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Skyrmion electrical detection 
with the use of three-dimensional 
Topological Insulators/
Ferromagnetic bilayers
Dimitrios Andrikopoulos   1,2 & Bart Sorée1,2,3

The effect of the magnetic skyrmion texture on the electronic transport properties of the TI surface 
state coupled to a thin-film FM is numerically investigated. It is shown that both Bloch (vortex) and 
Néel (hedgehog) skyrmion textures induce additional scattering on top of a homogeneous background 
FM texture which can modify the conductance of the system. The change in conductance depends on 
several factors including the skyrmion size, the dimensions of the FM and the exchange interaction 
strength. For the Néel skyrmion, the result of the interaction strongly depends on the skyrmion number 
Nsk and the skyrmion helicity h. For both skyrmion types, significant change of the resistance can be 
achieved, which is in the order of kΩ.

Magnetic skyrmions1–3 are topologically protected whirling spin configurations that have been predicted 
since the end of the 1980s4,5. Their small size and robustness to defects makes them promising candidates for 
spintronics applications6–9. The main mechanism that gives rise to skyrmions is the competition between the 
Dzyaloshinskii-Moriya interactions (DMI) and exchange interactions. The direct experimental observation of 
skyrmions occured recently in chiral magnets and other B20-type materials where the DMI occurs due to the 
lack of inversion symmetry of the crystal3. Examples of such materials are MnSi10, Fe1−xCoxSi11, FeGe12 and 
Mn1−xFexGe13. More interesting for technological applications however are ultrathin heavy metal/ferromag-
netic films where the breaking of inversion symmetry at the interface and the large spin-orbit coupling from 
the heavy metal atoms lead to a sufficient DMI in order for Néel skyrmions to occur. Interfacial skyrmions 
have been demonstrated in epitaxial ultrathin films of Fe or PdFe monolayers on Ir (111)14,15, sputtered Pt/
Co/MgO nanostructures16, Pt/Co/Ta and Pt/CoFeB/MgO nanostructures17 and Ir/Fe/Co/Pt nanostructures18. 
Room-temperature observation has also been made possible16–19, paving the way for the design and fabrication 
of skyrmion-based devices.

To this end, control of the skyrmion state is required. More specifically, skyrmion-based devices would require 
efficient skyrmion creation and annihilation as well as efficient read-out of the skyrmion presence or absence. 
The engineering of skyrmions has been studied by many authors15,20–23. Similarly, there have been proposals for 
electrical skyrmion detection using both in-plane and out-of-plane current24–28. While the out-of-plane elec-
tronic current techniques take advantage of the spin-mixing magnetoresistance24,27,28 to identify the skyrmion 
presence, the in-plane current techniques25,26 employ the emergent magnetic field of the skyrmion. This emergent 
field is attributed to the non-trivial real-space Berry curvature that the conduction electrons feel, leading to the 
Topological Hall Effect (THE)29.

In this work, we combine the non-trivial skyrmion magnetization with a material that has brought a lot of 
attention in the spintronics community, namely topological insulators (TI)30–32. These are materials which insu-
late in the bulk, but provide conducting edge (2D TIs) and surface (3D TIs) modes, which are spin-polarized. 
Electrons populating those states have their momenta and spins locked perpendicularly to each other. 
Consequently, processes that do not affect the electron spin cannot have a major impact on the momentum, 
strongly suppressing backscattering in this way. Our motivation of combining skyrmions with the surface states 
of TIs stems from the magnetization texture of the skyrmion itself: the magnetization texture in proximity leads 
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to spin-exchange interactions with the surface state electrons, where the in-plane magnetization components, 
m r( ) can be regarded as a local emergent magnetic induction field Be interacting with the Dirac electrons33, while 
the out-of-plane magnetization component, mz(r), results in a real-space modulation of the mass term in the 
Dirac equation that describes effectively the surface states of a 3D TI.

The aim is to numerically investigate the effect of the skyrmion texture on the electronic transport properties 
of the Dirac electrons. The proposed system setup is depicted in Figs 1 and 2. The system is composed of a TI/FM 
bilayer. For the present work, we have used as an example one of the most well-studied TIs, Bi2Se3

34–36, while the 
FM can be any magnetic system supporting individual skyrmions (e.g. Fe, PdFe, Co14–16,19). We do not focus on 
how the skyrmion can be created in the first place, so for the present work we assume that there is also an inter-
face with a heavy metal providing sufficiently strong DMI for skyrmion creation. Several methods for skyrmion 
nucleation have been proposed including spin current injection37,38, the use of an STM tip14, spin waves39, local 
heating via laser pulses21, domain-wall pairs40 as well as exploiting the device geometry41. In contrast to previous 
works24–26,42 we do not attribute the skyrmion presence to a Hall conductance signal, but rather study the longitu-
dinal electronic transport properties of the TI surface state.

