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Abstract
Objectives To evaluate texture analysis in nonenhanced 3-T MRI for differentiating pulmonary fungal infiltrates and lymphoma
manifestations in hematological patients and to compare the diagnostic performance with that of signal intensity quotients
(“nonenhanced imaging characterization quotients,” NICQs).
Methods MR scans were performed using a speed-optimized imaging protocol without an intravenous contrast medium includ-
ing axial T2-weighted (T2w) single-shot fast spin-echo and T1-weighted (T1w) gradient-echo sequences. ROIs were drawn
within the lesions to extract first-order statistics from original images using HeterogeneityCAD and PyRadiomics. NICQs were
calculated using signal intensities of the lesions, muscle, and fat. The standard of reference was histology or clinical diagnosis in
follow-up. Statistical testing included ROC analysis, clustered ROC analysis, and DeLong test. Intra- and interrater reliability was
tested using intraclass correlation coefficients (ICC).
Results Thirty-three fungal infiltrates in 16 patients and 38 pulmonary lymphoma manifestations in 19 patients were included.
Considering the leading lesion in each patient, diagnostic performance was excellent for T1w entropy (AUC 80.2%; p < 0.005)
and slightly inferior for T2w energy (79.9%; p < 0.005), T1w uniformity (79.6%; p < 0.005), and T1w energy (77.0%; p < 0.01);
the best AUC for NICQs was 72.0% for T2NICQmean (p < 0.05). Intra- and interrater reliability was good to excellent (ICC >
0.81) for these parameters except for moderate intrarater reliability of T1w energy (ICC = 0.64).
Conclusions T1w entropy, uniformity, and energy and T2w energy showed the best performances for differentiating pulmonary
lymphoma and fungal pneumonia and outperformed NICQs. Results of the texture analysis should be checked for their intrinsic
consistency to identify possible incongruities of single parameters.
Key Points
• Texture analysis in nonenhanced pulmonary MRI improves the differentiation of pulmonary lymphoma and fungal pneumonia
compared with signal intensity quotients.

• T1w entropy, uniformity, and energy along with T2w energy show the best performances for differentiating pulmonary
lymphoma from fungal pneumonia.

• The results of the texture analysis should be checked for their intrinsic consistency to identify possible incongruities of single
parameters.
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Abbreviations
EORTC/MSG European Organization for Research

and Treatment of Cancer/Invasive
Fungal Infections Cooperative Group and
the National Institute of Allergy
and Infectious Diseases Mycoses
Study Group

ICC Intraclass correlation coefficient
MWU Mann-Whitney U
NICQs Nonenhanced imaging

characterization quotients
T1w T1-weighted
T2w T2-weighted

Introduction

The differential diagnosis of pulmonary lesions can be chal-
lenging, particularly when it becomes necessary to distinguish
infections from manifestations of the underlying condition in
hematological patients [1]. Morphological findings are usual-
ly considered unspecific, especially that of pulmonary lym-
phoma and invasive bronchopulmonary aspergillosis [2–4].
The identification of primary pulmonary lymphoma can be
particularly challenging, as the incidence is very low, i.e., <
1% of all non-Hodgkin lymphomas and 0.5% of all primary
pulmonary malignancies [5, 6]. In a retrospective study, 13 of
19 patients with pulmonary lymphoma manifestations were
initially misdiagnosed as having pneumonia, lung cancer, or
tuberculosis [7].

