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Abstract: Diabetes is a major cause of mortality worldwide. There are several types of

diabetes, with type 2 diabetes mellitus (T2DM) being the most common. Many factors,

including environmental and genetic factors, are involved in the etiology of the disease.

Numerous studies have reported the role of genetic polymorphisms in the initiation and

development of T2DM. While genome-wide association studies have identified around more

than 200 susceptibility loci, it remains unclear whether these loci are correlated with the

pathophysiology of the disease. The present review aimed to elucidate the potential genetic

mechanisms underlying T2DM. We found that some genetic polymorphisms were related to

T2DM, either in the form of single-nucleotide polymorphisms or direct amino acid changes

in proteins. These polymorphisms are potential predictors for the management of T2DM.
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Introduction
Diabetes is a chronic disease that can lead to serious complications. It is classified

into two main types: type 1 diabetes mellitus and type 2 diabetes mellitus (T2DM).

T2DM is a metabolic disorder that is characterized by peripheral insulin resistance

and impaired insulin secretion.1 During the period from 1980 to 2008, the number

of people worldwide with T2DM has more than doubled.2 Studies on the preva-

lence of diabetes in the adult population aged 20–79 years estimated that the

worldwide prevalence of people with T2DM was 6.4% in 2010, where 285 million

adults had T2DM. By 2030, 439 million adults are predicted to have T2DM,

accounting for 7.7% of the adult population worldwide.3

Environmental and genetic factors are involved in the pathogenesis of T2DM.4

The majority of genes involved play a role in β-cell function. Genetic polymorph-

isms that have impacts on important proteins that participate in glucose metabolism

and insulin secretion may also affect susceptibility to T2DM.5 Genome-wide

association studies (GWASs), the candidate gene approach, and linkage analysis

have identified various genes that contribute to T2DM susceptibility.6–8 The devel-

opment of genetic risk scores using combined analysis of loci has significantly

contributed to predicting the incidence of T2DM.9–11 Therefore, it is possible to

facilitate early diagnosis and determine preventative strategies to reduce the inci-

dence of the disease.12–15

T2DM has a strong genetic basis, and individuals with a first-degree family

history are at increased risk of developing the disease, and this risk is increased

twofold if both parents have diabetes.16 Several risk factors for T2DM have been
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identified, including obesity and central obesity, ethnicity,

family history of diabetes, elevated blood pressure, dysli-

pidemia, lifestyle factors and dietary intake.17–19 Some of

these risk factors are associated with functional metabo-

lism; therefore, genetic-based diagnoses may provide a

more promising diagnostic tool. More than 200 genetic

loci have been detected to be associated with T2DM

risk,6 the genes elaborated in this review represent only a

selected subset of T2DM-associated genes.

Methodology
The present review included studies published in the

PubMed database obtained using the keywords “gene pre-

diction”, “gene association”, and “type 2 diabetes”. Reviews,

non-English studies, unrelated studies, such as non-human

studies and reporting T2DM complications, were excluded.

A flowchart of the literature search is shown in Figure 1.

Of the 6129 articles obtained in June 2019, we included

41 studies that focused specifically on the association

between genetics and the prediction of T2DM (Table 1),

where several genes have been associated with T2DM and

can be used as predictors of the disease, including KLF14,

KCNQ1, DUSP9, FTO, HNF4A, IGFBP2, CDKN2A/B,

TCF7L2, KCNJ11, antioxidant genes, DNAJC3, PGC-1α,

ADIPOQ, CDKAL1, POMC, PPARγ2, and SLC30A8.20–61

KLF14
The transcription factor, KLF14, is located on chromosome

7q32.3. Variations in this gene are associated with high-

density lipoprotein (HDL)-cholesterol and T2DM.62,63 A

previous study showed that KLF14 is involved in metabo-

lism as a transcriptional activator as it regulates the gene

networks that participate in lipid metabolism.64 KLF14

gene is assumed to be an ancient retrotransposed copy of

KLF16 gene, presumably after the divergence between

eutherians and marsupials65,66 due to its lack of introns and

a high sequence homology with KLF16 gene. The maternal

expression of KLF14 was associated with an increased risk

of T2DM when carried on the maternal chromosome.67

The expression of KLF14 in adipose tissue was shown to

be associated with a combined insulin resistance phenotype.

It is characterized by increased fasting insulin and triglycer-

ide levels and decreased HDL-cholesterol levels.68 Higher

fasting insulin levels are manifested in the risk allele of

rs4731702,67 such that the risk allele of this non-coding

genetic variant could play a role in insulin resistance.