More specifically, we calculate the longitudinal conductance for the case where only a uniformly magnetized 
FM is present with magnetization texture = ˆm r z( )  and compare it to the case when also a skyrmion is present. 
For simplicity we regard the skyrmion as a fixed texture, with its center coinciding with the center of the FM. We 
show that the skyrmion textures can lead to a change of the longitudinal resistance of the order of k Ω. This 
change is attributed to the additional scattering that the surface electrons feel from the change of the Dirac mass 
term and to the coupling of the in-plane magnetization components. Although the in-plane components do not 
modify the energy gap, their specific texture can significantly alter the system conductance due to the specific 
spin-momentum locking mechanism of the TI surface.

This work is organised as follows: in section 3 we give a detailed description of the proposed setup for skyr-
mion electrical detection. Then in section 4 we present the results of our simulations where we treat different 
parameters of our system setup including the dimensions of the system, the skyrmion size and type and the 
exchange interaction strength. Finally, in section 5 we highlight the most important results of this work and com-
pare the detection mechanism with other recently proposed schemes.

Proposed System Setup.  The TI/FM bilayer is shown in Figs 1 and 2. The thin-film FM covers a rectangu-
lar region of length L and width W of the TI surface. For a free TI surface, the effective surface state Hamiltonian 
is ^σ= × ⋅H v p z( )F  with vF being the Fermi velocity of the surface states and the eigenstates are spinor wave-
functions ψ ψΨ = x y x y( ( , ) ( , ))a b

T. Under the influence of the FM, the magnetization texture couples to the spin 
of the electron on the TI surface via proximity-induced exchange interaction. Consequently, the effective surface 
state Hamiltonian for an electron on the TI surface is modified as follows33,43

Figure 1.  TI/FM bilayer of the present study. The FM layer is of length L nm and both the TI surface and FM 
are of width W nm.

Figure 2.  Top view of the system. In the “free” TI regions (blue color), the band diagram En(kx) has been 
embedded. In the left contact which is considered as the input, a negative voltage V has been applied, such that 
the fermi level Ef,1 = qV > 0. The fermi level at the right contact, Ef,2 = 0 eV.
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σ σ= × − ⋅H v J x yp m( ) ( , ) (1)F z S

where JS is the exchange interaction strength and m(x,y) is the normalized, three-dimensional magnetization field 
vector of the FM. For the present study we use vF ≈ 6 × 105 m s−1 which corresponds to the Fermi velocity of one 
of the most well studied TIs, namely Bi2Se3

36. In literature, values for the exchange interaction strength range from 
5–50 mV44–53 and is determined by the interface of the TI/FM. In order to make our results as general as possible, 
we use in our simulations two values of the exchange interaction strength, namely JS,1 = 25 meV and JS,2 = 40 meV.

In Fig. 2, the top view of the TI surface and the energy dispersion of the free TI regions are illustrated. Due to 
the periodic boundary conditions along the transverse direction, which we use to emulate the effect of the conduct-
ing side-surfaces of the three-dimensional TI, sub-bands are formed resulting from the quantisation of the trans-
verse momentum ky,n = 2nπ/W with ∈n . For example, for W = 20 nm, the spacing between the energy 
sub-bands is of the order of 10−1 eV. The effective Hamiltonian (1) to derive the energy dispersion, is just an 
approximation which is valid in the vicinity of the Dirac point. In34 it is shown exprimentally that the linear disper-
sion is valid for energies E ≈ 300 meV from the Dirac point. A more accurate description of the surface state can be 
derived by incorporating hexagonal warping effects35. Due to the fact that the interaction strength is of the order of 
~25 40 meV, we expect that the most effective interactions occur for energies ~E JS. For our transport problem, we 

concentrate on the low-energy regime and thus the approximation of using a Dirac cone dispersion (1) is valid.

Results
Reference texture.  For our electrical skyrmion detector, we are going to use as reference conductance GR, 
the one corresponding to a trivial FM texture without any skyrmion present, where the magnetization is uniform 
and in the positive ẑ direction. In that case, = ˆm r z( )  and the interaction term in Eq. (1) reduces to JSσz allowing 
us to find analytical solutions (see section 6). This additional term opens a gap in the Dirac cone at the Γ point. 
Because this gap closes again in the free TI regions, which we regard as contact regions, the trivial texture is in 
essence a constant energy barrier for electrons. Consequently, for barriers extending further along the longitudi-
nal direction and/or high barriers we expect a lower transmission probability for electrons with energies in the 
tunneling region, i.e. E < JS. This transmission probability in turn, affects the conductance of the system. This is 
clearly seen when only one transverse mode is injected at the input because in this case, the conductance of the 
system and the transmission probability coincide in the low-temperature regime with G = dI/dV = q/h T0(Ef) (see 
section 6 for details).