Histopathologic workup is usually required to establish the
correct diagnosis, but transthoracic biopsy is often difficult and
requires the patient to be able to cooperate [8]. In hematological
patients, thrombocytopenia could further increase the risk of
complications of invasive diagnostic procedures, and, if seda-
tion or general anesthesia is required, patients are put at an
additional risk [9]. Therefore, noninvasive tools to improve
the differentiation of unclear pulmonary lesions are desirable.
Due to its excellent soft tissue contrast, MRI is being investi-
gated in this context, e.g., by using DWI [10–12] or DCE-MRI
[13, 14]. A straightforward approach proposed by Nagel et al
shows encouraging results for differentiating infectious and
noninfectious pulmonary lesions using simple signal intensity
quotients (referred to as “nonenhanced imaging characteriza-
tion quotients,” NICQs) from 3-T MR images [15]. However,
the best parameters did not exceed an AUC of 80%.
Theoretically, the diagnostic performance of 3-T MRI may be
further enhanced by using texture analysis [16]. For this pur-
pose, freely available software exists, e.g., HeterogeneityCAD
and PyRadiomics [17, 18].

The aim of the present study was to evaluate texture anal-
ysis of nonenhanced MR imaging at 3 T for differentiating
fungal infiltrates and pulmonary lymphoma manifestations in

hematological patients. The diagnostic performance should
further be compared with that of NICQs.

Materials and methods

Patients

This monocentric prospective study was approved by the local
ethics committee (EA4/017/14). All patients were consecu-
tively included and gave written informed consent. Data on
NICQs in this patient collective have been published recently
[19].

The main inclusion criteria were an underlying hematolog-
ical disease and the presence of at least one solid pulmonary
lesion in a current, clinically indicated chest X-ray or CT scan;
patients with contraindications to MRI were excluded.
Pulmonary lymphoma manifestations had to be histopatho-
logically proven or show unequivocal response to antineo-
plastic treatment during follow-up. Fungal infections had to
be at least “probable” according to the European Organization
for Research and Treatment of Cancer/Invasive Fungal
Infections Cooperative Group and the National Institute of
Allergy and Infectious Diseases Mycoses Study Group
(EORTC/MSG) Consensus Group [20]. The final diagnosis
was based on all available clinical data and established by a
senior consultant oncologist (S.S.). All patients were included
and scanned between April 2014 and July 2018. Sixteen pa-
tients of the initial collective of 51 patients were excluded: 2
patients with poor general condition not able to complete the
examination, 2 patients due to poor image quality, 2 patients,
in which the reliable attribution of the findings to lymphoma
or fungal infection was ultimately not possible, and 10 patients
with neither fungal infection nor lymphoma manifestation
(Fig. 1).

MRI technique

All MRI examinations were performed on a 3-T scanner
(Magnetom Skyra, Siemens Healthineers). The patients were
imaged in supine position using anMRI protocol derived from
Biederer et al and Attenberger et al with a surface coil on the
chest [21, 22].

Texture analysis was performed using imaging data ac-
quired with a T2-weighted (T2w) single-shot fast spin-echo
sequence (time of echo, 27 ms; time of repetition, 500 ms;
refocusing flip angle, 160° after initial 90° excitation pulse;
matrix size, 256 × 320; slice thickness, 5 mm) and a T1-
weighted (T1w) gradient-recalled echo sequence (time of ech-
o, 2.04 ms; time of repetition, 5.39 ms; flip angle, 9°; matrix
size, 180 × 320; slice thickness, 3 mm), both in axial plane. A
multi-breath-hold regimen was applied, aiming for a max
breath-hold time of 8–10 s. An additional T2w single-shot fast
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spin-echo sequence in coronary plane was acquired for plan-
ning purposes, but not considered in the analysis. It has been
shown that the protocol was suitable for immunocompro-
mised patients [23].

Image analysis

Image analysis was performed by two readers: a board-
certified radiologist (S.N.) with more than 7 years of experi-
ence in cross-sectional imaging and, to evaluate interrater var-
iability, by a radiology resident (D.K.) with more than 3 years
of experience in MRI. For determination of intrarater variabil-
ity, the less experienced reader repeated the image analysis in
9 cases of fungal infection and 9 cases of lymphoma
manifestations.

