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A B S T R A C T

Objective: Osteosarcoma often requires multidisciplinary treatment including surgery, chemotherapy and
radiotherapy. However, tumor behavior can vary widely among patients and selection of appropriate therapies
in any individual patient remains a critical challenge. Radiomics seeks to quantify complex aspects of tumor
images under the assumption that this information is related to tumor biology. This study tested the hypothesis
that a radiomic signature extracted from Diffusion-weighted magnetic resonance images (DWI-MRI) can improve
prediction of overall survival (OS) compared with clinical factors alone in localised osteosarcoma.
Materials/Methods: Pre-treatment DWI-MRI were collected from 112 patients (9–67 years of age) with histolo-
gical-proven osteosarcoma that were treated with curative intent. The entire dataset was divided in two subsets:
the training and validation cohorts containing 76 and 24% of the data respectively. Clinical data were extracted
from our medical record. Two experienced radiotherapists evaluated DWI-MRIs for quality and segmented the
tumor. A total of 103 radiomic features were calculated for each image. Least absolute shrinkage and selection
operator (LASSO) regression was applied to select features. Association between the radiomics signature and OS
was explored. Further validation of the radiomics signature as an independent biomarker was performed by
using multivariate Cox regression. The Cox proportional-hazard regression model was also used to analyze the
correlation between the prognostic factor and the survival for the clinical (C) model after the univariate analysis.
Radiomics (R) model identified radiomics signature, which is the best predictor from the radiomic variable
classes based on LASSO regression. Harrell's C-index was used to demonstrate the incremental value of the
radiomics signature to the traditional clinical risk factors for the individualized prediction performance.
Results: Cox proportional-hazard regression model shows that: Tumor size, alkaline phosphatase (ALP) status
before treatment and number of courses of chemotherapy were proven as the dependent clinical prognostic
factors of osteosarcoma's overall survival time. The radiomics signature was significantly associated with OS,
independent of clinical risk factors (radiomics signature: HR: 5.11, 95% CI: 2.85, 9.18, P<0.001). Incorporating
the radiomics signature into the coalition (C+R) model resulted in better performance (P< .001) for the es-
timation of OS (C-index: 0.813; 95% CI: 0.75, 0.89) than with the clinical (C) model (C-index: 0.764; 95% CI:
0.69, 0.85), or the single radiomics (R) model (C-index: 0.712; 95% CI: 0.65, 0.78).
Conclusion: This study shows that the radiomics signature extracted from pre-treatment DWI-MRI improve
prediction of OS over clinical features alone. Combination of the radiomics signature and the traditional clinical
risk factors performed better for individualized OS estimation in patients with osteosarcoma, which might enable
a step forward precise medicine. This method may help better select patients most likely to benefit from in-
tensified multimodality diagnosis and therapies. Future studies will focus on multi-center validation of an op-
timized model.
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1. Introduction

Osteosarcoma is the most common primary malignant bone tumor
and typically develops during puberty with tumors arising at sites of
rapid bone growth, it accounts for approximately 19% of all bone
cancers [1,2]. Osteosarcoma usually arises in the metaphysis of a long
bone, most commonly around the knee. Involvement of the axial ske-
leton and craniofacial bones is primarily observed in adults [3]. Pa-
tients with clinically detectable lung metastasis account for about
20%–25% of total osteosarcomas diagnosed [4]. Despite significant
advances in the detection and treatment of osteosarcoma over the past
two decades, the 5-year survival of patients with a metastatic disease is
around 20% [5]. Osteosarcoma often requires multidisciplinary treat-
ment including surgery, chemotherapy and radiotherapy. Although the
survival of patients with operable osteosarcoma is improved by che-
motherapy [3,6], however, tumor behavior can vary widely among
patients and selection of appropriate therapies in any individual pa-
tient, especially in children and adolescents, remains a critical chal-
lenge. An important component of management involves the assess-
ment of treatment response to multidisciplinary treatment in
ameliorating recurrence risk. Therefore, the identification of novel
biomarkers of a metastatic and prognostic phenotype is essential for
osteosarcoma therapy.
Although magnetic resonance imaging (MRI) is considered the best

