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ABSTRACT Dietary intake is difficult to measure reliably in humans because ap-
proaches typically rely on self-reporting, which can be incomplete and biased. In
field studies of animals, DNA sequencing-based approaches such as metabarcoding
have been developed to characterize diets, but such approaches have not previously
been widely applied to humans. Here, we present data derived from sequencing of
a chloroplast DNA marker (the P6 loop of the trnL [UAA] intron) in stool samples
collected from 11 individuals consuming both controlled and freely selected diets.
The DNA metabarcoding strategy resulted in successful PCR amplification in about
50% of samples, which increased to a 70% success rate in samples from individuals
eating a controlled plant-rich diet. Detection of plant taxa among sequenced sam-
ples yielded a recall of 0.86 and a precision of 0.55 compared to a written diet re-
cord during controlled feeding of plant-based foods. The majority of sequenced
plant DNA matched common human food plants, including grains, vegetables, fruits,
and herbs prepared both cooked and uncooked. Moreover, DNA metabarcoding
data were sufficient to distinguish between baseline and treatment diet arms of the
study. Still, the relatively high PCR failure rate and an inability to distinguish some
dietary plants at the sequence level using the trnL-P6 marker suggest that future
methodological refinements are necessary. Overall, our results suggest that DNA me-
tabarcoding provides a promising new method for tracking human plant intake and
that similar approaches could be used to characterize the animal and fungal compo-
nents of our omnivorous diets.

IMPORTANCE Current methods for capturing human dietary patterns typically rely
on individual recall and as such are subject to the limitations of human memory.
DNA sequencing-based approaches, frequently used for profiling nonhuman diets,
do not suffer from the same limitations. Here, we used metabarcoding to broadly
characterize the plant portion of human diets for the first time. The majority of se-
quences corresponded to known human foods, including all but one foodstuff in-
cluded in an experimental plant-rich diet. Metabarcoding could distinguish between
experimental diets and matched individual diet records from controlled settings with
high accuracy. Because this method is independent of survey language and timing,
it could also be applied to geographically and culturally disparate human popula-
tions, as well as in retrospective studies involving banked human stool.
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Reliable dietary data are needed for human biomedical research and for developing
appropriate nutritional recommendations. Methods of diet tracking in both re-

search and clinical contexts frequently depend on self-reporting, whether in the form
of diaries in which meals are logged (diet records), prompts to remember foods eaten
in the past day (24-h recalls), or surveys that ask individuals to summarize their eating
habits over time frames of up to a year (food-frequency questionnaires) (1). However,
such human diet assessments have notoriously low accuracy due in part to inaccuracies
and bias associated with human memory (2–4). These methods can be so misleading
that the majority of diet surveys have been found to routinely misreport caloric intake
(2). Furthermore, a greater degree of nutrition education did not improve—indeed,
worsened—the accuracy of self-reported diet information (5). Even if diet items are
accurately reported, accounts typically lack abundance data (i.e., logs note whether an
ingredient was present in the diet but not the amount consumed), and thus, self-
reported data are likely to overestimate the importance of rare food items and
underestimate common ones. There is therefore a need for alternative methods of
quantifying human diet composition (4).

DNA sequencing methods are increasingly used to infer the diets of wild animal
populations for which reliable observational data are difficult or impossible to obtain
(6). An amplicon-based sequencing technique, known as DNA metabarcoding, is com-
monly applied in zoology (7–9), microbial community ecology (10), and environmental
DNA studies (11) to identify species based on reference databases containing diagnos-
tic sequences (DNA barcodes). Sequencing of plant biomarkers has been used to assess
the diet composition of individual herbivore and omnivore species (6, 12–14), to
compare diets across species and analyze food web networks (8, 15, 16), and to
evaluate differences in food selection by model lab mice under experimentally con-
trolled conditions of nutrient and disease stress (17). Importantly, there is clear poten-
tial to apply similar techniques to characterize human diet composition in ways that
may support biomedical research and applications (7).