Skyrmion textures.  The different skyrmion textures that we have simulated in this work are shown in Fig. 3. 
Before discussing the effects of each skyrmion type separately, we address some general behavior of the system 
conductance which can be extracted by qualitatively examining Figs 4–9. There, we plot the relative change in 
conductance ΔG = (GS − GR)/(GR) × 100% in the low-temperature regime (Figs 4–6) and at room temperature, 
i.e. for kBT = 25 meV (Figs 7–9), with GS being the conductance due to the Bloch or Néel skyrmion presence. In 
each of these figures we fix the dimensions of the FM, to L = W = 20 nm in Figs 4 and 7, L = 20 nm and W = 10 
nm in Figs 5 and 8 and L = W = 10 nm in Figs 6 and 9. In the sub-figures we annotate the skyrmion size param-
eter rs and interaction strength JS that we have used for each case. Furthermore, it is useful for the analysis of the 
results to have the same number of injection modes at the input, for all cases presented in Figs 4–9. More spe-
cifically, in this work we focus on single-mode input. Due to the fact that the energy gap between the transverse 
modes scales as 1/W, the largest value of Vin for which a single transverse mode is available at the input is given 
for W = 20 nm. For that case, Vin∈[0, 0.12] eV and we restrict the input in this range. We observe that ΔG as a 
function of the input Vin depends on the FM dimensions L and W, interaction strength JS and energy kBT as well 
as on the skyrmion type and size. In the following, we elaborate on each of these factors separately.

To begin with, in the low-temperature regime where kBT → 0, the overall behavior of the curve for ΔG in the 
specified input voltage range strongly depends on the FM length L. This can be deduced by noticing the curves 
in Figs 4 and 5 where L = 20 nm and compare these with the corresponding curves in Fig. 6 for which L = 10 nm. 
For L = 20 nm, the curves for ΔG show an oscillatory-like behavior and in general attain larger values than for 
the case when L = 10 nm. This is an indication that the overall behavior of the conductance for the voltage inputs 
considered is determined by the length of the FM on the TI, i.e.the length of the energy barrier. Despite the fact 
that for larger L (Figs 4 and 5), the skyrmion area to the total FM area gets smaller, the relative change in conduct-
ance ΔG is in general higher. Therefore, the effect on conductance, is a combination of both the extent of the FM 
background magnetization along the longitudinal direction and the specific skyrmion profile. As can be seen in 
Figs 7 and 8 (L = 20 nm) and in Fig. 9 (L = 10 nm) at room temperature, the dependence of ΔG on the FM length 
L is similar to the low-temperature case, i.e. for smaller L we also obtain lower ΔG in general.

Furthermore, we observe in Figs 7 and 8 that at room temperature for kBT = 25 meV, the oscillatory behav-
ior is less pronounced for L = 20 nm while for L = 10 nm (Fig. 9) the shape of the curve of ΔG is similar to 
the one in the low-temperature limit of Fig. 6. In all cases however, the values for ΔG are lower for kBT = 25 
meV. Nevertheless, we still obtain a finite ΔG in RT. We note here that in our simulations, for kBT ≠ 0 we have 
accounted for a broadened Fermi-Dirac distribution, assuming that the skyrmion texture remains rigid and the 
TI surface state is still accurately described by Eq. (1). The broadened Fermi-Dirac distribution explains the dis-
appearance of the oscillations of ΔG in Figs 7 and 8.

In order to address the effect of the width W separately, we notice that changing the width W while keeping 
L fixed, does not affect the reference transmission and conductance of a homogeneous magnetic texture without 
any skyrmion present. It only affects the skyrmion size and the possible transverse modes in the scattering region. 
Regarding the skyrmion size, in our work we use the parameter rs to modify the skyrmion radius which is scaled 
with respect to W, namely rs = W/3 or rs = W/2. Consequently, the width W affects both the dimensions of the FM 
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as well as the skyrmion size. We consider two widths W = 10 nm and W = 20 nm resulting in four different values 
for rs = {10/3,5,20/3,10}. In order to understand how the relative size of the skyrmion w.r.t. the FM affects ΔG, we 
calculate the ratio η of the skyrmion area to the total FM area, i.e.

η
π

=
r

WL
s
2

Because we consider two values for W while keeping L fixed to L = 20 nm, this results into four different val-
ues for η = {π/4, π/8, π/9, π/18} corresponding to (rs = 10, W = 20) nm, (rs = 5, W = 10) nm, (rs = 20/3, W = 20) 
nm and (rs = 10/3, W = 10) nm respectively. Then, we find the correlation coefficient between η and ΔG for the 
low-temperature case presented in Figs 4 and 5 and the room temperature cases presented in Figs 7 and 8. A value 
of the coefficient close to ±1 implies a linear relation between η and ΔG while a value close to 0 implies no linear 
relation. In Fig. 10 we plot the Pearson correlation coefficient as a function of the input V for Bloch and Néel skyr-
mions. In the low-temperature limit, i.e. kBT → 0, corresponding to the cases shown in Figs 4 and 5, the relation 
between η and ΔG for Néel skyrmions with h = 1 and Bloch skyrmions is linear for almost every input V. Around 
V ≈ 60 meV, we have an abrupt change of this linear relation from positive to negative. A positive correlation coef-
ficient here means that as the relative skyrmion area w.r.t. the FM area or η, increases, ΔG increases as well, while 
with a negative correlation coefficient, as η increases, ΔG decreases. For high input V the relation becomes less 
linear since the absolute value of the coefficient gets smaller. This is due to the fact that for high input V, ΔG → 0, 
because the interaction with the magnetization texture becomes less effective. For Néel skyrmions with h = −1, 
the relation is only linear for a narrower input range than the case of Bloch or Néel skyrmions with h = 1. For 
kBT = 25 meV, the linear relation still holds for Néel skyrmions with h = 1 with an abrupt change at V ≈ 60 meV. 
Furthermore, for Néel skyrmions with h = −1 a linear relation is obtained but the change of sign occurs in a wider 
input range meaning that there is a finite range of input values for which the relation is not linear. Finally, η ∝ ΔG 
also for Bloch skyrmions with the relation becoming less linear for higher inputs and JS = 25 meV, while it changes 
sign when the interaction strength is increased.