technique for the local staging of musculoskeletal neoplasms [7], it is
relatively little used in the primary diagnosis of bone tumors and its
capacity to evaluate the prognostic might be underestimated [8]. Pre-
sently, prognosis of non-metastatic osteosarcoma is determined largely
based on histological response and completeness of resection [9];
magnetic resonance imaging serves an adjunct role in assessing treat-
ment response, generally on the basis of imaging appearance on fluid
sensitive and post-contrast imaging sequences with a focus on global
tumor volume reduction. Metabolic imaging with FDG PET/CT is also
sometimes employed to ascertain residual hypermetabolic tumor, but
can result in substantial cumulative radiation doses in children [10].
One of the main challenges in assessing treatment response on con-
ventional magnetic resonance imaging is that tumor volume may not
significantly decrease following chemotherapy due to tumor necrosis,
resulting in a stable or paradoxically increased tumor volume [11]. In
addition, the osteoid component of osteogenic tumors such as con-
ventional osteosarcoma does not appreciably change on fluid-sensitive
and contrast-enhanced sequences [12]. Anatomic musculoskeletal MRI
also does not provide information regarding viability of tumor tissue
[13]. Diffusion-weighted imaging (DWI) MRI can capture changes at
the cellular level thanks to differences in movement of water protons in
the different tissue regions [14]. Therefore, DWI-MRI can provide in-
formation regarding tumor cellularity as a surrogate indicator of
treatment response on the basis of a quantitative value [15].
However, the clinical utility of these factors was limited and un-

clear. Therefore, new tools are urgently needed to identify patients who
are at risk of having a poor prognosis. For the past several years, as an
emerging individualized precision medical technology, radiomics has
applied advanced computational methodologies to transform the image
data of the regions of interest into high dimensional feature data. Next,
quantitative and high-throughput analysis of feature data is completed
to probe tumor phenotype [16,17]. Radiomics utilizes noninvasive
imaging to provide more comprehensive information about the entire
tumor and can be used in diagnosis, prognosis and prediction [18].
Patients with overt metastases at diagnosis have a very different

outlook to those with apparently localised disease. The value of quan-
titative imaging would be much more valuable in the majority of pa-
tients that have localised disease. Thus, in this study, we developed and
validated multiparametric DWI-MRI based radiomics as a novel ap-
proach for providing individualized, pretreatment evaluation of overall
survival in patients with localised osteosarcoma. In addition, we sought
to reveal association between radiomics features and clinical data.

2. Materials and methods

2.1. Sample size

Small sample size will increase both the type-I (incorrectly detecting
a difference) and type-II (not detecting an actual difference) error rates
[19]. To generate accurate estimates of the impact of the depended
variables, an adequate number of events per variable is required. For
the training sample size, Chalkidou proposed that for linear models, like
multiple regression, at least 10 to 15 observations per predictor variable
is required to produce reasonably stable estimates [20]. In our study,
eight features were selected for the final model and the minimum
training data size was 80. While for the validation sample size, we
performed a power calculation to estimate the sample size for our study
[21] and found that the minimum sample size is 24. In our study, 112
patients (85 training data and 27 validation data) were analyzed, which
were sufficient.

2.2. Study population

This study comprised an evaluation of the institutional database for
medical records from January 2012 to December 2017 to identify pa-
tients with histologically confirmed osteosarcoma according to the
World Health Organization (WHO) classification [22]. 112 con-
secutively selected patients with localised osteosarcoma were retro-
spectively analyzed. Ethical approval was obtained for this analysis.
The entire dataset was divided in two cohorts: (I) the training set
containing the data used to train the model (n=85); (II) the validation
set containing the data used to validate the model(n=27); see the
Statistical Analysis section. All patients underwent to a DWI-MRI ac-
quisition before starting the treatment. All patients’ data were anon-
ymized before the analysis.

2.3. Follow-up

All patients were followed up every 3 months during the first 2
years, every 6 months in years 2–5, and annually thereafter. To provide
an efficient tool that would allow final personalized treatment, we
chose overall survival (OS) as the endpoint. We calculated OS from the
first day of treatment to the death from osteosarcoma, and the date of
any cause to death or the last follow-up visit (censored). Baseline
clinical data in the training and validation cohort, including age,
gender, Enneking stage, tumor size, Karnofsky performance status
(KPS), location of tumors, alkaline phosphatase (ALP) and lactate de-
hydrogenase (LDH) status before treatment, local recurrence, number
of courses of chemotherapy, chemotherapy regimen, pathological
fracture, were obtained from the medical records (Table 1).