Furthermore, it may act to influence the expression of

genes associated with the body mass index (BMI) and the

homeostasis model assessment for insulin resistance

(HOMA-IR) due to its primary effects on insulin sensitivity,

fasting glucose, and adiponectin.69 Moreover, rs4731702

was reported to be associated with gene expression in sub-

cutaneous adipose tissue biopsies.68 Hence, it was suggested

that KLF14 is the master transregulator of adipose tissue

gene expression.70 One study also revealed that the G allele

of KLF14 (rs972283) contributes to elevated blood pressure.

Therefore, patients with metabolic syndrome have a greater

risk of cardiovascular disease.20

KCNQ1
The KCNQ1 gene, which encodes the alpha-subunit of

voltage-gated potassium channel Kv7.1, is a member of the

Kv channel superfamily, and is located on chromosome

11p15.5.71,72 The protein that KCNQ1 gene encodes is the

pore-forming alpha subunit of KCNQ1/KCNE1, KCNQ1/

KCNE2 and KCNQ1/KCNE3 potassium channels.73 The

expression of KvLQT1 repolarizes the action potential in

cardiac muscles.20 KCNQ1 is also expressed in other tissues

such as adipose tissue, the pancreas, and the brain.74

Mutations in KCN genes are associated with the develop-

ment of diabetes. Variants in the KCNQ1 gene have been

associated with reduced depolarization-evoked insulin

exocytosis.24 The variant allele (C allele) of the rs2283228

[an intron variant according to National Center for

6129 articles identified through PubMed 
database search

Excluded:

Review articles (555)

Non-human studies (610)

Explain T2D complications (4851)

Non-English (72) 

41 articles included

Figure 1 Flowchart outlining the literature search process.
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Table 1 Association Between Genetic and Prediction of T2DM

Probable Mechanism Genes Chromosome

Position

SNPs Population Allele (Risk/Other) Ref.

No.

Insulin action KLF14 7q32.3 rs972283 Han Chinese G/A [11]

Northern Germany G/A [12]

DUSP9 Xq28 rs5945326 Northern Germany A/G [12]

Japanese A/G [16]

Pakistani A/G [17]

Han Chinese A/G [18]

β-cell function KCNQ1 11p15.5 rs2237895 Han Chinese C/A [11]

Japanese, Asian, European C [13]

rs2237892 Japanese, Asian, European C [13]

rs2074196 Japanese, Asian, European G [13]

rs2283228 Eastern Finland A/C [14]

Asian Indian A/C [15]

rs231362 Northern Germany G/A [12]

SLC30A8 8q24.11 rs13266634 Japanese C/T [23]

Lebanese – [24]

Tunisian Arabs – [24]

HNF4A 20q13.12 rs2425637 Finnish G/T [25]

rs6130608 French-Canadian T/C [26]

rs736824 French-Canadian T/C [26]

rs745975 French-Canadian C/T [26]

rs3212183 French-Canadian C/T [26]

rs4812829 South Asian A/G [27]

IGFBP2 3q27 rs4402960 Northen Han Chinese T/G [28]

Tunisian T/G [29]

rs1470579 Tunisian Arabs – [24]

Lebanese – [24]

Northen Han Chinese C/A [28]

CDKN2A/B 9p21.3 rs10811661 Indian T/C [30]

Pakistani T/C [17]

Mexican T/C [31]

Chinese She T/C [32]

Chinese T/C [33]

Uyghur T/C [34]

Han Chinese T/C [35]

(Continued)
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Table 1 (Continued).

Probable Mechanism Genes Chromosome

Position

SNPs Population Allele (Risk/Other) Ref.

No.

TCF7L2 10q.25.2–25.3 rs7903146 Spaniards T/C [36]

Austrians T/C [37]

Lebanese – [24]

Tunisian Arabs – [24]

rs7901695 African-American C/T [38]

Italian C/T [39]

rs7903146 African-American T/C [38]

rs12255372 European Caucasians T [40]

Cameroonian T/G [41]

French T/G [37]

KCNJ11 11p15.1 rs2285676 Han Chinese – [42]

rs5215 South Indian C/T [43]

rs5219 Mauritanian – [44]

Chinese She – [32]

Chinese T/C [33]

Lebanese – [24]

Tunisian Arabs – [24]

DNAJC3 13q32.1 – Turkish – [45]

CDKAL 1 6p22.3 rs10946398 Han Chinese C/A [47]

rs775480 Alaska Native C/A [48]

SLC30A8 8q24.11 rs13266634 Chinese C/T [51]

Asian, European, African C/T [52]

Obesity FTO 16q12.2 rs1558902 Japanese A/T [19]

rs9939609 Scandinavian A/T [20]

Spaniards A/T [21]

rs8050136 Finnish A/C [22]

Regulated insulin

sensitivity in muscle and

liver

ADIPOQ 3q27 rs1501299 Chinese – [46]

rs7627128 Chinese – [46]

rs182052 Chinese – [46]

