AACO

For the non-TT routing problem in TSNs, one of the contributions of this paper is
the selection of ACO as the basis of algorithm optimization. By reasonably adjusting the
impact factor of the pheromones of stronger ant colonies on the update of the pheromones

Sensors 2022, 22, 4153 18 of 25

of other ant colonies, the improved ACO could effectively balance the relationship between
the greedy principle and load balancing in order to better adapt to the TSN traffic shaping
mechanisms, which is harder or even impossible for other algorithms to handle.

6. Performance Evaluation

In this section, we present simulation experiment environment that was used to
evaluate the performances of the algorithms proposed in this paper when adopted in the
routing scenarios of large-scale TSN networks in smart factories.

6.1. Single SW Traffic Scheduling Experiment Based on NeSTiNg

Currently, there are two mainstream experimental frameworks in the field of TSN
research, namely NeSTiNg [50] and CORE4INET [51]. NeSTiNg is an open-source project
on the GitLab website [52], which was released in 2019 specifically for TSN simulation.
Using the NeSTiNg simulation framework, Luxi Zhao et al. [53–56] accomplished a series of
research works on network calculus-based TSN network latency analysis and optimization.
In order to prepare the raw data on the time delay from a single SW for the routing
algorithm proposed in this paper, we built a TSN simulation experimental environment
based on NeSTiNg and set up the network topology depicted in Figure 10.

Figure 10. TSN topology of the simulation experiment that was built based on NeSTiNg.

On the experimental network, we deployed the end-to-end latency optimization
methods proposed in [53,54]. For all flows that were transmitted through switchA, we
changed the quantity of TT and non-TT flows participating in queuing and performed
several sets of comparative experiments to quantify the correspondence between the WCD
and queuing congestion, as depicted in Figure 11. Based on these data, we were able to
calculate the correspondence between the queuing delay qk

ij and the quantity of flows to
be transmitted to vj when the routes of non-TT flows overlapped, which was previously
discussed in Section 5.1.

0 5 10 15 20 25 30
number of non-TT flows

0

500

1000

1500

W
C

D
s

(7
s)

20 TT flows
30 TT flows
50 TT flows

Figure 11. WCD changes with the quantity of flows participating in the queue.

Sensors 2022, 22, 4153 19 of 25

6.2. TT Flow Routing Experiment Based on GATTRP

In order to verify the effectiveness of the GATTRP proposed in this paper, we built a
simulation experiment environment for the TT routing problem on the MATLAB® R2021b
software platform and developed a test program based on Algorithm 1. The simulation
program is available online at [57]. We simulated a factory with 30 TT subnetworks, in
which each subnetwork was abstracted as a node. When visualizing the output results,
the central control server was marked with a red pentagram, the traversal routes of m
TT frames were represented by line segments, and different routes were labeled with
different colors. Finally, on the longest route, all propagation and processing delays that
were incurred while passing through each subnetwork were summed to calculate the final
output T. The preset simulation parameters are shown in Table 2. We ran the experiments
30 times for each value of m and took the average value as the final result for each statistic
in order to avoid misguidance by randomness. Figure 12a–c present some of the routing
results obtained during the experiments.

Table 2. TT flow routing simulation parameters.

SymbolValue Description Remarks

n 30 The number of nodes to be traversed Can be selected by the user
U0 100 The size of the initial population Can be selected by the user

Umax 150 The maximum size of the chromosome population Can be selected by the user
Imax 1500 The maximum number of iterations Parameter of the algorithm
Pmut 40% The probability of mutation Parameter of the algorithm
Pf lip 25% The probability of flip mutation Parameter of the algorithm
Pslide 25% The probability of slide mutation Parameter of the algorithm
Pdri f t 50% The probability of drift mutation Parameter of the algorithm

0 5 10 15 20 25 30 35 40 45 50
X axis of total propagation delay (µs)

0

5

10

15

20

25

30

35

40

45

50

Y
 a

xi
s

of
 to

ta
l p

ro
pa

ga
tio

n
de

la
y

(µ
s)

number of salesmen = 1

(a)

0 5 10 15 20 25 30 35 40 45 50
X axis of total propagation delay (µs)