2.4. Image acquisition

DWI-MRI images without applying any preprocessing or normal-
ization were acquired as Digital Imaging and Communications in
Medicine (DICOM) using GE Discovery MR 750 3.0T with 8 channel
phased array coil and spine array coil for signal reception. The data
were acquired axially by means of echo planar imaging. DWI images
were acquired using b-value (600 s/mm2).

2.5. Manual tumor delineation

All tumor target areas were performed by two experienced radio-
therapists, and each plan was verified by a senior radiotherapist with
more than twenty years of experience. The region of interest (ROI)
covered the gross tumor volume (GTV) and was delineated on each slice
of primary osteosarcoma in MIM software (www.mimsoftware.com).
The radiologists were blind to one another.
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2.6. Quantitative imaging feature extraction

With the help of image quantification features, radiomics feature
parameters can be used to quantitatively evaluate the differences be-
tween tumor phenotypes (Fig. 1). A total of 103 selected quantitative
imaging features were extracted from the information contained in the
voxels of the tumor region segmented by the three strategies (Graph-
Cut,GrowCut,Manual Segmentation). This process was implemented in
IBEX (Imaging Biomarker Explorer, MD Anderson cancer center, USA),
an open-source, easy to use radiomic software [23]. These features were
organized into three categories: (I) 49 first-order statistical features
derived from the tumor intensity histogram reflect distribution of va-
lues of individual voxels without concern for spatial relationships; (II)
38 textural features describe spatial arrangement of voxels were cal-
culated from different parent matrices, including gray-level co-occur-
rence matrix (GLCM), gray level run-length matrix (GLRLM), neighbor

gray-tone difference matrix (NGTDM); (III) 16 shape based features
provide the geometrical of tumor volume. The complete list of the main
features and their texture interpretation is reported in Table 2. A more
detailed description about their computation can be found in previous
reviews [21,24].

2.7. Statistical analysis

The statistical analysis was performed with R software, version
3.4.3 (http://www.R-project.org. The survival R package was used for
Kaplan-Meier survival analyses; the glmnet R package was used for the
least absolute shrinkage and selection operator (LASSO) Cox regression
model, which is suitable for the regression of high-dimensional data
[25]; the Hmisc R package was used for comparisons between C-index),
and X-tile software, version 3.6.1 (Yale University School of Medicine,
New Haven, Conn) [26], SPSS version 20.0 (SPSS, Chicago, IL, USA).
All statistical tests were two-sided, and P values of <0.05 were con-
sidered significant.
The differences in age, gender, Enneking stage, tumor size, KPS,

location of tumors, ALP and LDH status before treatment, local recur-
rence, number of courses of chemotherapy, chemotherapy regimen,
pathological fracture, mean follow-up time between the training and
validation cohorts were assessed by using an independent samples t
test, χ2 test, or Mann-Whitney U test, where appropriate.

2.8. Construction of the radiomics score-based radiomics signature

According to the Harrell guideline, the number of events should
exceed the number of included covariates by at least 10 times in a
multivariate analysis [27]. To address this issue, LASSO regression
model was used to select the most useful prognostic features in the
training cohort. The selected imaging features were then combined into
a radiomics signature (Fig. 2). A radiomics score (Rad-score) was
computed for each patient through a linear combination of selected
features weighted by their respective coefficients [28].

2.9. Validation of radiomics signature

The potential association of the radiomics signature with OS was
first assessed in the training cohort and then validated in the validation
cohort by using Kaplan-Meier survival analysis. With the help of X-tile
software, the patients were classified into high-risk or low-risk groups
according to the Rad-score. The difference in the survival curves of the
high-risk and low-risk groups was evaluated by using a weighted log-
rank test (the G-rho rank test, rho= 1) for a substantial increase in
efficiency because the event rate was relatively low compared with the
sample size [29].
Evaluation of the multi-feature-based radiomics signature as an in-

dependent biomarker was performed by integrating the selected clinical
risk factors into the multivariable Cox proportional hazards model.

2.10. Clinical features selection

The factors of age, gender, Enneking stage, tumor size, KPS, location
of tumors, ALP and LDH status before treatment, local recurrence,
number of courses of chemotherapy, chemotherapy regimen, and pa-
thological fracture were included in univariate analysis. Kaplan-Meier
method was used to calculate the overall survival rate. The univariate
analysis was used to determine the prognostic factors related with
survival rate by log-rank test. The Cox proportional-hazard regression
model was used to analyze the correlation between the prognostic
factor and the survival [27].