Regulated insulin

sensitivity in peripheral

tissue

POMC 2p23.3 – – A/G [49]

Insulin sensitivity PPARγ2 3p25.2 rs1801282 Caucasian – [50]

(Continued)
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Biotechnology Information (NCBI) dbSNP database: https://

www.ncbi.nlm.nih.gov/snp/rs2283228] was shown to be asso-

ciatedwith increased fasting glucose levels and impairedβ-cell
function inAsians.75Moreover, previous studies showed that a

vast majority of the genomic loci detected to date were asso-

ciated with β-cell dysfunction in patients with T2DM.76–78

KCNQ1 is expressed in pancreatic islets and plays an essential

role in glucose homeostasis as it functions as a regulator of

insulin secretion.71,72 The KCNQ1 protein was shown to be

expressed in insulin-secreting INS-1 cells.79 A study showed

that the C allele of the intronic rs2237895 in KCNQ1 was

associated with a decreased risk of abdominal obesity in

patients with T2DM. These findings indicated that the C allele

of rs2237895 is correlated with a decreased BMI and waist

circumference in a Chinese population.80–82

DUSP9
DUSP9 encodes dual-specificity phosphatase 9 [also

known as map kinase phosphatase 4 (MKP4)], mapped

on chromosome X, with a cytogenetic location at Xq28.

It is expressed in various tissues such as adipose tissue,

muscles, insulin-responsive tissues, and the liver. DUSP9

plays important roles in regulating cell cycle and insulin

action, and also has protective effects against the develop-

ment of insulin resistance due to its ability to inactivate

extracellular signal-regulated kinase and c-Jun N-terminal

kinase. Therefore, DUSP9 was considered as a stress-

induced insulin resistance mediator.83,84 While the effects

of DUSP9 on insulin metabolism may differ depending on

conditions and tissues, it is considered an important reg-

ulator of insulin sensitivity.25

The study of Voight et al62 first discovered an associa-

tion of DUSP9 rs5945326 and T2DM risk in population of

European descent. Then, the study of Fukuda et al25 repli-

cated such an association in a Japanese population. A

study of Rees et al26 showed that SNPs in or near

DUSP9 and 12 other genomic loci showed significant

associations with T2DM in Pakistani populations, with

similar effect sizes to those seen in European populations.

FTO
Biological function of FTO (fat-mass and obesity associated)

modulates the gene expression through methylation–demethy-

lation modification since FTO is part of Fe(II)- and 2-oxoglu-

tarate-dependent dioxygenases superfamily. Therefore,

ubiquitously expressed hepatic FTO showed an important

role in the homeostasis of glucose and lipid.85–89

Many studies have demonstrated a strong association

between the FTO gene and the incidence of obesity, which

is a major risk factor for T2DM.90–96 The majority of

people with T2DM, particularly those of East Asian ethni-

cities, achieve their maximum lifetime BMI (BMImax) at

the time of or before the onset of disease, and after T2DM

diagnosis. The BMImax may also be reached after lifestyle

interventions such as diet and exercise, and/or treatment

with various antidiabetic medicines that may affect their

obesity-related measurements, such as the BMI.97,98

A previous study has reported that the BMImax was

strongly associated with an increased risk of T2DM. FTO

SNPs were significantly correlated with the BMImax in a sex-

stratified analysis.28 The study also found that rs1558902 was

correlated with the incidence of T2DM in humans, and the

correlations between SNPs and T2DM remained significant

after the adjustment for the current age and BMI. Furthermore,

Hertel et al also reported that adjusting the FTO variant for the

waist-to-hip ratio and waist circumference conferred an

Table 1 (Continued).

Probable Mechanism Genes Chromosome

Position

SNPs Population Allele (Risk/Other) Ref.

No.

Induced oxidative stress

via ROS generation

Antioxidant

genes

1p13.3 GSTM1del – – [138]

22q11.23 GSTT1del – – [138]

11q13.2 GSTP1 105I/V

(+313A/G)

– – [138]

11p13,

6q25.3

CAT-21A/T,

SOD2 + 47C/T

– – [138]

3p21.31 GPx1 + 599C/

T

– – [138]

Abbreviations: Ref, Reference; SNP, single-nucleotide polymorphism; T2DM, type 2 diabetes mellitus.
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increased risk of T2DM.29 Decreased mitochondrial oxidative

capacities, oxidative stress, and lipid accumulation are sug-

gested to increase the expression of FTO in patients with

T2DM. Furthermore, the rs9939609 SNP may alter the risk

of T2DM independent of the BMI by affecting other genes in

the region.99 The increased FTO expression can stimulate de

novo lipogenesis, inhibit lipolysis and fatty acid oxidation, and

increase gluconeogenesis, which can lead to abnormally

increased triglyceride deposition and the production of hepatic

glucose (Figure 2).