We investigated the utility of DNA metabarcoding for characterizing the plant
component of human diets. We applied to human stool samples a widely used protocol
for plant DNA metabarcoding, based on amplification and sequencing of the
trnL(UAA)-P6 marker from chloroplast DNA (6, 11). This marker is useful for dietary
analysis due to its short length, conserved primer sites, and interspecific variation (6, 7).
It has previously been shown to successfully identify plant DNA in human feces (7) and
used to analyze the diet composition of wild herbivores (8, 11, 12, 18). We analyzed
samples from a previous diet-intervention study (19) to investigate if (i) self-reported
differences in diet composition correspond to DNA-based differences in diet compo-
sition and (ii) DNA-based methods can identify experimentally induced dietary changes
in diet composition.

RESULTS

We applied DNA metabarcoding to fecal samples from a cohort of 11 individuals
who consumed prepared diets with controlled sets of plant ingredients (19). During the
study, participants were fed two controlled diets with free eating during a preceding
baseline and following washout periods: the plant diet arm included selected grains,
legumes, fruits, and vegetables while the animal arm included prepared meats, eggs,
and cheeses. We analyzed samples from the end of each diet intervention as well as
various free-eating time points (see Fig. S1 in the supplemental material).

In total, we observed a PCR band in 50% of the 54 human samples available from
the prepared-diet study. Success varied significantly by diet type (P � 0.05, �2 � 2.83,
DF � 1, chi-square test), with more samples that were collected during the animal diet
arm failing to amplify (71%) than those from the plant diet arm (30%). Approximately
half of the baseline and washout samples (48%) were successful. From the PCR-positive
samples, we obtained 2,113,660 trnL-P6 sequence reads that perfectly matched 78
sequences from the reference database. After combining sequences that could not be
fully distinguished at the species level (see Materials and Methods), our analyses
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captured 47 dietary plant taxa. Of these, 39 were identifiable to species level, 4 were
identifiable to genus level, and 4 included multiple genera (Table S3). These perfectly
matched sequences represented over 70% of the total sequence reads. The median
perfect-match read depth was 4,273 per sequence taxon (range � 1 to 556,223).

We compared DNA metabarcoding results to diet diaries kept by participants before,
during, and after the controlled-feeding study and found that 38 taxa (79%) appeared
in both the sequencing and diary data sets, whereas only one (2%) was solely recorded
in the diet diaries (Fig. 1). We next calculated the percentages of plant taxa recorded by
participants as having been consumed that were captured by DNA metabarcoding
(recall) and the percentage of plant taxa detected by DNA metabarcoding that was also
reported in diet diaries (precision). High recall would suggest that metabarcoding yields
data that are similar to self-reports. Low precision is harder to interpret, as it could
indicate that metabarcoding captured aspects of diet that diaries did not and/or that
some proportion of the sequences are false positives. Across all fecal samples, the
metabarcoding method had a recall of 0.76 and precision of 0.26 for determining
presence/absence of dietary plants in light of the participant’s diet record; these two
measures are summarized by an F-measure of 0.39 (Table S5). Recall, precision, and
F-measure all range from 0 to 1, with 1 representing perfect performance; the
F-measure calculated here is unweighted (i.e., assigns equal importance to recall and
precision) and is the harmonic mean of recall and precision, which means it tends
toward the lesser value of the two. We observed elevated rates of putative false
positives for some plants: 25 taxa had false-positive rates greater than 50%.

In fecal samples from the plant-diet arm alone, recall, precision, and F-measure were
greater than for the complete data set— 0.86, 0.55, and 0.67, respectively (Fig. 2;
Table S5). This difference is unsurprising because self-reports are expected to be more
accurate during this period of controlled, limited diets and there is also likely higher
plant DNA content in stool samples. The only plant-based food present in diet logs that
was never detected by metabarcoding was coffee, whereas plants that were inconsis-
tently detected included tea and peppers—in general, beverages and spices may be
hard to detect due to low abundance in the diet and high rates of processing.