Finally, the effect of the interaction strength JS is to enhance or reduce the effect of the magnetization texture 
on the TI surface state. Increasing the value of JS, leads to a wider input range for which there is appreciable 

Figure 3.  Examples of skyrmion magnetization textures with rs = W/2 on the FM for L = W = 20 nm. (A) Bloch 
(vortex) skyrmion with h = 1, (B) Bloch (vortex) skyrmion with h = −1, (C) Néel (hedgehog) skyrmion with 
h = 1 and (D) Néel (hedgehog) skyrmion with h = −1. For all skyrmions we have defined Nsk = 1. The colormap 
refers to the out-of-plane component of the magnetization mz(r) with = +r x y2 2 . The arrows refer to the in-
plane component of the magnetization field. The length of the arrows corresponds to the magnitude of the in-
plane component, = +||m m mx z

2 2  while the direction of the arrow is also the direction of the in-plane 
magnetization at the point (x, y).
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interaction with the FM texture. Additionally, the deviation from the trivial texture is larger in this case and this 
is illustrated by the fact that ΔG in general, is larger for a higher value of JS. This means that the modification of 
m(x, y) by the skyrmion, is felt more strongly by the electron on the TI surface.

Bloch (vortex) skyrmion.  For the Bloch skyrmion texture, shown in Fig. 3A and B, the relative conductance 
change is shown by the blue line in Figs 4–6. For this skyrmion type interacting with the TI surface, it can be 
shown that the in-plane magnetization components can be gauged away33,43. Therefore, the only modifcation of 
the reference texture due to the skyrmion presence is attributed to the perpendicular component mz(x,y) which 
acts as a space-dependent mass term in the Dirac Eq. (1). This term alters the energy barrier of the uniform FM 
background magnetization to a non-uniform energy barrier. Thus, scattering of the wavefunction is expected not 
only at the interfaces with the lead regions, but also throughout the FM region. This additional scattering results 
into the modification of the transmission probabilty and therefore of the conductance of the system. To better 
illustrate the effect of the non-uniform mz term, we plot in Fig. 11 the probability current density j(x,y) for the 
trivial (top left subfigure of Fig. 11) and Bloch skyrmion texture (bottom left subfigure of Fig. 11). The probability 
current has been calculated taking into account the total wavefunction which results from the solution of the 
scattering problem. Therefore, the solution contains incident, reflected and transmitted parts. For finite reflection 
amplitude in the leads, as is shown in the methods section, the resulting probability current density contains 
components both along x̂ and ŷ . This is the reason why the probablity current direction at the input leads  
(x < −10 nm) in Fig. 11 is not purely along x̂. For the case presented in this figure, GS/G0 ≈ 0.65 and GR/G0 ≈ 0.36. 
It is evident that the effect of the non-uniform mz component is to induce such scattering to the wavefunction 
inside the FM region so that the jx component is enhanced. Since we have defined the quantities of interest (trans-
mission and conductance) through jx, it is straightforward to prove that this enhancement leads to an increase of 
the conductance. Although this is vald for this input voltage V, it can happen that for other input values, the jx 
component is diminished. This is due to the fact that the scattering inside the FM region strongly depends on the 
input energy qV, which remains constant as we have elastic scattering.

Another interesting observation one can make from Fig.  11 is the fact that the skyrmion induces 
non-symmetric scattering as can be seen from the asymmetry of the probability current density around the y = 0 
line. This is explained as follows: the skyrmion texture constitutes a curved boundary between regions with dif-
ferent values of the mass term. For a straight boundary, the reflection at the interface is the same for every y, but 
it depends on the incident angle θin = arctan(kx/ky). Since we are dealing with a curved boundary, at each point 

Figure 4.  Relative change in conductance ΔG, in the low-temperature limit. The FM is of dimensions 
L = W = 20 nm. For all skyrmions, Nsk = 1.
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along the boundary this angle is different and thus we expect non-uniform scattering along ŷ. This non-symmetric 
scattering is also shown analytically in a recent work42.