HNF4A
The HNF4A gene is a member of the steroid hormone

receptor superfamily that is mainly expressed in the kidney,

liver, pancreas (including β-cells), and small intestine, and

influences metabolism and lipid transport.100,101 It also plays

roles in liver function and hepatocyte differentiation.102,103

The HNF4A gene is composed of 13 exons and two promo-

ters, known as P1 and P2.104 The P1 promoter is active

mainly in liver cells,104–106 while the P2 promoter is the

major splice variant in pancreatic β-cells.107−109

Approximately 1–2% of all diabetes cases are the mono-

genic form, known as maturity-onset diabetes of the young

(MODY).110 It is characterized by an early age of onset

(usually during adolescence or childhood), dominant inheri-

tance, and defects in β-cell function. MODY resulting from

mutations in the HNF4A transcription factor are known as

MODY1.111 Studies on the genetic linkage have demonstrated

that MODY1 is closely related to markers near HNF4A on

chromosome 20.112

The non-coding variants of HNF4A gene rs6017317113

and rs481282936 and a coding missense variant rs1800961

(T130I)114 have been shown to play a role in the development

of T2DM. In pancreatic β-cells (Figure 3), HNF4A is required

for glucosemetabolism and the expression and secretion of the

normal insulin gene,115 while in the liver, HNF4A is required

for hepatic gluconeogenesis.116 Yamagata et al screened for

mutations in HNF4A in patients with MODY1 and reported

that MODY1 is encoded by HNF4A.111 Clinical studies

reported that MODY1 can be caused by impaired insulin

secretion by pancreatic β-cells. Loss of or decreased HNF4A

can lead to β-cell dysfunction.117 Based on these findings,

HNF4A may participate in insulin secretion disorders, as

seen in patients with T2DM and MODY1.

IGF2BP2
IGF2BP2 (insulin-like growth factor 2 mRNA-binding

protein 2) was identified as an important T2DM candi-

date gene.31,118,119 It is located on chromosome 3q27

(https://www.genecards.org/cgi-bin/carddisp.pl?gene=

IGF2BP2), and is highly expressed in pancreatic islet

cells.31 In adipose tissue and the pancreas, IGF2BP2

can reduce the expression of IGF2, which is a growth

factor that plays a crucial role in controlling pancreatic

development and adipogenesis.120,121 IGF2BP2 plays

roles in normal embryonic growth and development.122

Figure 2 Impairments in the regulation of insulin and glucose may cause an increase in hepatic FTO expression.

Abbreviation: TG, triglyceride.
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It also plays a role in T2DM, which is associated with

decreased insulin secretion.123 Hence, IGF2BP2 may

support T2DM development via changes in adipose tissue

or impaired β-cell function.
Duesing et al conducted a comprehensive genetic associa-