Coarsening the taxonomic resolution of plant identifications marginally increased
the apparent recall of the DNA metabarcoding method (0.73 at species level versus 0.82
at family level) as well as its precision (0.25 versus 0.33, respectively), reflected in an

FIG 1 Most plant taxa (79%) were recorded as present at least once in both diet diaries and
metabarcoding. Whereas some plants (19%) were found via metabarcoding but not recorded in diaries,
only one (coffee) was recorded in diet diaries but absent in metabarcoding. Common names of taxa
unique to one method are specified around the Venn diagram.
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improvement in F-measure (0.37 versus 0.47; Table S5). This was also the case in the
plant-diet arm-only samples (recall 0.84 at species level versus 0.92 at family level,
precision 0.59 versus 0.59, and F-measure 0.69 versus 0.72). Precision and recall are
inversely related; the increase in both metrics that we observed here occurs because
the plant taxa involved in the comparison change (in both number and detection
status) when they are aggregated to a higher taxonomic level.

We did observe the expected inverse relationship between metrics when the
underlying plant taxa remained the same and the detection threshold was varied.
Requiring a sequence to exceed a count threshold of 1% or 5% of total reads in order
to be defined as present in a given sample led to substantial improvements in precision
(increases to 0.51 and 0.51, respectively) but at the cost of recall (decreasing to 0.34 and
0.17, respectively; Table S5). Combined evaluation of these two parameters in the
F-measure showed an overall improvement in performance at the 1% threshold (0.41)
but a deterioration at 5% (0.25). Interestingly, this trend was not replicated when
considering samples from the plant-diet arm only, for which F-measure consistently
decreased with an increasing read threshold (to 0.45 at 1% and 0.26 at 5%; derived from
recall of 0.30 versus 0.15 and precision of 0.90 versus 0.85 at the 1% and 5% levels,
respectively; Table S5). This contrast suggests that imposing a read threshold on the
plant-only samples filters out more true positives than false positives and leads to an
overall decrease in performance, while a modest read threshold applied to samples
including those from nonintervention periods has the opposite effect. This supports the
notion that missed reporting of trace plants in diaries but detection by metabarcoding
(deemed “false positives” in our analysis framework) has a more prominent effect in
freely eaten diets, which included a larger variety of prepared and processed foods that
may have obscured these ingredients from the consumer. By comparison, in the plant
diet arm, all such diet components were known and could be exhaustively coded from
a simply reported menu item (e.g., “Dinner curry”) by investigators. Finally, the striking
decrease in recall observed in the plant-diet arm samples by applying a 1% read
threshold (from 0.86 to 0.30) indicates that true positives are being filtered from the
comparison to diet records at this threshold and, thus, that not all low-abundance DNA
metabarcoding reads represent false positives.

FIG 2 Congruence (green) between diet-diary entries from the day preceding sampling and metabarcoding was
common for controlled diet ingredients during the plant-diet arm. Disagreement between metabarcoding data and
the dietary diary, either false negative or false positive, is indicated in pink. Latin names of foods are presented to
the left of the heat map, and common names are given on the right.
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DNA metabarcoding and diary-based methods for characterizing participants’ plant
intake yielded similar— but nonidentical—results. There was a positive, but weak,
correlation between Bray-Curtis dissimilarity of metabarcoding results and data from
participant diaries (Mantel statistic � 0.28, P � 0.002). We also found that DNA-based
dietary composition differed significantly between baseline and experimental diet
stages (permutational multivariate analysis of variance [PERMANOVA]: P � 0.001, R2 �

0.19, DF � 3, pseudo-F value � 1.80), as visualized using nonmetric multidimensional
scaling (NMDS) (Fig. 3). Diary-reported diet composition also differed significantly as a
function of experimental diet stage (PERMANOVA: P � 0.001, R2 � 0.37, DF � 3,
pseudo-F value � 4.58). The two animal-diet samples that we succeeded in amplifying
were nearly entirely dissimilar from the plant-diet samples (Bray-Curtis dissimilar-
ity � 0.99 � 0.01), consistent with the experimental design.