0

5

10

15

20

25

30

35

40

45

50

Y
 a

xi
s

of
 to

ta
l p

ro
pa

ga
tio

n
de

la
y

(µ
s)

number of salesmen = 3

(b)

0 5 10 15 20 25 30 35 40 45 50
X axis of total propagation delay (µs)

0

5

10

15

20

25

30

35

40

45

50

Y
 a

xi
s

of
 to

ta
l p

ro
pa

ga
tio

n
de

la
y

(µ
s)

number of salesmen = 5

(c)

Figure 12. Comparison of traversal routes when the number of salesmen changed: (a) traversal route
of one salesman; (b) traversal routes of three salesmen; (c) traversal routes of five salesmen.

As the TT flows traversed through each SW, they consumed a certain amount of
processing delay. We set a random processing delay for each SW with maximum values
of 10 µs, 15 µs, and 20 µs to simulate the change of the optimization target min(T) using
Algorithm 1 when the number of salesmen m changed. The results are shown in Figure 13.

Sensors 2022, 22, 4153 20 of 25

0 1 2 3 4 5 6 7 8 9
number of salesmen

0

100

200

300

400

500

600

700

m
in

 T
 (7

s)

processing delay=107s
processing delay=157s
processing delay=207s

Figure 13. The effect of changing the number of salesmen on min(T) when using Algorithm 1.

From the experimental results, we could confirm that it was feasible and effective to
solve the routing problem of TT nodes based on the idea of solving the MTSP. With an
increase in the number of salesmen, SW hops on the routes decreased and the propagation
and processing delays on the longest route were correspondingly reduced. Considering that
the number of parallel ingress and egress ports of the central control server is limited and
that network wiring has comprehensive limitations from environment and financial costs,
the value of m had to be properly set within a reasonable range. In addition, we observed
that the higher the processing delay of the subnetworks, the better the optimization effect.
Therefore, the larger the overall network size, the more obvious the optimization effect of
the GATTRP.

To illustrate the operational efficiency of Algorithm 1, we conducted comparative
experiments using several other algorithms. Figure 14 shows GVNS, which is the general
variable neighborhood search algorithm proposed by Soylu [58], GA2PC, which is the
two-segment GA proposed by Carter et al. [34], TCX, which is the improved GA with a
two-part chromosome crossover operator proposed by Yuan et al. [59], and GATTRP, which
is Algorithm 1 from this paper. All four algorithms were tested using the same G(V, E)
with m = 5 and a processing delay of up to 20µs. The convergence curves are shown in
Figure 14. The results showed that GATTRP converged faster and the final result after
convergence was better.

Figure 14. Convergence curves of the four algorithms when solving the same MTSP problem.

6.3. Non-TT Flow Routing Experiment

In order to verify the effectiveness of Algorithm 2, as proposed in this paper, we
developed a non-TT routing test program, which is available online at [57]. The simulation

Sensors 2022, 22, 4153 21 of 25

parameters are shown in Table 3. Likewise, we performed each experiment 30 times and
took the average result as the final result to minimize misguidance caused by randomness.

We simulated a case of sending m non-TT flows from industrial sensors to a data
server and compared the AACO to two other routing algorithms, as depicted in Figure 15.
To make the visualization more intuitive, we chose the smaller m value of 5 and set the
starting and end nodes as the two farthest nodes within the network. The starting node was
labeled with a diamond and the end node with a pentagram. The route of each non-TT flow
was represented by a line segment, which were distinguished from each other by color.

Table 3. The non-TT routing simulation parameters.

Symbol Value Description Remarks

n 100 The number of SWs in the non-TT network Can be selected by the user
Z 80 The number of ants in each colony Parameter of the algorithm
Q 2 The pheromone increment constant Parameter of the algorithm
C0 2 The initial pheromone constant Parameter of the algorithm

Imax 800 The maximum number of iterations Parameter of the algorithm
α 1 The pheromone impact factor Parameter of the algorithm
β 5 The heuristic impact factor Parameter of the algorithm
ρ 0.5 The pheromone volatile factor Parameter of the algorithm
γ 0.05 The stronger ant colony impact factor Parameter of the algorithm

SPB

(a)

LB-DRR

(b)

AACO

(c)

Figure 15. Comparison of the three algorithms for non-TT routing: (a) routes assigned by the SPB; (b)
routes assigned by the LB-DRR; (c) routes assigned by the AACO.