Néel (hedgehog) skyrmion.  The Néel skyrmion texture is shown in Fig. 3C and D and the corresponding 
ΔG is depicted by the red solid (positive helicity) and dashed (negative helicity) lines in Figs 4–6. For positive 
helicity, h = 1, ΔG can be much larger than the corresponding one for Bloch skyrmions, while for negative helic-
ity, h = −1, ΔG attains much lower values. This behavior is explained by the specific structure of the in-plane 
magentization components interacting with the spin-momentum locked surface states. Contrary to the Bloch 
skyrmion, for which the in-plane components are gauged away, for Néel skyrmions they cannot, and they act as a 
local emergnt field along ẑ with magnitude = ∇ ⋅B me( ) 33,43. The direction of the in-plane components (helicity) 
determines the sign of the emergent field and enhances or decreases the effect of the out-of-plane magnetization 
component thus increasing or decreasing ΔG. This is illustrated in the probability current density plot for the 
Néel skyrmions in Fig. 11. For a Néel skyrmion with h = 1 (top right subfigure of Fig. 11), GS/G0 ≈ 0.97, while for 
a Néel skyrmion with h = −1 (bottom right subfigure of Fig. 11), GS/G0 ≈ 0.4. The Bloch skyrmion, essentially 
boosts the jx component of the proabibility current density with respect to the reference texture. For a Néel skyr-
mion with positive helicity, i.e. h = 1, this effect is more pronounced as can be seen in the top right vector plot in 
Fig. 11. This is attributed to the spin-momentum locking mechanism on the TI surface. The specific structure of 
the in-plane components of the Néel skyrmion with positive helicity (Fig. 3C) boosts the effect of the out-of-plane 
component by scattering surface state wavefunction in such a way that the probability current structure of a Bloch 
skyrmion is enhanced. This does not mean however that for every input voltage, the conductance for a Néel skyr-
mion is always higher than that of a Bloch skyrmion, as the overall result is a combination of the specific scatter-
ing experienced by the wavefunction in the FM region.

On the other hand, reversing the helicity of the Néel skyrmion (bottom right subfigure of Fig. 11), changes the 
sign of the emergent field and the scattering induced tries to cancel out the effect from the mass term. In that case, 
the skyrmion cannot be efficiently distinguished from the trivial magnetization background when no skyrmion is 
present. This is attributed to the spin-momentum locking mechanism of the TI surface and the specific structure 
of the in-plane components of the skyrmion magnetization texture. In all cases, the surface electrons try to align 
their spin in parallel with that of the in-plane skyrmion components in order to minimize the energy as can be 
seen from Eq. (1). Through the spin-momentum locking mechanism however, when a Néel skyrmion wih neg-
ative heliciy is present, the particular spin alignment is connected with momenta that give a probability current 

Figure 5.  Relative change in conductance ΔG, in the low-temperature limit. The FM is of dimensions L = 20 
nm and W = 10 nm. For all skyrmions, Nsk = 1.



www.nature.com/scientificreports/

7Scientific REPOrTS |  (2017) 7:17871  | DOI:10.1038/s41598-017-17727-x

density which opposes the one that is generated by the scattering of the wavefunction from the out-of-plane 
magnetization component mz. As a result, the two scattering mechanisms from the in-plane and out-of-plane 
skyrmion components almost cancel out leaving the transmission probability and thus the conductance approx-
imately unaffected compared to the reference case of a uniformly magnetized FM without any skyrmion present.

Since the effect of the Néel skyrmion depends on the combination of the type of scattering induced by the 
out-of-plane and in-plane components, changing the sign of either of them renders the Néel skyrmion transpar-
ent or strongly distinguishable from the FM background. In the above we explained that in order to change the 
scattering from the in-plane components, the reversal of the skyrmion helicity is necessary. Similarly, if we make 
the skyrmion topological number negative (Nsk = −1), the scattering from the out-of-plane component is also the 
opposite. Therefore, in that case, a skyrmion with negative helicity will look like a skyrmion with positive helicity 
and positive topological number. Thus, we conclude that a Néel skyrmion can be a sufficiently distinct magneti-
zation texture iff sgn(Nsk) = sgn(h).

Discussion
In this work, we have investigated the interaction of the TI surface state with Néel and Bloch skyrmion magnet-
ization textures. By numerically solving the transport problem, we are able to calculate the conductance of the 
system in both cases and compare it with the reference conductance of a uniform FM magnetization background 
without any skyrmion present. For both skyrmion types, we have shown that there can be a modification of the 
conductance that depends on several parameters including the dimensions of the skyrmion and the FM, the skyr-
mion type and the interaction strength.

Regarding the FM dimensions, the length L will affect mostly the reference conductance while the width of 
the system affects η being the relative skyrmion area to the total FM area. With L fixed, the change in conductance 
ΔG is proportional to η for every skyrmion type up to V ≈ 60 meV as illustrated by the correlation coefficient in 
Fig. 10. For higher input values of V, depending on the skyrmion type, JS and kBT, the strength of the linearity 
between η and ΔG can change.

Regarding the skyrmion type, the emergent gauge field of the Néel skyrmion shows a detrimental effect on the 
conductance of the system as it can either enhance (h = 1) or counteract (h = −1) the effect of the out-of-plane 
component mz, rendering the Néel skyrmion either strongly distinguishable (positive helicity, h = 1) or identical 
(negative helicity, h = −1) to the FM background.