Last, we tested whether differences in plant intake measured by DNA metabarcod-
ing were associated with overall patterns in gut microbial composition or metabolism.
We calculated Bray-Curtis dissimilarity matrices based on bacterial relative abundance
measured with 16S rRNA gene amplicon sequencing and fecal short-chain fatty acid
concentrations (a measure of microbial metabolic functioning) for the baseline samples,
during the plant-diet intervention, and during the washout period. Microbial compo-
sition was not significantly correlated with either diet self-reports or metabarcoding
results at any time point (Mantel tests, P � 0.05). Similarly, we did not detect associa-
tions between either method of diet analysis and short-chain fatty acid concentrations
(Mantel tests, P � 0.05). These nonsignificant results may reflect the relative homoge-
neity of food intake profiles between participants in the plant-diet intervention.

DISCUSSION

We have shown that dietary plant DNA can be amplified and sequenced from
human stool using methods commonly applied to wildlife studies. Plant DNA could
identify and distinguish experimental and noninterventional diet compositions based
on plant taxa commonly consumed by humans. As we were able to detect human
consumption of 47 unique plant taxa encompassing 29 plant families, 39 genera, and
39 species, and DNA metabarcoding has previously been employed to characterize the
diets of diverse herbivores and omnivores in the wild (8, 13), we believe this approach
could be applied effectively to more geographically and culturally disparate human
populations in the future.

Before this method is ready for widespread application in biomedical research,
further methodological refinements will be necessary. A potentially limited ability to
characterize diet composition of free-feeding humans is a challenge that will need to
be overcome, because it will often be impossible to distinguish between errors arising

FIG 3 Nonmetric multidimensional scaling (NMDS) of metabarcoding (A) and diet diaries (B) shows separation between
experimental diet arms. Samples from participants during the free-eating periods are shown in black (n � 18), those from the
plant-rich diet period are shown in green (n � 7), and those from the animal-rich diet period are shown in red (n � 2).
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from metabarcoding or diet diaries if the two data sources are in conflict outside
experimentally controlled conditions. Both potential sources of error could contribute
to the imperfect precision and recall documented here, especially during the free-
feeding period of the study. As such, our measurements may best be considered
estimates rather than exact precision and recall, as perfect knowledge of participant’s
diets was unavailable.

Improving the accuracy of human diet diaries may continue to be challenging,
owing to the inherent imperfection of memory, but improvements to dietary DNA
metabarcoding strategies are occurring rapidly (20, 21). First, many recent improve-
ments to DNA metabarcoding strategies focus on overcoming technical challenges,
including optimizing sample handling and extraction, overcoming potential PCR biases,
and developing computer algorithms that can more effectively detect and remove
aberrant DNA sequences (20, 22, 23). Although our protocol relied on methods that
were state of the art at the time, researchers should carefully consider the most recent
developments when applying this approach in the future. In particular, further DNA-
cleaning protocols to remove polyphenols and other PCR inhibitors commonly found
in plants could reduce the rate of PCR failures. Second, researchers are focusing on
important considerations related to study design: it is challenging to obtain a highly
precise dietary profile from a single sample, and studies pursuing this goal may require
a high degree of technical replicates (replicated DNA extractions and PCRs) (24); yet,
experimental and computer-simulation analyses suggest that population-level analyses
based on well-designed DNA metabarcoding studies can support robust dietary com-
parisons except in cases of extreme primer bias for or against the most abundant “true”
dietary item (20). Despite these potential study limitations, our analysis revealed the
expected pattern of nearly complete dietary differentiation between experimental
populations that were fed plant- and animal-based diets (Bray-Curtis � 0.99), even with
a relatively small sample size (n � 27) (Fig. 3).