We developed a routing program based on the SPB algorithm proposed by [20] and the
route obtained is depicted in Figure 15a. Since the routes planned by SPB for each non-TT
flow are always the shortest solution, when the source node and the destination node were
the same for all m flows, the obtained multiple paths completely coincided. In addition,
we made appropriate modifications for our problem model based on the LB-DRR method
proposed by Ojewale et al. [19]. The results of the LB-DRR algorithm are depicted in
Figure 15b. For LB-DRR, the routes never overlapped with other routes when there were
other options. In contrast, the route scheme generated by Algorithm 2 from this paper was
more balanced and reasonable.

When a flow chose to detour, the more SWs the route passes through, the longer
the processing and propagation delays. We defined the sum of processing and propaga-
tion delays as the detouring delay. In addition, from the simulation results presented in
Section 6.1, we obtained the correspondence between queuing delay and the number of
queuing flows, so we could estimate the queuing delay. We counted the average total
delay from multiple experiments to evaluate the algorithm performances, as depicted in
Figure 16. The results showed that the SPB, which pays attention to the shortest path, had

Sensors 2022, 22, 4153 22 of 25

the best detouring delay but the queuing delay was too long, resulting in the longest total
delay. The LB-DRR, which focuses on load balancing, had the best queuing delay but due
to too many detours, results were also unsatisfactory. The AACO algorithm proposed in
this paper comprehensively considered a balanced distribution along with the optimization
of routes; thus, the total delay was the shortest and the optimization effect was the best.

SPB LB-DRR AACO
Algorithms

0

500

1000

1500

2000

2500

3000

3500

4000
Ti

m
e

de
la

y
(

s)
detouring delay
queuing delay
total delay

Figure 16. Comparison of the three algorithms when solving the same non-TT routing problem.

7. Conclusions

This paper highlighted the routing problems in TSNs. Different from traditional
bus-based real-time communication networks, TSNs have two main routing problems:
those for TT flows and those for non-TT flows. To address the specific communication
needs of smart factories, we classified network data from smart factories and analyzed
the communication requirements and transmission mechanisms of various types of traffic.
By mathematically modeling the problem, we transformed the routing problem into an
MTSP problem and a load-balanced multi-priority route assignment problem. For the MTSP
problem, we proposed an improved algorithm named GATTRP. For the multi-priority route
assignment problem, we proposed an improved algorithm named AACO. The simulation
results showed that transforming the traversal problem of TT flows into an MTSP can
effectively reduce the traversal cycle time and that the GATTRP proposed in this paper has
a strong convergence performance. For non-TT flows, the AACO proposed in this paper is
more comprehensive and exhibits an excellent performance and better results. However,
there were also some limitations in this paper. For upper-layer industrial applications,
the transmission mechanisms and requirements of AVB flows and BE flows, which belong
to the same non-TT flow type, are not exactly the same. If they can be distinguished for
refined routing, the the routing performance could be further improved. In the future, we
will focus on improving the routing algorithms for AVB flows.

Author Contributions: Conceptualization, Z.Y. and Y.L.; methodology, Z.Y. and Y.L.; software,
Y.L.; validation, Z.Y., Y.L., and Y.M.; investigation, Y.L. and H.Y.; data curation, Y.M. and F.X.;
writing—original draft preparation, Y.L.; writing—review and editing, Z.Y., Y.L., G.H., and Y.B.;
visualization, Y.M. and F.X.; supervision, Z.Y., Y.L., and H.Y.; project administration, Z.Y., G.H., and
Y.B.; funding acquisition, Z.Y. and G.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was funded by the National Key R&D Program of China under grant num-
ber 2017YFE0125300.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2022, 22, 4153 23 of 25

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author. They are restricted to experimental results.

Acknowledgments: This work was supported by the National Key R&D Program of China under
grant number 2017YFE0125300.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J.