ROIs were drawn in T1w and T2w using the freely avail-
able software “3D Slicer” (version 4.10) [24]. Every lesion
was marked on every slice where it was clearly visible,
resulting in a volume that was considered in the further anal-
ysis. Only solid parts were marked; i.e., blood vessels, bron-
chi, and the perilesional spaces were excluded. For illustra-
tion, examples of ROIs are given in Fig. 2. In case of several
lesions, these were considered in the same order in T1w and
T2w. The readers were blinded of any diagnostic or clinical
data.

First-order statistics were extracted from the original im-
ages using HeterogeneityCAD (Commit 27ade9a) [17] in a
first approach and, subsequently, PyRadiomics version 2.1.2

[18] to crosscheck the results for entropy and uniformity, after
they did not show the expected inverse behavior.

The default settings for HeterogeneityCAD were left un-
changed. For PyRadiomics, as recommended to make results
more comparable, images were normalized and a voxel array
shift was applied in the analysis. The configuration was set
with the resampling adjusted to the slice thickness as follows:
imageType: Original: {} \ featureClass: firstorder: \ setting:
normalize: true, normalizeScale: 100, interpolator:
“sitkBSpline”, resampledPixelSpacing: [2, 2, 2] for T1w or
resampledPixelSpacing: [3, 3, 3] for T2w, binWidth: 5,
voxelArrayShift: 300.

ROIs to calculate NICQs were placed as reported in a pre-
vious study [15]: T2NICQs were calculated from signal inten-

sities of the lesion, muscle, and fat SILesion−SIMuscle
SIFat−SIMuscle

� �
*100

� �
,

T1Qmean from signal intensities of the lesion and muscle
SILesion
SIMuscle

� �
; for T2NICQ90th the 90th percentile of the signal

intensity of the lesion, for all other measurements, the mean
signal intensity was used.

Statistical analysis

Statistical tests were performed on the results of the first read-
ing by S.N.. In case of multiple lesions in a patient, the largest
lesionwas defined as the leading lesion. Categorial parameters
are given as frequencies. All metric data were tested for nor-
mal distribution using the Shapiro-Wilk test. For normally
distributed data, descriptive statistics are given as mean and
standard deviation. If no normal distribution was found, me-
dian and interquartile range are given. The Mann-Whitney U
(MWU) test was used to test for significant differences of the
parameters and ROC analysis was used to determine the di-
agnostic performance based on the leading lesions and on all
lesions. For lesion-based ROC testing, an additional adjust-
ment for clustering according to Obuchowski was done [25].
Resulting AUCs were rated (70–80% acceptable, 80–90%
excellent, 90–100% outstanding) [26] and compared with
those of the NICQs using the DeLong test [27].

For assessment of interrater agreement, ICC estimates and
their 95% confidence intervals were calculated based on a
mean-rating (k = 2), absolute-agreement, 2-way random ef-
fects model. For assessment of intrarater agreement, ICC es-
timates and their 95% confidence intervals were calculated
based on a mean-rating (k = 2), absolute-agreement, 2-way
mixed effects model. Intra- and interrater reliability was rated
(ICC < 0.5 poor, 0.5–0.75 moderate, 0.75–0.9 good, > 0.9
excellent) [28].

Statistical analysis was performed using SPSS (SPSS
Statistics, version 25.0, IBM Corp.) and R (version 3.5.1).
For all tests, a p value < 0.05 was considered statistically
significant.

Fig. 1 Flow chart displaying the inclusion and exclusion of patients in
this study
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Fig. 2 Upper row: 27-year-old male patient with acute myeloid leukemia
and focal Aspergillus infiltrate in the left upper lobe; a T2w overview, b
T1w, and c T2w with zoom on the lesion. Note the surrounding halo in
(a), which was ignored when drawing the ROI. Scale indicates 2 cm.
Lower row: 58-year-old female patient with gastric lymphoma originat-
ing from mucosa-associated lymphatic tissue (MALT) and manifestation
in the right lower lobe; e T2w overview, f T1w, and g T2w with zoom on
the lesion. The ROI encloses only the solid part of the lesion; i.e., a small
bronchus was spared in this case. Scale indicates 2 cm. (c) shows

confluent areas of patchy hypointensities in a rather geographic distribu-
tion, while (g) shows small hypointense spots in a more repetitive pattern.
(d) and (h) are concepts of a pixelwise representation of the structure of
the two lesions. The images show differences between the two lesions in
terms of the distribution of white, light gray, dark gray, and black pixels:
in (h), pixels are homogeneously distributed throughout the image, while
in (d), black and darker gray pixels are clustered in the upper right part of
the image