Important aspects of human physiology and diet composition will be important to
consider in the design of DNA metabarcoding experiments that involve people. Diet
composition affects gut retention time (25–28), meaning that fecal samples collected
simultaneously from two individuals do not necessarily contain foods that the two
individuals consumed at the same point in time. DNA copy numbers in fecal samples
may also be biased due to differential DNA content in the tissues eaten, digestion of
DNA in the gut, and/or recovery of DNA from the resulting specimen. In order to
overcome the challenge of discerning how much error exists in the DNA-based analyses
and diary-based summaries, future studies should examine large cohorts of people
consuming controlled, but varied, diets over time. Although we found DNA from
cooked plant material in feces, food preparation and processing could also affect the
digestibility of plants (29) and may degrade DNA itself. Notably, coffee—the only
plant-based food that was recorded in diaries but never detected by DNA metabar-
coding—is derived from seeds that are first roasted and then steeped at high temper-
atures, all of which could contribute to low quantity and quality of chloroplast DNA
markers. Future work should assess how the abundance of DNA markers in feces is
impacted by cooking technique and the type of plant tissue consumed. Last, humans
consume primarily domesticated plants: only 15 crop species provide almost 70% of the
world’s calories (30). For example, cruciferous vegetables such as broccoli, kale, and
cabbage are all the same species (Brassica oleracea) and require extensive sequencing
to be distinguished (e.g., 11 to 13 microsatellites) (31, 32); we found here that apples
(genus Malus) and pears (genus Pyrus), as well as rice, rye, and wheat (family Poaceae),
are identical at the trnL-P6 locus. The use of single-marker loci in DNA metabarcoding
studies may therefore be insufficient to differentiate between some foods that are
typically considered distinct, including phenotypically and nutritionally variable plants
or plant parts, and approaches based on multiple markers warrant exploration. A more
diverse reference database would be necessary regardless if this approach were to be
applied to human populations who consume more wild plants (33–35).

Despite these current limitations, DNA-based dietary analyses hold promise for
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tracking human plant intake. In particular, we believe this approach could be used to
increase the frequency with which human plant diet is monitored in biomedical
research and clinical applications, as metabarcoding complements standard methods in
research on digestion and gastrointestinal health. Fecal samples are regularly collected
by medical providers as well as by researchers for microbiome analysis but are to our
knowledge not used for dietary sequencing in humans. In the future, DNA metabar-
coding could enable investigators to retrospectively infer plant and animal intake
among study participants who have banked stool samples but not tracked their diets;
such samples are increasingly abundant due to the growing number of human gut
microbiome studies (36). Here, the same DNA extractions were used for microbial
community profiling and plant metabarcoding. Comparisons between these produced
results consistent with the previous finding that the plant-diet experimental treatment
was associated with only weak changes in microbiota structure (19). Other applications
might include assessing compliance during dietary intervention studies or under
restricted diets and overcoming linguistic and other human cultural barriers that
prevent accurate communication of diet with self-reporting. Applying DNA metabar-
coding to a wider range of human cohorts should be used to determine the utility of
the approach for identifying dietary signals diagnostic or causal of various human
diseases. Altogether, DNA metabarcoding has become increasingly common in envi-
ronmental biology (7), and we believe that future applications and refinements of the
approach described here could be valuable in studies of human nutrition and health.
In conjunction with applying other molecular approaches to human samples, such as
microscopy, stable isotope probing, and multi-omics techniques (37–39), a more com-
plete picture of human diets is possible.

MATERIALS AND METHODS
Experimental diet study samples and metadata. Fecal DNA samples were obtained from a

previous experimental study on the effects of short-term dietary interventions on the microbiota (19).
Analyses were determined to be exempt by the Duke Health Institutional Review Board (Pro00100567).
Samples originated from 11 study participants who collected feces each day during 4 days of baseline
analysis, 5 days of a plant-based diet, and 6 days of washout and then again for 4 days of baseline, 5 days
of an animal-based diet, and 6 days of washout (see Fig. S1 in the supplemental material). The
plant-based diet was composed of selected grains, legumes, fruits, and vegetables; the animal-based diet
was composed of prepared meats, eggs, and cheeses (Table S1). On both diet arms of the experiment,
participants were instructed to eat only study-provided meals and snacks or allowable beverages (water
or unsweetened tea for both diets; coffee was allowed on the animal-based diet). They were also allowed
to add one salt packet per meal, if desired for taste. Participants could eat unlimited amounts of the
provided foods. Participants ate freely during the baseline and washout periods. Across all study days,
participants kept daily diet diaries that recorded the quantity and makeup of their unconstrained diets
during the baseline/washout periods and, similarly, the quantity and type of the prepared foods they
chose to eat during the experimental diet arms. During both free-feeding and experimental diet arms,
participants consumed a mix of both cooked and uncooked ingredients, but the preparation method was
not always recorded. Rapid and reproducible changes in gut microbiota community structure, gene
expression, and metabolism were detected across study participants during diet arms (19), which
suggested that participants complied with study diet designs.