Prod. Econ. 2019, 210, 15–26. [CrossRef]
2. Patera, L.; Garbugli, A.; Bujari, A.; Scotece, D.; Corradi, A. A Layered Middleware for OT/IT Convergence to Empower Industry

5.0 Applications. Sensors 2022, 22, 190. [CrossRef] [PubMed]
3. Messenger, J.L. Time-Sensitive Networking: An Introduction. IEEE Commun. Stand. Mag. 2018, 2, 29–33. [CrossRef]
4. Fedullo, T.; Morato, A.; Tramarin, F.; Rovati, L.; Vitturi, S. A Comprehensive Review on Time Sensitive Networks with a Special

Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems. Sensors 2022, 22, 1638. [CrossRef]
5. Larrañaga, A.; Lucas-Estañ, M.C.; Martinez, I.; Val, I.; Gozalvez, J. Analysis of 5G-TSN Integration to Support Industry 4.0. In

Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna,
Austria, 8–11 September 2020; Volume 1, pp. 1111–1114. [CrossRef]

6. Bruckner, D.; Stanica, M.P.; Blair, R.; Schriegel, S.; Kehrer, S.; Seewald, M.; Sauter, T. An Introduction to OPC UA TSN for
Industrial Communication Systems. Proc. IEEE 2019, 107, 1121–1131. [CrossRef]

7. Nasrallah, A.; Thyagaturu, A.S.; Alharbi, Z.; Wang, C.; Shao, X.; Reisslein, M.; ElBakoury, H. Ultra-Low Latency (ULL) Networks:
The IEEE TSN and IETF DetNet Standards and Related 5G ULL Research. IEEE Commun. Surv. Tutor. 2019, 21, 88–145. [CrossRef]

8. Li, Y.; Jiang, J.; Lee, C.; Hong, S.H. Practical Implementation of an OPC UA TSN Communication Architecture for a Manufacturing
System. IEEE Access 2020, 8, 200100–200111. [CrossRef]

9. ISO/IEC/IEEE 8802-1AS:2021(E); EEE/ISO/IEC International Standard for Information Technology–Telecommunications and
Information Exchange between Systems–Local and Metropolitan Area Networks–Part 1AS:Timing and Synchronization for
Time-Sensitive Applications in Bridged Local Area Networks. IEEE: New York, NY, USA, 2021; pp. 1–422. [CrossRef]

10. IEEE Std 802.1BA-2021; IEEE Standard for Local and Metropolitan Area Networks–Audio Video Bridging (AVB) Systems. IEEE:
New York, NY, USA, 2021; pp. 1–45. [CrossRef]

11. IEEE P1722.1/D13; IEEE Approved Draft Standard for Device Discovery, Connection Management, and Control Protocol for
Time-Sensitive Networking Systems. IEEE: New York, NY, USA, 2021; pp. 1–474.

12. Wang, Y.M.; Yang, S.S.; Ren, X.B.; Zhao, P.; Zhao, C.; Yang, X.Y. IndustEdge: A Time-Sensitive Networking Enabled Edge-Cloud
Collaborative Intelligent Platform for Smart Industry. IEEE Trans. Ind. Inform. 2022, 18, 2386–2398. [CrossRef]

13. Yu, W.; Liu, Y.; Dillon, T.; Rahayu, W.; Mostafa, F. An Integrated Framework for Health State Monitoring in a Smart Factory
Employing IoT and Big Data Techniques. IEEE Internet Things J. 2022, 9, 2443–2454. [CrossRef]

14. Seijo, Ó.; Iturbe, X.; Val, I. SHARP: Implementation of a Hybrid Wired-Wireless TSN Network to Enable Flexible Smart Factories.
In Proceedings of the 2021 17th IEEE International Conference on Factory Communication Systems (WFCS), Linz, Austria, 9–11
June 2021; pp. 95–98. [CrossRef]

15. Hellmanns, D.; Glavackij, A.; Falk, J.; Hummen, R.; Kehrer, S.; Dürr, F. Scaling TSN Scheduling for Factory Automation Networks.
In Proceedings of the 2020 16th IEEE International Conference on Factory Communication Systems (WFCS), Porto, Portugal,
27–29 April 2020; pp. 1–8. [CrossRef]

16. Li, Y.; Ma, Y.; Yin, Z.; Gu, A.; Xu, F. A Communication Model to Enhance Industrial Wireless Networks based on Time-Sensitive
Networks. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu,
China, 11–14 December 2020; pp. 363–367. [CrossRef]