Table 1 Patient demographics and data of the included lesions. Mean values and standard deviation are provided for age; median and interquartile
range for lesion volumes

Lymphoma Fungal infection

Age 54.8 ± 12.4 years 52.4 ± 18.3 years

Sex distribution (female:male) 7:12 6:10

n (patient/lesion) 19/38 16/33

Primary disease 1 acute myeloid leukemia, 1 acute lymphocytic leukemia,
1 chronic lymphocytic leukemia, 10 B cell non-
Hodgkin lymphoma, 1 T cell non-Hodgkin
lymphoma, 5 Hodgkin lymphoma

11 acute myeloid leukemia, 3 acute
lymphocytic leukemia, 1 Hodgkin
lymphoma,
1 severe anaplastic anemia

Pathogen in patients - 6 Aspergillus fumigatus

1 Candida albicans

1 Candida dubliniensis

8 no definite identification

Volume of leading lesion Median 2020 mm3 [291–4414 mm3] Median 208 mm3 [103–1176 mm3]

Combined volume of all lesions evaluated Median 2269 mm3 [875–7690 mm3] Median 352 mm3 [173–1442 mm3]

Reference standard 10 histopathology 8 microbiology

9 clinical response to treatment 8 clinical response to treatment

698 Eur Radiol (2021) 31:695–705



Ta
bl
e
2

Pa
tie
nt
-b
as
ed

R
O
C
an
al
ys
is
of
th
e
le
ad
in
g
le
si
on
s.
R
es
ul
ts
ba
se
d
on

an
al
ys
is
of
16

fu
ng
al

le
si
on
s
an
d
19

ly
m
ph
om

a
m
an
if
es
ta
tio

ns
an
d
re
su
lts

of
Py

R
ad
io
m
ic
s.
A
dd
iti
on
al
ly
,t
he

m
ed
ia
n
an
d

IQ
R
of

H
et
er
og
en
ei
ty
C
A
D
re
su
lts

ar
e
lis
te
d.
C
ut
of
fv

al
ue

an
d
di
re
ct
io
n
ar
e
on
ly
sp
ec
if
ie
d
in
ca
se

of

si
gn
if
ic
an
t
di
ff
er
en
ce
s.
IQ

R
,
in
te
rq
ua
rt
ile

ra
ng
e;

M
W
U
,
M
an
n-
W
hi
tn
ey

U
;
N
IC
Q
,
no
n-
en
ha
nc
ed

im
ag
in
g
ch
ar
ac
te
ri
za
tio

n
qu
ot
ie
nt

Pa
ra
m
et
er

E
nt
ity

P
yR

ad
io
m
ic
s

M
ed
ia
n

IQ
R

A
U
C
[%

]
A
U
C
95
%
-C
I
[%

]
M
W
U

p
S
en
si
tiv

ity
[%

]