Figure 6.  Relative change in conductance ΔG, in the low-temperature limit. The FM is of dimensions 
L = W = 10 nm. For all skyrmions, Nsk = 1.
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To demonstrate the fact that the skyrmion presence can give a distinct electronic signal, we plot in Figs 12–14 
the resistance change ΔR = RS − RR = 1/GS − 1/GR in units of R0 = h/q2. In each of these figures, we fix L and W 
and vary the skyrmion radius and kBT. For all cases, JS = 25 meV. It is shown that even at room temperature, the 
skyrmion presence can induce a change in the resistance up to 0.25 R0 ≈ 6 k Ω namely in the case L = W = 20 nm 
and for rs = 10 nm and JS = 40 meV. In the low-temperature regime, ΔR can be of the order of 104 Ω. Increasing 
the interaction strength JS will enhance ΔR in both temperature regimes. Increasing the relative skyrmion area 
w.r.t. the FM area, quantified by η, also increases the resistance change ΔR.

Finally, we compare our skyrmion electrical detector with some recently proposed schemes. First, our scheme 
requires current in-plane and as a results does not involve more complex structures as the ones required for 
non-collinear magnetoresistance24,27,28. While the main advantage of the latter is the ability to detect lattice con-
stant - sized skyrmions, our method is more applicable for skyrmions with sizes larger than a few lattice constants 
since we use a continuum approximation to describe the skyrmion texture. In25,26, the authors use conduction 
electrons in plane that strongly interact with the skyrmion texture. The emergent magnetic field from the skyr-
mion induces a Berry phase and therefore a THE signal is obtained. The sign of the Berry phase depends on the 
spin of the electron54,55 and as a result, the THE signal will be weaker if there is a comparable number of carriers 
occuppying both spin bands. In our case however we do not impose a strong coupling condition and the unique 
nature of the TI surface ensures that the incident electrons occupy a specific spin band. The THE schemes25,26 
have the advantage of being robust to elastic and inelastic scattering and to temperature variations. In our work, 
ideally, the only scattering that can occur is due to magnetic impurities, which we assume that we can efficiently 
control, while we have shown that even at room temperature we can still obtain a detectable signal for the skyr-
mion presence, under the assumption that the surface state is still described by Eq. (1) and the skyrmion texture 
is robust.

Methods
Skyrmion texture.  The magnetization texture of the FM is a three-dimensional vector parametrized by the 
angles Θ(r) and Φ(φ), as shown in Eq. (2). In polar coordinates, x = rcos(φ) and y = rsin(φ).

φ φ= Θ Φ Θ Φ Θr r rm (sin ( )cos ( ), sin ( )sin ( ), cos ( )) (2)

Figure 7.  Relative change in conductance ΔG, for kBT = 25 meV. The FM is of dimensions L = W = 20 nm. For 
all skyrmions, Nsk = 1.
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For the trivial ferromagnetic texture, Θ(r) = 0. For the skyrmion texture, we use a model for Θ(r) derived from 
Lagrangian minimization as in our previous work33,

π πΘ = =− −r e b
r

( ) , 1 log(10 / )br

s

1

The skyrmion radius is not a very well defined parameter and we use rs as a parameter to denote the radius 
where = .m m/ 0 1z . The angle Φ(φ) = φ + γ where γ is a phase that modifies the in-plane component helicity h as 
follows:

γ
π
π
π

=











= +
= −

= +
= −

é
é

N h
N h

h
h

0, hedgehog skyrmion ( el) with 1
, hedgehog skyrmion ( el) with 1
/2, vortex skyrmion (Bloch) with 1

3 /2, vortex skyrmion (Bloch) with 1

The skyrmion topological number is then defined as follows:

∫ ∫π
φ= − ⋅






∂
∂

×
∂
∂






= − −

π∞

=
=∞

N r r
x y

m r

m m m1
4

d d

1
2

[ ( )]
(3)

sk

z r
r

0 0

2

0

Consequently, the skyrmion number in our model is defined by the boundaries we set on the out-of-plane 
magnetization mz.

Transmission problem - Analytical Solutions.  The transmission problem can be solved analytically 
when a unifom magnetization along ẑ is present:

Figure 8.  Relative change in conductance ΔG, for kBT = 25 meV. The FM is of dimensions L = 20 nm and 
W = 10 nm. For all skyrmions, Nsk = 1.
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z

( , )
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For this case,

σ σ= × − ⋅ˆH v Jp m( ) (5)F Sz

The time-independent Schrödinger equation HΨ = EΨ yields two coupled differential equations for the spinor 
components of ψ ψΨ = ( )a b

T:

 ψ ψ



−

∂
∂

+
∂
∂






= +v
x

i
y

E J m( )
(6a)

F b S z a

 ψ ψ





∂
∂

+
∂
∂






= −v
x

i
y

E J m( )
(6b)

F a S z b

Because the magnetization texture has translational invariance along ŷ, we have Ψ ~ eik yy n,  with ky,n = 2nπ/W. 
Then, decoupling the two differential equations yields one second-order differential equation for one of the spinor 
components. Here, we choose ψa:


ψ ψ− =






−
−




x

x
E J m

v
k xd

d
( )

( )
( )

(7)
a

S z

F
y n a

2

2

2 2 2

2 ,
2

which has solutions of the form ψ ~ ea
ik xx  where

Figure 9.  Relative change in conductance ΔG, for kBT = 25 meV. The FM is of dimensions L = W = 10 nm. For 
all skyrmions, Nsk = 1.
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k
E J m
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F
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2



For the transmission problem we divide the problem into three regions as following: for region 1, x ≤ − L, for 
region 2 x ≤ L and for region 3, x ≥ L. In region 1 we have an incident and a reflected wave, in region 2 we have 
one left-moving and one right-moving waves while in region 3 we set a boundary condition having a transmitted 
wave.

Consequently,

ψ + −~ e re (8a)a
ik x ik x(1) x x,1 ,1

ψ −π θ θ− −~ e e re e (8b)b
ik x i ik x i(1) ( )x n x n,1 ,1

ψ + −~ Ae Be (8c)a
ik x ik x(2) x x,2 ,2

ψ −+ −
−~ Az e Bz e (8d)b

ik x ik x(2) x x,2 ,2

ψ ~ te (8e)a
ik x(3) x,1

ψ π θ−~ te e (8f)b
ik x i(3) ( )x n,1

where ∈r  is the reflection amplitude, ∈t  is the transmission amplitude, ∈A B,  and

Figure 10.  Correlation coefficient between the ratios η and ΔG of Figs 4 and 5, for Bloch and Néel skyrmions 
with h = ±1. The parameters JS and kBT are shown in the inset of each figure. The larger the absolute value of the 
correlation coefficient, the more linearly related are η and ΔG.
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Imposing the continuity of the spinor components at x = 0 and x = L, we construct the linear problem Ax = b 
where = r A B tx ( )T. We solve this problem and obtain an analytical expression for the transmission ampli-
tude as following:

θ
θ θ

=
+

− − − + +

−
+ −

+ − − +
t

e z z
z z k L z k L z k L

( )sin( )
(1 )sin( ) sin( ) sin( ) (9)

ik L
n

x x n x n,2 ,2 ,2

x,1

Consequently, the transmission amplitude (as well as A,B and r), will depend on the incident energy E, the 
transverse mode n, the interaction strength JS, and the FM length L. For given JS, L and n, it shows an oscillating 
behavior as a function of the input energy E. From the zeros of the reflection amplitude, we can extract the reso-
nant points for each transverse mode n. For n = 0, which is the only mode available for low input voltage, these 
points are found for π= ⇒ − =k L E J L nsin( ) 0 2x

L
v S,2

2 2
F

 which is independent of the width W.

Probability current density.  For the TI hamiltonian (1), the probablity current density is

Figure 11.  Steady state probability current densities for a homogeneous texture (top left), Bloch skyrmion 
(bottom left), Néel skyrmion with h = 1 (top right) and Néel skyrmion with h = −1 (bottom right). For all cases, 
L = W = 20 nm, JS = 40 meV, rs = W/2 = 10 nm and V  = 50 mV. The length of the arrows corresponds to the 
magnitude of the current and the direction of the current coincides with the direction of the arrows. The 
colormap in the background represents mz(x, y).
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σ σ= 〈 〉 −ˆ ˆvj x y( )F y x

which is a consequence of the spin-momentum locking mechanism of the TI surface. For a general m(x), 
the transverse wave-number is a good quantum number and we can write the wavefunction in each 
constant-magnetization region as follows:

ψ

ψ

= +

= −

−

+ −
−

Ae Be

Az e Bz e (10)

a
ik x ik x

b
ik x ik x

x x

x x

The probability current density then obtains the following form:

ψ ψ= ⁎j v2 Im( ) (11a)x F a b

ψ ψ= ⁎j v2 Re( ) (11b)y F a b
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A z e x A Bz e B Az e B z e (12)a b
i k k i k k x i k k x i k x k x2 ( ) ( ) ( ) 2 ( )x x x x x x x

where z± have the same definitions as for the transmission problem and

= − − ∈( )k
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E J v k1
x

F
S F y n

2 2
,

2




If no reflection occurs, then B = 0 and ∈kx . Consequently, ~j kx x and ~j ky y n, , both being independent of x. 
As long as n ≠ 0 ⇒ jy ≠ 0.

When reflections occur, B ≠ 0 and kx is either real or imaginary. For ∈kx ,

ψ ψ = − − −+ −
−

+ −
⁎ ⁎ ⁎A z A Bz e B Az e B z (13)a b

ik x ik x2 2 2 2x x

Figure 12.  Resistance change ΔR in units of R0 = h/q2 for L = W = 20 nm. The skyrmion sizes and kBT are 
shown in the inset of each figure. For all cases, JS = 25 meV and Nsk = 1
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We also know that due to current conservation ∇ ⋅ j = 0. Consequently, jx is independent of x and jy will be 
an oscillatory function of x. Therefore, finite jy can be obtained, even if n = 0. This is due to the spin-momentum 
locking mechanism of the TI. When kx is imaginary, jy will be an exponentially decaying function of x. For a gen-
eral m(x,y) the above formalism is not valid and both probability current density components are a function of x 
and y, always satisfying the continuity equation.