17. Li, M.; Yin, Z.; Ma, Y.; Wang, C.; Chai, A.; Lian, M. Design and verification of secure communication scheme for industrial IoT
intelligent production line system with multi-path redundancy and collaboration. Neural Comput. Appl. 2021. [CrossRef]

18. Chai, A.; Ma, Y.; Yin, Z.; Li, M. Real-Time Communication Model Based on OPC UA Wireless Network for Intelligent Production
Line. IEEE Access 2021, 9, 102312–102326. [CrossRef]

19. Ojewale, M.A.; Yomsi, P.M. Routing heuristics for load-balanced transmission in TSN-based networks. SIGBED Rev. 2020,
16, 20–25. [CrossRef]

20. IEEE Std 802.1Qca-2015 (Amendment to IEEE Std 802.1Q-2014 as Amended by IEEE Std 802.1Qcd-2015 and IEEE Std 802.1Q-2014/Cor
1-2015); IEEE Standard for Local and Metropolitan Area Networks— Bridges and Bridged Networks—Amendment 24: Path
Control and Reservation. IEEE: New York, NY, USA, 2016; pp. 1–120. [CrossRef]

21. Schweissguth, E.; Danielis, P.; Timmermann, D.; Parzyjegla, H.; Mühl, G. ILP-Based Joint Routing and Scheduling for Time-
Triggered Networks. In Proceedings of the 25th International Conference on Real-Time Networks and Systems (RTNS ’17),
Grenoble, France, 4–6 October 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 8–17. [CrossRef]

22. Falk, J.; Dürr, F.; Rothermel, K. Exploring Practical Limitations of Joint Routing and Scheduling for TSN with ILP. In Proceedings
of the 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
Hakodate, Japan, 28–31 August 2018; pp. 136–146. [CrossRef]

http://doi.org/10.1016/j.ijpe.2019.01.004
http://dx.doi.org/10.3390/s22010190
http://www.ncbi.nlm.nih.gov/pubmed/35009732
http://dx.doi.org/10.1109/MCOMSTD.2018.1700047
http://dx.doi.org/10.3390/s22041638
http://dx.doi.org/10.1109/ETFA46521.2020.9212141
http://dx.doi.org/10.1109/JPROC.2018.2888703
http://dx.doi.org/10.1109/COMST.2018.2869350
http://dx.doi.org/10.1109/ACCESS.2020.3035548
http://dx.doi.org/10.1109/IEEESTD.2021.9620008
http://dx.doi.org/10.1109/IEEESTD.2021.9653970
http://dx.doi.org/10.1109/TII.2021.3104003
http://dx.doi.org/10.1109/JIOT.2021.3096637
http://dx.doi.org/10.1109/WFCS46889.2021.9483597
http://dx.doi.org/10.1109/WFCS47810.2020.9114415
http://dx.doi.org/10.1109/ICCC51575.2020.9345100
http://dx.doi.org/10.1007/s00521-021-05990-z
http://dx.doi.org/10.1109/ACCESS.2021.3097399
http://dx.doi.org/10.1145/3378408.3378411
http://dx.doi.org/10.1109/IEEESTD.2016.7434544
http://dx.doi.org/10.1145/3139258.3139289
http://dx.doi.org/10.1109/RTCSA.2018.00025

Sensors 2022, 22, 4153 24 of 25

23. Mahfouzi, R.; Aminifar, A.; Samii, S.; Rezine, A.; Eles, P.; Peng, Z. Stability-aware integrated routing and scheduling for control
applications in Ethernet networks. In Proceedings of the 2018 Design, Automation Test in Europe Conference Exhibition (DATE),
Dresden, Germany, 19–23 March 2018; pp. 682–687. [CrossRef]

24. Nayak, N.G.; Dürr, F.; Rothermel, K. Time-Sensitive Software-Defined Network (TSSDN) for Real-Time Applications. In
Proceedings of the 24th International Conference on Real-Time Networks and Systems (RTNS ’16), Brest, France, 19–21 October
2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 193–202. [CrossRef]