T
1w

Sk
ew

ne
ss

Fu
ng
al

−
0.
13

−
0.
42

to
0.
07

58
.5

42
–7
5

0.
40

47
.4

L
ym

ph
om

a
−
0.
03

0.
22
–0
.2
6

K
ur
to
si
s

Fu
ng
al

2.
63

2.
1–
3.
14

58
.9

43
–7
5

0.
38

10
0.
0

L
ym

ph
om

a
2.
84

2.
50
–2
.9
7

E
nt
ro
py

Fu
ng
al

3.
52

3.
08
–4
.0
4

80
.2

67
–9
3

<
0.
00
5

63
.2

L
ym

ph
om

a
4.
22

3.
81
–4
.4
8

U
ni
fo
rm

ity
Fu

ng
al

0.
10

0.
07
–0
.1
3

79
.6

66
–9
3

<
0.
00
5

57
.9

L
ym

ph
om

a
0.
06

0.
05
–0
.0
8

E
ne
rg
y

Fu
ng
al

5,
49
3,
45
2.
02

1,
58
9,
27
2.
96
–1
6,
89
5,
36
6.
49

77
.0

63
–9
1

<
0.
01

68
.4

L
ym

ph
om

a
46
,7
42
,6
71
.3
7

10
,8
69
,1
78
.2
4–
81
,2
39
,3
02
.9
9

T
1Q

m
ea
n

Fu
ng
al

0.
82

0.
68
–0
.9
2

60
.2

44
–7
6

0.
32

73
.7

L
ym

ph
om

a
0.
88

0.
82
–0
.9
2

T
2w

Sk
ew

ne
ss

Fu
ng
al

0.
05

−
0.
13

to
0.
61

54
.9

39
–7
1

0.
64

57
.9

L
ym

ph
om

a
0.
50

−
0.
16

to
0.
67

K
ur
to
si
s

Fu
ng
al

2.
20

1.
84
–3
.5
5

64
.8

49
–8
1

0.
15

78
.9

L
ym

ph
om

a
2.
65

2.
38
–3
.6
9

E
nt
ro
py

Fu
ng
al

2.
30

2.
10
–2
.5
9

54
.3

38
–7
1

0.
69

47
.4

L
ym

ph
om

a
2.
48

2.
05
–2
.9
8

U
ni
fo
rm

ity
Fu

ng
al

0.
22

0.
18
–0
.2
5

52
.0

36
–6
8

0.
86

42
.1

L
ym

ph
om

a
0.
22

0.
15
–0
.2
9

E
ne
rg
y

Fu
ng
al

1,
45
6,
00
5.
39

77
8,
93
7.
83
–3
,5
83
,7
23
.5
1

79
.9

67
–9
3

<
0.
00
5

84
.2

L
ym

ph
om

a
11
,7
25
,7
21
.5
7

7,
47
9,
62
8.
68
–2
1,
62
4,
90
5.
53

T
2N

IC
Q
m
ea
n

Fu
ng
al

23
.5
2

4.
82
–4
1.
43

72
.0

57
–8
7

<
0.
05

84
.2

L
ym

ph
om

a
4.
09

−
0.
56

to
14
.2
3

T
2N

IC
Q
90
th

Fu
ng
al

51
.5
5

13
.8
5–
65
.0
4

70
.4

55
–8
5

<
0.
05

10
0.
0

L
ym

ph
om

a
20
.1
3

7.
07
–3
4.
24

Py
R
ad
io
m
ic
s

H
et
er
og
en
ei
ty
C
A
D

Sp
ec
if
ic
ity

[%
]

PP
V
[%

]
N
PV

[%
]

A
cc
ur
ac
y
[%

]
Y
ou
de
n’
s
in
de
x

C
ut
of
f

V
al
ue
s
in
di
ca
tin

g
ly
m
ph
om

a
in

re
la
tio

n
to

cu
to
ff

M
ed
ia
n

IQ
R

T
1w

81
.2

75
.0

56
.5

62
.9

0.
29

n.
a.

n.
a.

0.
08

−
0.
32

to
0.
26

0.
04

−
0.
17

to
0.
30

31
.2

63
.3

10
0.
0

68
.6

0.
31

n.
a.

n.
a.