tion study on French Caucasians and showed that IGF2BP2

rs4402960 and rs1470579 were associated with T2DM

susceptibility.124 Another study reported higher levels of fast-

ing plasma glucose, total cholesterol, and postprandial serum

insulin in patients with T2DM who carried the C allele of

rs1470579 compared with patients with T2DMwho were AA

carriers. IGF2BP2 polymorphisms play a role in the regulation

of pancreatic β-cell function.125 Studies have also demon-

strated that IGF2BP2 is strongly associated with overweight

and obesity.38 Obesity is associated with T2DM; hence, it is

hypothesized that the association between IGF2BP2 and

T2DM may be modified by obesity. This is also known as

the interplay between IGF2BP2 and obesity with T2DM.126 In

keeping with this hypothesis, Chistiakov and co-workers,127

reported that patients with T2DM have a more than twofold

increase in IGF2BP2 expression levels in adipose tissue com-

pared with healthy individuals. Associations between

IGF2BP2 and visceral/abdominal total fat were also demon-

strated in Mexican Americans and Canadian Caucasians, pro-

posing a possible role of IGF2BP2 in insulin resistance.128

CDKN2A/B
The CDKN2A/B locus is located on chromosome 9p21.3,

such that the CDKN2A gene encodes both the p16 inhibitor

of cyclin-dependent kinase p16INK4A and p14ARF, and the

CDKN2B gene encodes p15INK4B,129 respectively, and this

locus has been associated with T2DM risk.43,118 Further, the

9p21 SNP rs10811661, which was associated with the expres-

sion of a long non-coding RNA known as antisense noncoding

RNA in the INK4 locus [ANRIL; also called CDKN2B anti-

sense RNA 1 (CDKN2B-AS1)],130 was linked with the risk of

human diabetes in a GWAS.118 Polymorphisms in CDKN2A/

B affect metabolic health related to proteins that contribute to

the regulation of β-cell mass, insulin secretory function, and

proliferation.43 Additional studies in Asia and Europe have

also confirmed that CDKN2A/B is associated with T2DM

risk.40–42,44,56,131–133 CDKN2A/B is highly expressed in adi-

pocytes and islet cells, as well as in brain cells. Both CDKN2A

and CDKN2B are tumor suppressor genes involved in cell

apoptosis, tumorigenesis, and proliferation.134

Alterations to the phenotype of immune cells influence

systemic and peripheral insulin resistance and lead to

T2DM. Especially in obesity condition, macrophage infil-

trates into adipose tissue and lead to develop a chronic low-

grade inflammation. These adipose tissue macrophages

(ATMs) stimulate pro-inflammatory cytokines secretion

and further will contribute to insulin resistance.135

Additionally, CDKN2A/B-ANRIL gene products control

glucose homeostasis, in part, via the control of insulin

secretion and β-cell function (Figure 4).

TCF7L2
TCF7L2 (transcription factor 7-like 2) is a transcription

factor that plays a role in the Wnt-signaling pathway,

Figure 3 Transcription factor network in the pancreatic β-cell.
Abbreviations: GCK, glucokinase; GLUT-2, glucose transporter-2; L-PK, liver

pyruvate kinase.

Figure 4 Probable mechanism of CKN2A/B-antisense noncoding RNA in the INK4

locus (ANRIL) gene product.

Abbreviation: ATM, adipose tissue macrophage.
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which regulates pancreatic islet cell functions, such as

proliferation and cell survival.136 A previous study showed

that increased β-cell apoptosis was associated with

decreased TCF7L2 activity, resulting in the downregula-

tion of insulin secretion.137,138

The TCF7L2 gene is located on chromosome 10q.25.2–

25.3, also known as the TCF4 locus. Previous studies have

indicated that people with T2DM are more likely to carry the

genetic variant (rs7903146) of this gene.139–141 Furthermore,

studies on various ethnic populations have shown that muta-

tions of this gene are associated with TCF7L2 in a self-

regulating manner via transcriptional protein complex binding

across rs7903146.142–144

The Wnt-signaling pathway also controls the transcription

of the proglucagon gene, which regulates incretin hormones

such as glucagon-like peptide-1 that inhibits glucagon activity

and maintains food mobility from the stomach to the duode-

num, and gastric inhibitory polypeptide that is produced by

intestinal K cells. Mutations in TCF7L2 also result in reduced

expression of the proglucagon gene and, consequently,

reduced glucagon-like peptide-1 production.145–147

TCF7L2 is expressed in other organs, such as skeletal

muscle, gut, fat, and liver, which are all also involved in

mediating metabolic homeostasis.148 The overexpression

of β-catalase produced reciprocal effects on hepatic

gluconeogenesis.149 On the other hand, the Wnt-signaling

pathway negatively regulates adipogenesis, and Wnt

ligands produced by adipocytes may also function as

endocrine and paracrine factors.150 Based on those studies,

the possible roles of TCF7L2 in the pathogenesis of

T2DM are summarized in Figure 5.

KCNJ11
The KCNJ11 gene (potassium channel, inwardly rectifying,

subfamily J, member 11) encodes the Kir6.2 protein

(inward-rectifier potassium ion channel), which is

Figure 5 Possible role of TCF7L2 in the pathogenesis of T2DM.

Abbreviations: GIP, gastric inhibitory polypeptide; GLP-1, glucagon-like peptide 1.
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important for insulin secretion via the ATP-sensitive potas-