Table 1
Patient and tumor characteristics in the training and validation cohorts.

Characteristic Training cohort
(n=85)

Validation cohort
(n=27)

Gender
Male 49 (57.6%) 15 (55.6%)
Female 36 (42.4%) 12 (44.4%)

Age (y)
Median(IQR) 18 (14–49) 17.5 (13.75–49)
≤15 33 (38.8%) 11 (40.7%)
>15 52 (61.2%) 16 (59.3%)

Enneking stage
IA 8 (9.4%% 3 (11.1%)
IB 17 (20%) 6 (22.2%)
IIA 32 (36.6%) 10 (37%)
IIB 22 (25.9%) 5 (18.5%)
III 6 (7.1%) 3 (11.1%)

Tumor size (ml)
≥150 23 (27%) 8 (29.6%)
<150 62 (73%) 19 (71.4%)

KPS
≥80 57 (67%) 14 (51.9%)
<70 28 (33%) 13 (48.1%)

Pathological fracture
Yes 14 (16%) 4 (14.8%)
No 71 (84%) 23 (85.2%)

Location of tumors
Limb 61 (72%) 17 (63%)
Torso 24 (28%) 10 (37%)

ALP before treatment (U/L)
Median (IQR) 129 (79–210) 125 (81–204)
>125 47 (55.3%) 18 (66.7%)
≤125 38 (44.7%) 9 (33.3%)

LDH before treatment (U/L)
Median (IQR) 192 (168–235) 197 (162–241)
>245 19 (22.4%) 10 (37%)
≤245 66 (77.6%) 17 (63%)

Local recurrence
Yes 27 (31.8%) 9 (33.3%)
No 58 (68.2%) 18 (66.7%)

Number of courses of
chemotherapy

≥6 33 (38.8%) 10 (37%)
<6 52 (61.2%) 17 (63%)

Chemotherapy regimen
AP regimen 34 (40%) 12 (44.4%)
Others 51 (60%) 15 (55.6%)

Follow-up time (mo)
Median(IQR) 45 (38–51) 43 (36–50)

Note. Unless otherwise specified, data are numbers of patients, with percen-
tages in parentheses. No difference was found between the training data set and
the validation data set in either the clinical characteristics or the follow-up data
(P= .538–.982).
Abbreviations: IQR, inter-quartile range; KPS, Karnofsky Performance Status;
ALP, alkaline phosphatase; LDH, lactate dehydrogenase; AP, cisplatin/doxor-
ubicin
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2.11. Assessment of incremental value of radiomics signature in individual
OS estimation

To demonstrate the incremental value of the radiomics signature to
the traditional staging system and other clinical risk factors for in-
dividualized assessment of OS in patients with osteosarcoma, both a
Rad-score and a clinical feature were presented in the validation cohort.

Compared with the incremental value of other clinical risk factors,
the traditional clinical radiological characteristics were calibrated and
evaluated. The potential of the radiomics signature was compared with
that of the traditional assessment model. To quantify the discrimination
performance, the Harrell concordance index (C-index) was measured,
along with the concordance probability estimate considering the high
degree of censoring in our data (1 indicates perfect concordance; 0.5
indicates no better concordance than chance) [30].

3. Results

3.1. Clinical Characteristics and OS

As of the last follow-up, the mean OS was 43.19 months, and the
median OS was 45 months. The shortest OS was 12 months.
No difference was found in the factors of age, gender, Enneking

stage, tumor size, KPS, location of tumors, ALP and LDH status before
treatment, local recurrence, number of courses of chemotherapy, che-
motherapy regimen, pathological fracture, mean follow-up time were
not statistically different in the two groups between the training cohort
and the validation cohort in either clinical characteristics or follow-up
data (P= .538–.982; Table 1).