−
0.
56

−
0.
88

to
−
0.
04

−
0.
06

−
0.
32

to
0.
25

87
.5

85
.7

66
.7

74
.3

0.
51

4.
16

≥
46
.7
4

10
.7
5–
46
6.
87

10
15
.1
4

57
.7
7–
46
16
.7
4

93
.8

91
.7

65
.2

74
.3

0.
52

0.
06

≤
11
3.
00

35
.0
–1
19
0.
00

25
33
.0
0

13
3.
00
–2
6,
79
7.
00

81
.2

81
.2

68
.4

74
.3

0.
50

36
,0
98
,4
34
.0
8

≥
1,
19
1,
50
3

33
8,
88
0–
5,
05
8,
72
5

20
,5
72
,5
31

2,
11
8,
02
7–
44
,1
87
,8
69

699Eur Radiol (2021) 31:695–705



Results

Study group

Sixteen patients with fungal infections and 19 patients with
pulmonary lymphoma manifestations were included into the
analysis. Further details are provided in Table 1. The mean
scan duration was 5:24 min (range 2:48–8:08 min).

Texture analysis parameters

Data were continuous, but not normally distributed according
to Shapiro-Wilk tests. Table 2 summarizes the analysis for the
leading lesion and Table 3 for all lesions including adjustment
for clustered data.

The following statistical analysis was performed on the
results of the PyRadiomics evaluation only, since they showed
the expected inverse behavior for entropy and uniformity,
contrary to the results obtained with HeterogeneityCAD.
Still, the results for HeterogeneityCAD are presented to illus-
trate how the results by different algorithms can diverge.

For the leading lesion, the MWU test showed significant
differences between fungal infiltrates and pulmonary lym-
phoma manifestations for T1w uniformity, energy, and en-
tropy, as well as for T2w energy.

For the leading lesion, T1w entropy showed the best
diagnostic performance, followed by T2w energy, T1w uni-
formity, and T1w energy with only slightly inferior results.
Considering all lesions, the overall performance was slight-
ly inferior with T2w energy showing the best performance,
followed by T1w energy, T1w entropy, and T1w
uniformity.

The AUCs of T1w uniformity, T1w energy, and T1w
entropy as well as of T2w energy furthermore exceeded
those of NICQs. For the leading lesion, the DeLong test
showed a significantly different AUC only for T1w en-
tropy vs. T1Qmean (p < 0.05), with other differences be-
ing only close to significance, i.e., T1w energy vs.
T1Qmean (p = 0.09), T2w energy vs. T1Qmean (p =
0.06), T2w energy vs. T2NICQmean (p = 0.07), and
T2w entropy vs. T2NICQ90th (p = 0.06). Considering
all lesions, significantly different AUCs were observed
for T1w and T2w energy vs. T2NICQ90th and for T2w
energy vs. T1Qmean (p < 0.05 each) with other differ-
ences being only close to significance, i.e., T1w energy
vs . T1Qmean (p = 0 .07 ) and T2w ene rgy vs .
T2NICQmean (p = 0.06).

Intra- and interrater reliability

For T1w, intrarater reliability and interrater reliability were
good to excellent for entropy and uniformity (ICC ≥ 0.86;
p < 0.001). Except for the moderate intrarater agreement forT
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energy, which was lowest of all with ICC = 0.64 (p = 0.05),
and for kurtosis with ICC = 0.73 (p < 0.05), the remaining
parameters in T1w also showed almost consistently good to
excellent agreement (ICC ≥ 0.75).

For T2w, again entropy and uniformity showed the best
intra- and interrater agreement (ICC ≥ 0.81; p < 0.01), but
values were lower than for T1w except for a slightly higher
ICC for entropy (ICC = 0.95; p < 0.001). All other parameters
in T2w showed good-to-excellent intra- and interrater agree-
ment (ICC ≥ 0.76; p < 0.05). Details are shown in Table 4.

Discussion

This study shows that first-order statistics of texture analysis
from 3-T MR images provides good overall diagnostic accu-
racy and useful supplementary information to enhance the
differentiation of fungal infiltrates and pulmonary lymphoma
manifestations in hematological patients.