sium (KATP) channel. It has no intron region and is located

on chromosome 11p15.1.151 As described in Figure 6, when

the body demands insulin, Kir6.2 couples itself to SUR1

(sulfonylurea receptor-1) and binds to a KATP channel on

the pancreatic β-cell membrane, leading to insulin produc-

tion. Increased glucose levels stimulate the KATP channel to

open and allow the entry of K+ ions. Increasing levels of K+

ions depolarize the cell membrane and induce Ca2+ chan-

nels to increase levels of free intracellular Ca2+. The Ca2+

ions trigger other components of the insulin secretion path-

way to release granules.152,153 Therefore, mutations in

KCNJ11 result in reduced insulin production due to reduced

or absent Kir6.2 protein expression.154 The variant allele of

KCNJ11 gene rs5219 may decrease channel sensitivity to

ATP and alter the charge of the ATP-binding region.51 A

recent meta-analysis showed a strong relationship between

polymorphisms of rs5219 and susceptibility to T2DM in

East Asian and Caucasian populations.155 Kir6.2 is also

expressed in neurons, the brain, and muscles.156

Antioxidant Genes
Disruption to the balance of antioxidants and reactive oxygen

species (ROS) results in increased oxidative stress, which

may lead to diabetes. The generation and accumulation of

ROS in β-cells can cause β-cell dysfunction, defects in

insulin production, and impaired function, which result in

diabetes.157 However, the impact of oxidative stress can be

reduced or modified by enzymatic antioxidants, including

catalase (CAT), glutathione-S-transferase (GST), glutathione

peroxidase (GPx), superoxide dismutase (SOD), nitric oxide

synthase, and nicotinamide adenine dinucleotide phosphate

oxidase.158–160 Banerjee et al reported that individuals with a

polymorphism affecting the genetic regulation of these six

enzymes were at increased risk of developing T2DM.

Known polymorphisms in these genes include GSTM1del,

GSTT1del, GSTP1 105I/V(+313A/G), CAT-21A/T, SOD2 +

47C/T, and GPx1 + 599C/T.161 Banerjee and co-workers also

concluded that the risk of developing T2DM increases as the

variation of the genes that regulate antioxidant enzyme

increases.161

DNAJC3
As explained by DNAJC3 is an endoplasmic reticulum

(ER) lumen protein and a member of the HSP70 family.

It is located in all tissues in humans (predominantly the

liver and pancreas), and plays a role in maintaining home-

ostasis in the ER.54 It serves as co-chaperone of binding

immunoglobulin protein (BiP) during the unfolded protein

response (UPR), which is an ER adaptive signaling path-

way. Normally, the ER regulates membrane homeostasis

by synthesizing and modifying secretory and membrane

proteins.54 However, when cells are exposed to abnormal

conditions, such as infection, homeostasis imbalance, glu-

cose deprivation, or stimulation that leads to ER protein

overproduction, the proteins undergo incomplete or abnor-

mal processes that form unfolded or misfolded proteins.

The accumulation of these proteins increases stress in the

ER lumen, eventually triggering the UPR in the ER.54

Three pathways were reported to generate the UPR

signaling pathway, including activation of transcription

factor-6;162 activation of inositol-requiring transmembrane

kinase/endoribonuclease 1;163 and double-stranded RNA-

dependent protein kinase-like eukaryotic initiation factor

2α kinase (PERK).164

The UPR pathways will reduce the ER stress and main-

tain the cell survival by correcting the misinterpreted protein.

This can be carried out by the SIL1 protein, which interacts

with BiP and binds the misinterpreted protein. DNAJC3 acts

prior to protein correction. It binds reversibly to hydrophobic

segments of the protein and delivers it to the chaperone,

BiP.54 DNAJC3 is involved in the PERK pathway, collabor-

ating with the chaperone, BiP, and SIL1 protein, a nucleotide

exchange factor.54 DNAJC3 mutations, such as deletions and

Figure 6 Mechanism of insulin secretion by the KATP channel in pancreatic β-cells.
SUR1 and Kir6.2 proteins in the KATP channel mediate insulin secretion.

Abbreviations: ATP, adenosine triphosphate; Ca2+, calcium ion (composed of α1,
α2, β, ɣ, and δ subunits); K+, potassium ion; KATP, ATP-sensitive potassium channel;

Kir6.2, inward rectifier potassium ion channel; SUR1, sulfonylurea receptor-1.
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stop mutations, result in reduced or absent binding between

BiP and unfolded or misfolded proteins.54 In summary,

adaptive response failure leads to unsuccessful pancreatic

ER homeostasis and cell death; and in pancreatic cell death,

particularly in the pancreatic islet, this will reduce insulin

production. Therefore, mutations in the DNAJC3 gene are

correlated with diabetes.54

PGC-1α
PGC-1α (peroxisome proliferator-activated receptor

(PPAR)-γ coactivator-1α) is a transcription coactivator

that is involved in various biological responses, such as

temperature adaptation, energy homeostasis in the mito-

chondria, glucose metabolism, triglyceride homeostasis,

and heart development.165

In humans, the PPARGC1A gene is located on chro-

mosome 4 and encodes a 798-amino acid protein PGC-1α,
which is expressed in most tissues with highly active