3.2. Radiomics feature selection and radiomics signature building

Among 254 originals parameters extracted from magnetic resonance
images, 87 and 64 were excluded due to poor repeatability (ICC<0.9)
and strong regional volume correlation (r>0.85), respectively. Finally,
103 independent radiomics features were incorporated into LASSO
analysis. Among these features, we selected 8 features from DWI images
after using glmnet R data package for LASSO logistic regression, and
analyzed the correlation between parameters (Fig. 3). The results
showed that although some parameters had a high positive correlation
or negative correlation, on the whole, the correlation between para-
meters was low and had a high independence (r=0.23 ± 0.65).
These characteristics are closely related to the overall survival time

in the training cohort. To construct radiomics signature, these features
were used for inclusion in the Rad-score prognostic model. Rad-score
for each patient in the training cohort was shown in Fig. 4.
The texture features with a nonzero coefficient in the LASSO Cox re-

gression model were as follows: GLCM-Inverse_Variance, GLRLM-
Run_Length_Non_uniformity, GLRLM-Short_Run_Low_Gray_Level_Empha,
IH-Quantile_0.025, SHAPE-Convex, SHAPE-Mass, SHAPE-
Number_Of_Voxel, SHAPE-Orientation.
The radiomics signature was constructed, with a Rad-score calcu-

lated by using the following formula （Rad-score was computed for
each patient through a linear combination of selected features weighted
by their respective coefficients）:

Fig. 1. Radiomics methods overview. (A),
Image segmentation is performed on DWI-MRI
images. Experienced radiologists contour the
tumor areas on all MRI slices with planning
software MIM. (B), Features are extracted from
within the defined tumor contours on the MRI
images, quantifying tumor intensity, shape,
texture. (C) For the analysis, the radiomics
features are compared with clinical data.
Abbreviations: DWI, Diffusion Weighted
Imaging; GLCM, Gray-level co-occurrence ma-
trix; GLRLM, Gray level run-length matrix;
NGTDM, Neighbor gray-tone difference ma-
trix.

Table 2
List of the main texture analysis methods.

Method Texture interpretation Main estimated
features

Intensity
Histogram

Global distribution of intensity values in
terms of spread, symmetry, flatness,
uniformity and randomness

Inter quartile
range
Quantile
Percentile area
Kurtosis
Mean absolute
deviation

GLCM Spatial relationship between pixel in a
specific direction, highlighting the
properties of uniformity, homogeneity,
randomness and linear dependency of
the image

Inverse variance
Entropy
Dissimilarity
Correlation
Energy
Contrast
Homogeneity

GLRLM Texture in a specific direction, where
fine texture has more short runs whilst
coarse texture presents more long runs
with different intensity values

Short-run
emphasis
Run length non-
uniformity
Long-run
emphasis
Grey-level non-
uniformity
Run percentage

NGTDM Spatial relationship among three or
more pixels, closely approaching the
human perception of the image

Busyness
Coarseness
Complexity
Texture strength
Contrast

Shape Shape has 16 feature values that mainly
describe the 3d size and Shape of the
mask image.

Maximum 3D
diameter
Number of voxel
Compactness
Convex
Mean breadth
Mass
Orientation
Surface area
density
Volume

Abbreviations: GLCM, Gray-level co-occurrence matrix; GLRLM, Gray level run-
length matrix; NGTDM, Neighbor gray-tone difference matrix.
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Rad-score=GLCM-InverseVariance × (–2.51323077)+GLRLM-
Run_Length_Non_uniformity × (−0.10737204)+GLRLM-Short_R
un_Low_Gray_Level_Empha ×0.00227+ IH-Quantile0.025 × (−0.7
4684231)+ SHAPE-Convex × (−2.61241068)+ SHAPE-Mass × 0.20
896467+ SHAPE-Number_Of_Voxel × 2.35344525+ SHAPE-Orie
ntation × (−0.97096879).
The optimum cutoff generated by the X-tile plot was −3.92.

Accordingly, patients were classified into a high-risk group (Rad-
score ≥ −3.92) and a low-risk group (Rad-score<−3.92) (Fig. 5).

3.3. Validation of radiomics signature

The radiomics signature was associated with the OS in the training
cohort (P=0.0452; HR=5.35, 95% confidence interval [CI]:
3.22,8.87), and this finding was confirmed in the validation cohort
(P<0.001; HR= 5.09; 95% CI: 3.12, 7.91). Patients with lower Rad-
scores generally had better OS: When the patients were stratified on the
basis of clinical risk factors, a significant association was found in one
or more subgroups (Fig. 6).