Samples were selected for plant DNA metabarcoding from the ends of the baseline period, exper-
imental interventions, and washout periods (n � 54 fecal samples; Fig. S1). One participant did not
participate in each arm of the experiment, and DNA was no longer available for some participants at
certain time points, but we were able to include at least 9 participants from each diet-arm grouping.
Diet-diary data were coded from diary entries on the day prior to fecal sample collection. DNA was
extracted using a PowerSoil DNA extraction kit (MoBio) and then stored frozen as part of the original
study. Data describing gut microbial composition and one measure of microbial function (short-chain
fatty acid concentration) were also drawn from the work of David et al. (19). In short, microbial
community composition was determined by 16S rRNA gene amplicon sequencing with the Illumina
platform. Short-chain fatty acid concentrations were measured with gas chromatography.

DNA metabarcoding sequencing and processing. We used the P6 loop of the chloroplast trnL
(UAA) intron (trnL-P6), which is a broad-spectrum marker useful for DNA metabarcoding of plant species,
with published primers (7) and established laboratory protocols (8). Briefly, the trnL-P6 locus was
amplified with molecular identification (MID) tags to enable pooling and demultiplexing. Pooled ampli-
cons were assembled into a library using the Apollo 324 NGS Library Prep system and PrepX DNA kit
(WaferGen, CA), which included DNA end-repairing, A-tailing, adapter ligation, and limited amplification
before Illumina barcodes were ligated to the pool for sequencing on an Illumina HiSeq 2500 Rapid
Flowcell at Princeton University’s Lewis Sigler Institute as single-end 170-nucleotide (nt) reads.
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We compiled a reference database comprising the trnL-P6 sequences of commonly consumed plant
species. To obtain reference sequences, we compiled a list of scientific names from 86 domesticated
plant taxa and queried GenBank for records matching “trnL” and each of these genus- or species-level
groups. A total of 4,688 sequences matching these search terms were downloaded from GenBank in
October 2016, and we used the ecoPCR function from the obitools software (40) to search these records
for the full-length trnL-P6 marker. In this search, we allowed for up to 4 mismatches to the same primers
used in metabarcoding analyses and considered sequences spanning 9 to 300 bp in length. We retained
reference sequences that were identifiable to genus level using the NCBI taxonomic database. A total of
185 unique sequences representing 2,162 GenBank accessions representing 72 species were obtained
from this search for the full-length trnL-P6 reference sequence (Data Set S1). The number of sequences
in the database exceeds the number of plant species considered in the search because some food
species may be represented by multiple haplotypes or because they are represented by congeneric taxa.
Based on this database, some common food items are difficult or impossible to distinguish genetically
from close relatives despite readily apparent phenotypic differences that can be noted in diet logs (e.g.,
broccoli, Brussels sprouts, and cabbage [Brassica oleracea]; pumpkin and zucchini [Cucurbita pepo]; hot
and bell peppers [Capsicum annuum]; citrus fruits [Citrus spp.]); others are phenotypically similar and
called the same common name but are different species (e.g., berries that include members of the genera
Rubus, Vaccinium, and Fragaria and various species of Phaseolus collectively referred to as “beans”). These
genetic issues prevented us from identifying some metabarcoding-derived sequences to the species
level, and the lexical issues prevented us from identifying some self-reported foods to the species level.
Taxa that could not be distinguished by sequence or by name were combined at a higher taxonomic
level, and the corresponding entries in diet logs were similarly combined for accurate comparison. These
changes affected the taxonomic assignment of 26 unique trnL-P6 sequences from the metabarcoding
analysis (Tables S2 and S3), and the resulting taxonomic classification was used in all subsequent
analyses. In some cases, sequences were unavailable in GenBank or their species-level identifications
were deemed uncertain. This affected a few plants found in participant diet logs, including various spices
and cranberry, and these taxa were excluded from downstream analyses for both metabarcoding and
diet-log analyses (Table S1).