25. Nayak, N.G.; Dürr, F.; Rothermel, K. Incremental Flow Scheduling and Routing in Time-Sensitive Software-Defined Networks.
IEEE Trans. Ind. Inform. 2018, 14, 2066–2075. [CrossRef]

26. Precup, R.E.; David, R.C.; Petriu, E.M.; Preitl, S.; Paul, A.S. Gravitational Search Algorithm-Based Tuning of Fuzzy Control
Systems with a Reduced Parametric Sensitivity. In Soft Computing in Industrial Applications, Proceedings of the 15th Online World
Conference on Soft Computing in Industrial Applications; Springer: Berlin/Heidelberg, Germany, pp. 141–150.

27. Li, X.; Chen, L.; Tang, Y. HARD: Bit-Split String Matching Using a Heuristic Algorithm to Reduce Memory Demand. Rom. J. Inf.
Sci. Technol. 2020, 23, T94–T105.

28. Zamfirache, I.A.; Precup, R.E.; Roman, R.C.; Petriu, E.M. Policy Iteration Reinforcement Learning-based control using a Grey
Wolf Optimizer algorithm. Inf. Sci. 2022, 585, 162–175. [CrossRef]

29. Pozna, C.; Precup, R.E.; Horvath, E.; Petriu, E.M. Hybrid Particle Filter-Particle Swarm Optimization Algorithm and Application
to Fuzzy Controlled Servo Systems. IEEE Trans. Fuzzy Syst. 2022. [CrossRef]

30. Yin, Z.; Xu, F.; Li, Y.; Fan, C.; Zhang, F.; Han, G.; Bi, Y. A Multi-Objective Task Scheduling Strategy for Intelligent Production Line
Based on Cloud-Fog Computing. Sensors 2022, 22, 1555. [CrossRef]

31. Niendorf, M.; Girard, A.R. Exact and Approximate Stability of Solutions to Traveling Salesman Problems. IEEE Trans. Cybern.
2018, 48, 583–595. [CrossRef]

32. Bektas, T. The multiple traveling salesman problem: An overview of formulations and solution procedures. Omega-Int. J. Manag.
Sci. 2006, 34, 209–219. [CrossRef]

33. Venkatesh, P.; Singh, A. Two metaheuristic approaches for the multiple traveling salesperson problem. Appl. Soft Comput. 2015,
26, 74–89. [CrossRef]

34. Carter, A.E.; Ragsdale, C.T. A new approach to solving the multiple traveling salesperson problem using genetic algorithms. Eur.
J. Oper. Res. 2006, 175, 246–257. [CrossRef]

35. Zhou, H.; Song, M.; Pedrycz, W. A comparative study of improved GA and PSO in solving multiple traveling salesmen problem.
Appl. Soft Comput. 2018, 64, 564–580. [CrossRef]

36. Lu, Z.; Zhang, K.; He, J.; Niu, Y. Applying K-means Clustering and Genetic Algorithm for Solving MTSP. In Bio-Inspired
Computing—Theories and Applications; Gong, M., Pan, L., Song, T., Zhang, G., Eds.; Springer: Singapore, 2016; pp. 278–284.

37. Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for wireless microsensor
networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [CrossRef]

38. Younis, O.; Fahmy, S. HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans.
Mob. Comput. 2004, 3, 366–379. [CrossRef]

39. Tarhani, M.; Kavian, Y.S.; Siavoshi, S. SEECH: Scalable Energy Efficient Clustering Hierarchy Protocol in Wireless Sensor
Networks. IEEE Sens. J. 2014, 14, 3944–3954. [CrossRef]

40. Bhushan, B.; Sahoo, G. FLEAC: Fuzzy Logic-based Energy Adequate Clustering Protocol for Wireless Sensor Networks using
Improved Grasshopper Optimization Algorithm. Wirel. Pers. Commun. 2022, 124, 573–606. [CrossRef]

41. Sert, S.A.; Bagci, H.; Yazici, A. MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor networks. Appl. Soft
Comput. 2015, 30, 151–165. [CrossRef]

42. Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE
Trans. Evol. Comput. 1997, 1, 53–66. [CrossRef]