3.4. Clinical features selection

After the univariate analysis in the clinical factors, number of

courses of chemotherapy, KPS, tumor size, ALP status before treatment,
and pathological fracture were selected to be applied in the clinical (C)
model. Cox proportional-hazard regression model to analyze the cor-
relation between the prognostic factor and the survival. The significant
result as follow, ALP status before treatment: HR:1.96, 95% CI: 1.19,
3.12, P= .009; number of courses of chemotherapy: HR:1.89, 95% CI:

Fig. 2. R-plot algorithm for the relationship between the region-of-interest image filtration process and overall survival.

Fig. 3. The correlation between selected radiomics characteristic parameters. Green indicates that there is a positive correlation between the two parameters, while
gray indicates that there is a negative correlation between the two parameters. The overall correlation between the radiomics parameters in the model was relatively
low, with high independence: r=0.23 ± 0.65. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. Rad-score for each patient in the training cohort. Black bars show scores
for patients who survived without disease relapse or were censored, while blue
bars show scores for those who experienced relapse or died. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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0.83, 4.29 P= .031; tumor size: HR: 3.56, 95% CI: 2.10, 6.23; P
= .003). Therefore, in the clinical models, tumor size, ALP status before
treatment and number of courses of chemotherapy were proven as the
dependent prognostic factors of osteosarcoma's overall survival time
(Table 3).
Then, a Cox regression analysis used in C+R (clinical+ radiomics)

model identified radiomics signature as independent risk factors
(radiomics signature: HR: 5.11, 95% CI: 2.85, 9.18, P<0.001).

3.5. Evaluation of incremental value of radiomics signature in individual OS
performance

The discrimination performance of the radiomics signature im-
proved when it was integrated into the coalition model along with the
clinical risk factors (C-index for the C+R model:0.813; 95% CI: 0.75,
0.89). Compared with either clinical (C) model (C-index: 0.764; 95% CI:
0.69, 0.85) or the single radiomics (R) model (C-index: 0.712; 95% CI:
0.65, 0.78), the C+R model showed a better discrimination capability
(P<0.01 for each comparison, except the ALP+Rad-score vs. Rad-
score group, P=0.607 and tumor size+Rad-score vs. Rad-score
group, P=0.191) (Table 4).

4. Discussion

This study developed and validated a diagnostic approach based on
DWI-MRI radiomics model for individualized evaluation of OS before
treatment in osteosarcoma. We showed that radiomics features com-
plemented the clinical system, helping to provide better prognostic
ability for the OS of osteosarcoma.
Our research shows that the difference of number of courses of

chemotherapy, KPS, pathological fracture in the univariate analysis of
patients with osteosarcoma was statistically significant, but there was
no significant difference in the multiple factors analysis, which illus-
trates that one of the prognosis of the clinical factors as a single factors
will be influenced by various other prognostic factors. Maybe there is a
certain correlation in univariate analysis, but it has also lost its meaning
in the multivariate analysis. Otherwise, tumor size, ALP status and
number of courses of chemotherapy were proven as the dependent
prognostic factors of osteosarcoma's overall survival time, this finding is
consistent with findings of previous studies [3,31], but there are still
some otherness, which may be caused by differences in the therapy
method and the clinical stage.
The delineation of the target area is the most critical and technical

part of radiology because the subsequent characteristic data are gen-
erated by the segmented volume, although the boundaries of many
tumors are not clear [32,33]. Compared with CT or PET/CT, MRI
provides better tissue contrast, it has multiplanar capacity, and exhibits

Fig. 5. X-Tile for OS: The optimum cutoff generated by the X-tile plot was
−3.92

Fig. 6. Graphs show results of Kaplan-Meier survival analyses according to the radiomics signature for patients in the training data set (left) and those in the
validation data set (right). A significant association of the radiomics signature with the overall survival time was shown in the training data set, which was then
confirmed in the validation data set.

Table 3
Risk Clinical Factors for overall survival in Osteosarcoma.

Clinical factors β Pvalue Hazard ratio 95% CI

KPS −0.78 0.06 0.43 025–0.79
Number of courses of chemotherapy 0.64 0.03 1.89 0.83–4.29
Tumor size 1.29 0.003 3.56 2.10–6.23
ALP status before treatment 0.67 0.009 1.96 1.19–3.12
Pathological fracture −0.11 0.92 0.94 0.43–2.11

Note. β is the regression coefficient.
Abbreviation: 95% CI, 95% confidence interval.

Table 4
Performance of models.