mitochondria and oxidative metabolism, such as the

heart, skeletal muscle, and brown adipose tissue.166

The PGC-1α gene can convert muscle fiber type and

stimulate fatty acid oxidation, thus may lead to a decreased

fatty acid concentration in muscles.167 In contrast, a recent

study showed that insulin-resistant skeletal muscle and the

liver were associated with increased levels of triglycerides.168

A previous study by Kelley and co-workers suggested

that a decrease in mitochondrial oxidative enzymes leads

to defects in the mitochondrial fatty acid oxidation path-

way and, ultimately, diabetes. Furthermore, the study also

observed that patients with T2DM showed downregulated

expression of PPARGC1A gene.169

ADIPOQ
The ADIPOQ gene encodes adiponectin, which is an adi-

pocytokine. The adipose tissue plays an important role in

the development of diabetes mellitus and obesity.170

Adiponectin, a major adipocyte secretory protein in

human plasma, functions as a regulator of energy and is

involved in glucose tolerance.171 The ADIPOQ gene is

located on human chromosome 3q27 and is reported to

be a susceptibility locus for T2DM.172,173

Adiponectin is associated with increased insulin sensitiv-

ity, reduced ER stress, and increased fatty acid oxidation.174

Its functions are mediated by its receptors, AdipoR1 and

AdipoR2. The binding of adiponectin to its receptor activates

intracellular signaling molecules that play important roles in

lipid and carbohydrate metabolism.175

Li et al reported ADIPOQ gene polymorphisms in

rs1501299, rs182052, and rs7627128 in a Chinese popula-

tion, and showed a significant association with T2DM.

Furthermore, a haplotype-based case-control study on the

association between T2DM and the ADIPOQ gene found

that the haplotypes A–A–T and G–A–T were correlated

with increased potency and decreased risk of T2DM,

respectively.55

CDKAL1
Klimentidis et al reported that variations in CDKAL1

rs775480 were associated with hemoglobin A1c, which is

related to T2DM. The rs775480 polymorphism is located at

intron 5 of the CDKAL1 gene.57 This SNP is associated with

decreased glucose sensitivity and insulin secretion in β-
cells.176,177 Furthermore, the rs10946398 polymorphism of

the CDKAL1 gene was proposed as a marker of impaired

insulin secretion, as the CC/CA genotypes and C allele con-

tribute to T2DM susceptibility in obese individuals.56,178,179

POMC
Mutations in the POMC (pro-opiomelanocortin) gene are

reportedly associated with overweight and obesity as well

as the phenotype of early-onset T2DM.58,180,181 POMC is a

precursor polypeptide hormone that is produced in the neu-

rons of the arcuate nucleus of the hypothalamus and plays an

important role as a controller of homeostasis, as well as

energy balance, food intake, and glucose metabolism.182–184

Mencarelli et al reported that patients with T2DM and

obesity related to mutations in the POMC genes showed a

missense mutation in the signal peptide.58 This mutation

led to a heterozygous substitution of arginine for glycine at

A15G–POMC (codon 15), which inhibited the production

and secretion of the POMC protein. In humans, POMC

deficiency can cause insulin resistance (hyperinsulinemia)

since POMC-derived peptides have local effects on the

central melanocortin pathway, and intact neuronal melano-

cortin signaling regulates insulin sensitivity in peripheral

tissues.185,186

PPARγ2
PPARγ2 (peroxisome proliferator-activated receptor-

gamma 2) is a ligand-activated transcription factor of the

nuclear hormone receptor superfamily.187 The PPARγ2
gene plays roles in glucose homeostasis, lipid metabolism,

obesity, insulin sensitivity, T2DM, and various adipocyte-

specific genes.59,188–190
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Based on several case-control and family-based stu-

dies, estimated that Pro12 allele (ie, the major allele) of

PPARγ was associated with a 1.25-fold elevated risk of

T2DM.191 Further, the study of Chan et al showed that the

Pro12Ala polymorphism was associated with T2DM risk

in the multiethnic Women’s Health Initiative (WHI)

Observational Study at a nominal significance level

(Pro12 allele is the risk-increasing allele, p=0.01, additive

model). The study was replicated in the WHI SNP Health

Association Resource (WHI-SHARe) Hispanic American

case-control sample (Pro12 allele is the risk-increasing

allele, p=0.02, additive model).192

Phani et al reported that the PPARγ2 gene was asso-

ciated with T2DM in an obese diabetic Indian population

(BMI ≥ 25 kg/m2).193 The rs1801282 polymorphism in the

PPARγ2 gene has been associated with adiposity and

regulation of the BMI. Furthermore, the Ala12 variant

allele of rs1801282 has been shown to exhibit a decreased

binding affinity to the cognate DNA element and therefore

could reduce PPARγ2 transcriptional activity.194 Based on

the study of Valve et al, the Ala12 variant allele was

associated with a lower BMI and a higher insulin sensitiv-

ity among normal weight and mildly obese individuals.195

This polymorphism has also been linked to increased

insulin sensitivity and protects from T2DM in Caucasian

populations.59,193

Motavallian et al compared the allele distributions of

Pro12Ala polymorphism between healthy individuals and

those with diabetes.188 They found a higher frequency of

the Ala allele12 in healthy individuals than in patients with

diabetes. Another study found a protective role of high Ala

frequency against T2DM as it was associated with

increased insulin sensitivity, while low frequency of the

Ala12 allele was associated with decreased insulin sensi-

tivity (insulin resistance), which may lead to diabetes.