The imaging data can be acquired with a speed-optimized
MRI protocol including fast T1- and T2-weighted sequences
that have been shown to be suitable for immunocompromised
patients and have also been used to evaluate NICQs [15, 23].
The present results show that first-order statistics can improve
the diagnostic performance of nonenhanced pulmonary MRI
while maintaining a short examination time. It is relevant to
keep the examination time as short as possible, since this
group of patients unlikely tolerates prolonged MRI examina-
tion times [1]. Reliable classification and knowledge of the
underlying entity of pulmonary lesions is essential, as it can
spare patients invasive procedures and allows earlier initiation
of appropriate treatment, such as antifungal therapy opposed
to antineoplastic treatment in patients with pulmonary lym-
phoma manifestation [29].

In our results based on the analysis of PyRadiomics, T1w
uniformity, entropy, and energy along with T2w energy
showed the best performances for differentiating pulmonary
lymphoma and fungal pneumonia.

Uniformity is a measure of the homogeneity with greater
values implying a smaller range of discrete signal intensity
values. Entropy specifies the uncertainty/randomness in the
image values andmeasures the average amount of information
required to encode the image values. Energy is a measure of
the magnitude of the histograms’ voxel values and correlates
with the variation on the brightness levels [30].

When considering the leading lesion, the diagnostic perfor-
mance of T1w entropy was rated excellent and was also sig-
nificantly superior as compared with T1Qmean. However, not
all comparisons yielded significant differences, but the perfor-
mance of T1w entropy, uniformity, and energy along with
T2w energy was generally higher than that of NICQs. T1w
und T2w energy performed similarly when considering all or
just the leading lesion, while T1w entropy and T1wT
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uniformity showed better results when considering the leading
lesion. It is also noteworthy that of the parameters with the
best diagnostic performance, three were a T1w- contrary to
one T2w-parameter.

A brief insight into the pathology would suggest lympho-
mamanifestations to present with higher uniformity and lower
entropy than fungal infiltrates: Fungal infections in neutrope-
nic patients are most commonly caused by invasive
Aspergillus and Candida species [31]. Histologically, these
invasive infections tend to show a suppurative inflammatory
response with intra-alveolar inflammatory fluid and a granu-
lomatous inflammatory response, occasionally surrounded by
fibrosis [32]. Likewise, hemorrhage and necrosis are observed
in invasive fungal lung infections [32, 33]. Cavitation is an-
other finding in patients with pulmonary fungal infection [33].

In contrast, both primary and secondary lymphoma mani-
festations are histologically characterized by extra-alveolar
interstitial infiltrates containing mainly densely packed
mass-forming, neoplastic lymphoid cells [34, 35]. Thus, un-
like inflammatory lesions, pulmonary lymphomas form ho-
mogeneous masses.

However, uniformity was lower and entropy was higher in
lymphoma manifestations. It should be kept in mind that MR
images are a macroscopic representation of the examined tis-
sue and do not necessarily allow conclusions about the exact
histologic tissue composition. Regarding entropy, our results
are in line with those of a study by Suo et al, in which the
heterogeneity of malignant and inflammatory pulmonary le-
sions in CT images was assessed. Though neither pulmonary
lymphomas nor fungal pneumonias were included, the abso-
lute entropy in each regionwas also larger in the cancer than in
the inflammatory lesion group. However, this difference was
not significant (all p > 0.05) [36].

The comparison of the lesion size was not the aim of the
study, but there are obvious differences with larger volumes in
the lymphoma group. However, since readers were not re-
quired tomark the lesion as a whole, sizes were not considered

in the analysis. Nevertheless, size differences themselves
might contribute to differentiating between fungal infections
and pulmonary lymphoma manifestations. Moreover, size dif-
ferences of the lesions have to be considered in the evaluation
of the energy of the lesions: This parameter is volume-
confounded [30]; thus, a difference in size can already lead
to a difference in energy. This may also explain the low
intrarater agreement of energy:

If the ROIs are not equally sized, variability is possible by
the raters or by volume-confounding. Thus, energy would
generally have to be considered as an unreliable parameter
as soon as the ROI sizes are variable.