43. Ramamoorthy, R.; Thangavelu, M. An enhanced hybrid ant colony optimization routing protocol for vehicular ad-hoc networks.
J. Ambient. Intell. Humaniz. Comput. 2021. [CrossRef]

44. Belgaum, M.R.; Ali, F.; Alansari, Z.; Musa, S.; Alam, M.M.; Mazliham, M.S. Artificial Intelligence Based Reliable Load Balancing
Framework in Software-Defined Networks. CMC—Comput. Mater. Contin. 2022, 70, 251–266.
018211. [CrossRef]

45. Govardhan, P.; Srinivasan, P. Multilevel controller-assisted intrinsically modified ant colony optimization heuristic-based
load-balancing model for mega cloud infrastructures. Int. J. Commun. Syst. 2022, 35, e5091. [CrossRef]

46. Pop, P.; Raagaard, M.L.; Craciunas, S.S.; Steiner, W. Design optimisation of cyber-physical distributed systems using IEEE
time-sensitive networks. IET Cyber-Phys. Syst. Theory Appl. 2017, 1, 86–94. [CrossRef]

47. Maxim, D.; Song, Y.Q. Delay Analysis of AVB Traffic in Time-Sensitive Networks (TSN). In Proceedings of the 25th International
Conference on Real-Time Networks and Systems (RTNS ’17), Grenoble, France, 4–6 October 2017; Association for Computing
Machinery: New York, NY, USA, 2017; pp. 18–27. [CrossRef]

48. Val, I.; Seijo, O.; Torrego, R.; Astarloa, A. IEEE 802.1AS Clock Synchronization Performance Evaluation of an Integrated
Wired-Wireless TSN Architecture. IEEE Trans. Ind. Inform. 2022, 18, 2986–2999. [CrossRef]

http://dx.doi.org/10.23919/DATE.2018.8342096
http://dx.doi.org/10.1145/2997465.2997487
http://dx.doi.org/10.1109/TII.2017.2782235
http://dx.doi.org/10.1016/j.ins.2021.11.051
http://dx.doi.org/10.1109/TFUZZ.2022.3146986
http://dx.doi.org/10.3390/s22041555
http://dx.doi.org/10.1109/TCYB.2016.2647440
http://dx.doi.org/10.1016/j.omega.2004.10.004
http://dx.doi.org/10.1016/j.asoc.2014.09.029
http://dx.doi.org/10.1016/j.ejor.2005.04.027
http://dx.doi.org/10.1016/j.asoc.2017.12.031
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1109/TMC.2004.41
http://dx.doi.org/10.1109/JSEN.2014.2358567
http://dx.doi.org/10.1007/s11277-021-09373-4
http://dx.doi.org/10.1016/j.asoc.2014.11.063
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1007/s12652-021-03176-y
http://dx.doi.org/10.32604/cmc.2022.018211
http://dx.doi.org/10.1002/dac.5091
http://dx.doi.org/10.1049/iet-cps.2016.0021
http://dx.doi.org/10.1145/3139258.3139283
http://dx.doi.org/10.1109/TII.2021.3106568

Sensors 2022, 22, 4153 25 of 25

49. IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014 as Amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-
2015, and IEEE Std 802.1Q-2014/Cor 1-2015); IEEE Standard for Local and Metropolitan Area Networks—Bridges and Bridged
Networks—Amendment 25: Enhancements for Scheduled Traffic. IEEE: New York, NY, USA, 2016; pp. 1–57. [CrossRef]

50. Falk, J.; Hellmanns, D.; Carabelli, B.; Nayak, N.; Dürr, F.; Kehrer, S.; Rothermel, K. NeSTiNg: Simulating IEEE Time-sensitive
Networking (TSN) in OMNeT++. In Proceedings of the 2019 International Conference on Networked Systems (NetSys), Munich,
Germany, 18–21 March 2019; pp. 1–8. [CrossRef]

51. Steinbach, T.; Kenfack, H.D.; Korf, F.; Schmidt, T.C. An Extension of the OMNeT++ INET Framework for Simulating Real-Time
Ethernet with High Accuracy. In Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques (SIMU-
Tools ’11), Barcelona, Spain, 21–25 March 2011; ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering): Brussels, Belgium, 2011; pp. 375–382. [CrossRef]

52. Institute of Parallel and Distributed Systems, University of Stuttgart. NeSTiNg Project Repository. 2019. Available online:
https://gitlab.com/ipvs/nesting (accessed on 1 April 2022).