These findings suggest that polymorphisms in the

PPARγ2 gene are associated with T2DM.

SLC30A8
Previous studies have reported that the SLC30A8 (solute

carrier family 30 member 8) rs13266634 polymorphism in

the major C allele was strongly associated with the risk of

T2DM.60,61 In addition, Chang et al also reported that the

SLC30A8 rs13266634 SNP was associated with age as a

T2DM risk factor.196

SLC30A8 is expressed in pancreatic β-cells and encodes

a zinc transporter.196 Zinc is an important element for insulin

secretion and storage.197 Low ZnT8 (zinc transporter-protein

member 8) expression leads to decreased insulin production

by β-cells. Low Zn2+ production facilitates hormone clear-

ance by the liver (Figure 7). The study using ZnT8KO mice

had low peripheral blood insulin levels despite hypersecre-

tion from β cells pancreas, whilst reduced Zn2+ production

favors clearance of the hormone by liver.32 Furthermore,

ZnT8 overexpression increasing Zn2+ accumulation, the

Zn2+ that secreted with insulin suppressed hepatic insulin

clearance via the inhibition of clathrin-dependent insulin

endocytosis.32,198 The SLC30A8 gene encodes ZnT8,

which forms a solid hexamer from binding with insulin in

β-cells, matures, and is stored in secretory vesicles.199

Zn2+ plays a crucial role in insulin release and regulates

the homeostasis of insulin concentration between pancreas

and body. When blood glucose level is low, Zn2+ binds

insulin in pancreas for storage purpose and an increase in

blood glucose level will liberate insulin from Zn2+ High level

of ZnT8 means there is a lot of Zn2+ available for bind and

hold insulin in pancreas. In other words, insulin secretionwill

be limited to an increase in blood glucose and this is a normal

physiology of body in maintaining the glucose homeostasis.

Besides, a low level of ZnT8 indicates a small concentration

of Zn2+ which means there is inadequate insulin depositor

and thus, insulin hypersecretion will occur.200 The hyperse-

cretion of insulin will impact the insulin sensitivity, liver

clearance, and blood glucose level as the following state-

ment, first liver will intoxicate an excessive amount of insu-

lin. In other words, hepatic clearance will increase and liver

takes more energy to function, resulting in glycogen break-

down to glucose.201 Second, Zn2+ also presents in insulin

Figure 7 Interaction between ZnT8 expression (A) low ZnT8 and (B) high ZnT8,

hormone action, and hepatic insulin clearance.
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targeted cells to improve the sensitivity for insulin-receptor

bind. A lack of Zn2+ will reduce the insulin sensitivity and

decrease insulin-receptor bind affinity.202 These mechanisms

will lead to an increase in blood glucose level or T2DM

event.

The SLC30A8 rs13266634 polymorphism is a non-

synonymous SNP that causes an amino acid change from

arginine, encoded by the C-allele, to tryptophan, encoded

by the T-allele, at position 325 (Arg325Trp). This poly-

morphism has been linked with the development of T2DM

in several populations.31,118,119,139,140,203,204

T2DM risk is influenced by both genetic and environ-

mental risk factors. Therefore, gene–environment interac-

tion studies in T2DM could be more explored as indicated

by other studies showed that a significant interaction

between SLC30A8 gene rs13266634 and age in T2DM

risk (p<0.0001).196,205

Conclusion and Future Prospects
Some genetic polymorphisms are associated with T2DM,

either in the form of regulatory non-coding SNPs or as

missense coding SNPs that cause direct changes to amino

acids within a protein. Genes that are considered to predict

or be associated with T2DM disrupt homeostasis, includ-

ing insulin action and sensitivity, β-cell function and pro-

liferation, and obesity. We realized that this review might

use an incomplete searching method and some relevant

papers have not been included, but it summarized genes

that might be related to the development of T2DM.

Moreover, studies show that different SNPs and mechan-

isms lead to diabetes in different ethnic groups.

Despite remarkable progress, the results from these

genetic studies remain inconclusive. Therefore, future

studies are required using different ethnic groups to con-

firm these findings globally, to determine correlations

between gene expression and the mechanisms involved

to confirm the suggested pathways, and to ensure that

treatment of a specific gene will not have knock-on

adverse effects on other genes. Thus, further intensive

studies are necessary to identify more T2DM-associated

genes. The evaluation and confirmation of the currently

identified genes are also necessary due to conflicting

findings. These polymorphisms may help to reduce the

incidence and predict the risk of T2DM. Early identifica-

tion may increase the prevention efficacy and increase

prediabetic prognosis significantly.
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