A further interesting point when looking at the results is
that entropy and uniformity provide a means of an intrinsic
quality assurance: These parameters should behave inversely
[37]; i.e., increasing entropy should be associated with de-
creasing uniformity and vice versa. This was also the reason
for us to finally base the analysis on the results of
PyRadiomics. But independently of this, the results of the
two algorithms also diverge in the other parameters. Since
numerous parameters can be set for the analysis (e.g., resam-
pling, normalization, or bin size to name a few), the results
will also easily deviate. The congruency and behavior of in-
dividual parameters may then remain understandable, but the
effects on the analysis as a whole will become more complex.
This will likely still be the case, although the source code can
be viewed by any user: It must be assumed that most clinicians
and clinical investigators will not be familiar with the under-
lying algorithms. Thus, texture analysis and radiomics in a
broader sense likely remain a “black box” for most users
which could produce results separating entities without the
investigators fully understanding. This also means that any
inconclusive results may easily be adopted. Nevertheless,
radiomics is considered as an emerging new means for image
evaluation and a powerful tool expanding human capabilities.

This study has following limitations:

Table 4 Intraclass correlation
coefficient testing for intra- and
interrater reliability of skewness,
kurtosis, entropy, and uniformity
for T1w and T2w. Results of
interrater testing based on analy-
sis of 33 fungal lesions and 38
lymphoma manifestations; results
of intrarater testing based on
analysis of 9 fungal lesions and 9
lymphoma manifestations. For
both intrarater reliability and
interrater reliability testing, results
of PyRadiomics were considered.
ICC, intraclass correlation
coefficient

Intrarater Interrater

Parameter ICC 95% CI p ICC 95% CI p

T1w Skewness 0.75 0.17–0.93 < 0.005 0.80 0.67–0.87 < 0.001

Kurtosis 0.73 0.06–0.92 < 0.05 0.79 0.66–0.87 < 0.001

Entropy 0.94 0.79–0.98 < 0.001 0.93 0.89–0.96 < 0.001

Uniformity 0.94 0.79–0.98 < 0.001 0.86 0.77–0.91 < 0.001

Energy 0.64 − 0.18 to 0.89 0.05 0.99 0.99–1.00 < 0.001

T2w Skewness 0.90 0.66–0.97 < 0.001 0.84 0.75–0.90 < 0.001

Kurtosis 0.76 0.14–0.93 < 0.05 0.68 0.45–0.80 < 0.001

Entropy 0.92 0.74–0.98 < 0.001 0.95 0.92–0.97 < 0.001

Uniformity 0.81 0.38–0.95 < 0.01 0.82 0.72–0.89 < 0.001

Energy 0.88 0.57–0.96 0.001 0.97 0.96–0.98 < 0.001
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First, texture analysis was confined only to solid portions
of the target lesions. Further studies should focus on analyzing
different regions of a lesion as in the study of Suo et al, who
analyzed and compared edge and core regions [36]. Such a
study design could also provide further insights into the
perilesional space of fungal nodules and the halo sign known
from CT, even when it is not visible to the naked eye on MR
images. Second, histopathologic proof of lymphoma or proof
of the pathogen causing fungal infection was not available in
all patients; therefore, the clinical response to treatment had to
be used as a standard of reference in such cases.

In conclusion, T1w entropy, uniformity, and energy and
T2w energy showed the best performances for differentiating
pulmonary lymphoma from fungal pneumonia and
outperformed NICQs. Results of the texture analysis should
be checked for their intrinsic consistency to identify possible
incongruities of single parameters.
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Study subjects or cohorts overlap This is a subset of patients from a
larger prospective study focusing on the use of signal intensity quotients
for the differentiation of pulmonary lesions. The results are accepted for
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analysis, the MRI scans were re-evaluated retrospectively.

Methodology
• prospective
• observational
• performed at one institution
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included in the article's Creative Commons licence, unless indicated oth-
erwise in a credit line to the material. If material is not included in the
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