53. Zhao, L.X.; Pop, P.; Gong, Z.J.; Fang, B.W. Improving Latency Analysis for Flexible Window-Based GCL Scheduling in TSN Net-
works by Integration of Consecutive Nodes Offsets. IEEE Internet Things J. 2021, 8, 5574–5584.
3031932. [CrossRef]

54. Zhao, L.X.; Pop, P.; Zheng, Z.; Daigmorte, H.; Boyer, M. Latency Analysis of Multiple Classes of AVB Traffic in TSN With Standard
Credit Behavior Using Network Calculus. IEEE Trans. Ind. Electron. 2021, 68, 10291–10302. [CrossRef]

55. Zhao, L.; Pop, P.; Craciunas, S.S. Worst-Case Latency Analysis for IEEE 802.1Qbv Time Sensitive Networks Using Network
Calculus. IEEE Access 2018, 6, 41803–41815. [CrossRef]

56. Zhao, L.; Pop, P.; Zheng, Z.; Li, Q. Timing Analysis of AVB Traffic in TSN Networks Using Network Calculus. In Proceedings of
the 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Porto, Portugal, 11–13 April 2018;
pp. 25–36. [CrossRef]

57. Simulation Project Repository of This Paper. 2022. Available online: https://gitee.com/LiYueUCAS/Heuristic-Routing-
Algorithms-for-TSN.git (accessed on 2 May 2022).

58. Soylu, B. A general variable neighborhood search heuristic for multiple traveling salesmen problem. Comput. Ind. Eng. 2015,
90, 390–401. [CrossRef]

59. Yuan, S.; Skinner, B.; Huang, S.; Liu, D. A new crossover approach for solving the multiple travelling salesmen problem using
genetic algorithms. Eur. J. Oper. Res. 2013, 228, 72–82. [CrossRef]

http://dx.doi.org/10.1109/IEEESTD.2016.8613095
http://dx.doi.org/10.1109/NetSys.2019.8854500
http://dx.doi.org/10.5555/2151054.2151120
https://gitlab.com/ipvs/nesting
http://dx.doi.org/10.1109/JIOT.2020.3031932
http://dx.doi.org/10.1109/TIE.2020.3021638
http://dx.doi.org/10.1109/ACCESS.2018.2858767
http://dx.doi.org/10.1109/RTAS.2018.00009
https://gitee.com/LiYueUCAS/Heuristic-Routing-Algorithms-for-TSN.git
https://gitee.com/LiYueUCAS/Heuristic-Routing-Algorithms-for-TSN.git
http://dx.doi.org/10.1016/j.cie.2015.10.010
http://dx.doi.org/10.1016/j.ejor.2013.01.043

	Introduction
	Related Works
	Time-Sensitive Network Routing
	Heuristic Optimization Algorithms
	Task/Volume-Balanced MTSPs
	Load Balancing Routing Assignment Problem

	Problem Modeling
	Improved Genetic Algorithm to Solve TT Flow Routing Problem
	Definition of the Optimization Problem in TT Routing
	Optimization Goal and Constraints of TT Routing
	Description of GATTRP
	Chromosome Encoding Rules
	Population Initialization
	Genetic Evolution Operator Design
	Offspring Breeding

	Algorithm Flow
	Working Pattern of GATTRP
	Convergence of GATTRP
	Key Innovations and Contributions of GATTRP

	Adversarial Ant Colony Optimization Algorithm for Solving Non-TT Routing Problem
	Definition of the Optimization Problem in Non-TT Routing
	Optimization Goal and Constraints of Non-TT Routing
	Description of AACO
	Ant Colony Initialization
	State Transition Probability
	Pheromone Update Rules

	Algorithm Flow
	Working Pattern of AACO
	Convergence of AACO
	Key Innovations and Contributions of AACO

	Performance Evaluation
	Single SW Traffic Scheduling Experiment Based on NeSTiNg
	TT Flow Routing Experiment Based on GATTRP
	Non-TT Flow Routing Experiment

	Conclusions
	References