The fecal DNA sequences were demultiplexed and identified through comparison to the reference
database. Demultiplexing, identification, and quality controls were performed using obitools software
(40). At this stage, we removed sequences with �2 mismatches to the primers, sequences with Illumina
fastq quality scores averaging �32 across the length of the trnL-P6 sequence, sequences that contained
any ambiguous base calls, and sequences that were �9 bp. We tallied identical sequences in the
remaining data set and dropped those that occurred �10 times across all samples that were included
in the data set (including controls, extraction blanks, and dietary samples that were subsequently
dropped from analysis). A data set of 21,325 unique sequences (2,899,718 total sequence reads) was
produced, and only sequences with 100% match identity to a food-plant sequence in the reference
database were retained for further analyses (n � 78 perfect matches in comparison to the 185 unique
trnL-P6 sequences in the database).

Analyses. The DNA metabarcoding results were benchmarked for their precision and recall com-
pared to recorded diet. Our benchmarking procedure required assumptions about the completeness of
diet records, and because these are known to have frequent inaccuracies (2–4), our results may best be
interpreted as estimates of precision and recall. We assumed that omission of foods from diet diaries due
to memory lapses, selective reporting, or intake of prepared or processed foods in which not all
ingredients were known to the consumer was more likely than the erroneous reporting of a food that
was not in fact consumed. Thus, we prioritized metrics that make comparisons between metabarcoding
and foods reported as present (rather than absent) in diet diaries. We calculated (i) recall (also called
sensitivity), defined as the percentage of foods in diet diaries that were also detected by DNA metabar-
coding, and (ii) precision (also called positive predictive value), defined as the percentage of plant taxa
detected by DNA metabarcoding that were also recorded in diet diaries. These calculations were
performed by comparing diet records that coded a plant taxon as present or absent to the metabarcode
read counts that corresponded to the same plant taxon. Because there is an inverse relationship between
precision and recall, we also calculated the F-measure, which represents the harmonic mean of precision
and recall and ranges from 0 (completely inaccurate detection) to 1 (perfect precision and recall).

For calculation of precision and recall at different taxonomic levels, species were collapsed to shared
genera and genera were collapsed to shared families by summing read counts (in the case of metabar-
coding data) or by combining binary presence/absence data using an “OR” operator (in the case of
reported consumption of a plant taxon in the diet). We repeated this calculation by applying common
thresholds of sequence relative read abundance required to infer the “presence” of a plant within a
sample (i.e., �0%, 1%, and 5%).

We performed Mantel tests to compare the diets captured by metabarcoding and participant
reporting as well as to compare diet summaries and gut microbial composition and functioning.
Metabarcoding, microbial composition, and short-chain fatty acid data were processed using the
abundance-weighted Bray-Curtis dissimilarity, whereas diet diary data were analyzed only as presence/
absence (Jaccard index). Analyses were conducted on each experimental window separately (baseline,
plant diet intervention, plant diet washout, and animal diet washout) to exclude multiple measurements
of the same individual. Bonferroni corrections were applied to address multiple-hypothesis testing. To
determine if metabarcoding and/or participant recording reflected the effect of the experimental diet
treatments (free eating, animal diet, or plant diet) we performed permutational multivariate analysis of
variance (PERMANOVA). Tests were performed with the vegan package (41) in R (version 3.3) (42).
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Data availability. Sequencing data acquired for this study are available through the European
Nucleotide Archive under accession number PRJEB34336. The reference sequences are available in Data
Set S1.
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