Transmission problem-Numerical.  The time-independent Schrödinger equation, HΨ = EΨ, is discretized 
using finite difference method on a rectangular grid with Nx and Ny segments along x̂ and ŷ accordingly. For the 
trivial magnetization texture, Nx and Ny can be smaller than that for a non-trivial texture, something which trans-
lates into shorter computation times. Specifically, for the trivial texture we have used Nx = Ny = 80 while for a 
single skyrmion texture, Nx = Ny = 120. In general the more m(x,y) varies as a function of x and y, the higher 
degree of discretization is required in order to resolve this rapid change

The wavefunction is a spinor, ψ ψΨ =x y x y x y( , ) ( ( , ) ( , ))a b
T . For the effective hamiltonian which we are 

using, vanishing boundary conditions are not possible due to the nature of the Dirac Eq. (1). To emulate the con-
ducting side surfaces of the 3D TI, we impose periodic boundary conditions on our wavefunction. This results 
into the transverse eigenmode taking on discrete values: ky,n = 2nπ/W with ∈n . For the width values we are 
considering, only few transverse modes are available to support travelling waves along the x̂ direction.

The spinor components can be expanded in terms of the transverse eigen-modes. At the input, = −x L
2

, 
∈ 


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y ,W W

2 2
, the wavefunction will read
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where ∈rm  is the reflection amplitude, φ =
π

y W e( ) 1/m
i ym

W
2

 is the transverse eigen-mode with the index n 
refering to the input eigen-mode and

Figure 13.  Resistance change ΔR in units of R0 = h/q2 for L = 20 nm and W = 10 nm. The skyrmion sizes and 
kBT are shown in the inset of each figure. For all cases, JS = 25 meV and Nsk = 1
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with max  is the maximum number of transverse modes that have been included in the simulations. For the pres-
ent results, = 5max . The scattering that occurs due to the exchange interaction is elastic. Consequently, at the 
other interface, x = L/2 the wavefunction is a linear combination of waves with energy E.
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where ∈ts  is the transmission amplitude. In order to incorporate the boundary conditions, we employ the 
Quantum Transmitting Boundary Method56 which we modified for the Dirac equation. Exploiting the orthogo-
nality of the transverse eigenmodes, we express the reflection and transmission amplitudes as follows:

φ ψ δ δ= |
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Figure 14.  Resistance change ΔR in units of R0 = h/q2 for L = W = 10 nm. The skyrmion sizes and kBT are 
shown in the inset of each figure. For all cases, JS = 25 meV and Nsk = 1
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The QTBM conditions will be given by inserting Eq. (16a) into Eq. (14b) and Eq. (16b) into Eq. (15a):
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The probability current density jx(x) = qvj ∫dy σ〈ψ| |ψ〉y  and the transmission probability is then
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where Nt is the set of all input modes m such that ε= − ∈χ ξk km m,
2

,
2 . Then, the total current can be com-

puted as following:
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where fin,out(E) is the Fermi-Dirac distribution for the input and output contacts. The input modes n over which 
we do the summation are all transverse eigen-modes which satisfy the following condition:
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F
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2

,
2




Equivalently, the sum is done over all the modes below the line E = Ef,1 in Fig. 2 for which ∈kx  can be 
defined, because for E < vFħky,n, ∈kx  and the input wave decays exponentially as a function of x.

Finally, the conductance can be computed using G = dItotal/dV = qdItotal/dEf,1. The reference conductance G0 
for one mode, is defined for ballistic transport, i.e. T(E) = 1 in the low-temperature limit: G0 = q2/h. Moreover, 
in the low-temperature limit, we obtain G = G0∑nTn(E). Consequently, for one input transverse mode, the trans-
mission probability is equivalent to the conductance ratio. For the trivial magnetization texture as well as for 
magnetization textures where analytical solutions are possible, the numerical procedure yields the same results. 
This ensures the validity of the the QTBM conditions.

Pearson correlation coefficient.  The Pearson correlation coefficient (also known as Pearson’s r, or Pearson 
product-moment correleation coefficient), is a statistical measure of the linearity between two datasets X and Y. 
Its formal definition is the ratio of the covariance between the two variables and the product of their standard 
deviations:

σ σ
=r X Ycov( , )

X Y

A value of the coefficient close to 1 (−1) implies a linear (anti-linear) behavior between the variables X and Y. 
On the other hand, a value of the coefficient close to 0 means that there is no linear relation between the variables. 
For our current study, the datasets X and Y at each input voltage point are comprised of four elements. More 
specifically,

η π π π π≡ =X { /4, /8, /9, /18}

and

= Δ Δ Δ Δη π η π η π η π= = = =Y G V G V G V G V{ ( ) , ( ) , ( ) , ( ) }( /4) ( /8) ( /9) ( /18)
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