Model C-Index 95% CI Pvalue

Radiomics signature 0.712 0.65, 0.78 <0.01
Clinical Characteristic 0.764 0.69, 0.85 <0.05
C+R 0.813 0.75, 0.89 <0.01

Abbreviations: C-index, concordance index; C, clinical model; R, radiomics
model.
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fewer artifacts from radiation and bone beam hardening, that allows
tumor borders to be delineated more accurately [32,34]. DWI-MRI
dependent upon tumor cellularity and perfusion, significant associa-
tions of key imaging features in the initial assessment of osseous sar-
comas, which supports DWI as an alternative to gadolinium-based
contrast-enhanced MRI [35].
For the construction of the radiomics signature, 103 candidate radiomics

features were reduced to 8 potential predictors by examining the predictor-
outcome association by shrinking the regression coefficients with the LASSO
method. The identified signature consisted of the following features: GLCM-
Inverse_Variance, GLRLM-Run_Length_Non_uniformity, GLRLM-
Short_Run_Low_Gray_Level_Empha, IH-Quantile_0.025, SHAPE-Convex,
SHAPE-Mass, SHAPE-Number_Of_Voxel, SHAPE-Orientation, which are
consistent with results of recent studies of risk stratification [36]. Previous
studies have supported the hypothesis that radiologic and phenotypic in-
formation of tumors can be inferred from imaging [37,38]. The current
study suggests that the identified features may suggest survival outcomes,
which supports the idea that radiomics signature capture intra-tumoral
heterogeneity in a non-invasive manner and it can be associated with pa-
tient outcomes. Further research in radiomics is needed to establish a bio-
logical basis for texture heterogeneity to identify potential radiomics-bio-
logics correlations. The multi-feature-based radiomics signature could be
used to successfully estimate the survival time. The result is understandable
because the potential nuances or confounding effects of other risk factors
may exist in a single data set [39].
The radiomics signature of DWI-MRI successfully stratified patients

into high-risk and low-risk groups, which were separated on the basis of
the median Rad-score. It incorporates the radiomics signature and
clinical risk factors into an easy-to-use model, which facilitates the in-
dividualized prediction of these patients with osteosarcoma. It shows
that a radiomic signature extracted from pre-treatment DWI-MRI im-
proves the prediction of OS over clinical features alone. The technology
could help doctors better select patients who are most likely to benefit
from multimodal treatment.
In addition, researchers naturally combine multiple disease mani-

festations of patients to estimate and determine follow-up treatment,
rather than focusing on a single symptom, which emphasizes the ne-
cessity of multivariate estimation. Until now, the overall scientific
quality and reporting of MRI radiomics studies is insufficient. Reporting
of study objectives, blind assessment, sample size, and missing data are
deemed to be necessary [40]. We still need to make scientific im-
provement to make them reproducible, and useful for clinical analysis
and scientific categories. Studies have shown that in the absence of any
combined model, it is difficult to assess the overall outcome of an in-
dividual patient's prognosis by using a single risk factor which is con-
sidered powerful. Recently, more findings prove that imaging is a useful
tool for the combination of prognostic molecular signatures and clinical
risk factors. 99m Tc-MIBI imaging is a useful tool for the evaluation of
neoadjuvant chemotherapy in patients with osteosarcoma, and its dual
mechanisms could be simultaneously used in predicting and evaluating
tumor response to chemotherapy [41]. Gene pathways related to im-
mune system regulation and extracellular signaling had the highest
number of significant radiomic feature associations [42]. All these have
proved that the multi-mode model combined with image data proces-
sing can be a good guide for the clinical prognosis and treatment of
malignant tumors.
The limitations of this study are that the number of patients is low,

and it was contributed by the retrospective nature of data collection.
Although the preferred design should be a prospective longitudinal
cohort study, this allows for better control of all relevant risk factors
and outcomes, ensures that no bias is introduced, and minimizes the
loss of follow-up [39]. The protracted length of a prospective long-
itudinal cohort study in Osteosarcoma (because of the long wait needed
for survival outcomes) may make the research daunting [9,31]. How-
ever, we believe that our findings are sufficient to encourage larger,
multicenter clinical studies in patients with osteosarcoma and even soft

tissue sarcoma, they are expected to be evaluated by using radiomics to
better determine indications for surgery and adjuvant chemotherapy.

5. Conclusion

It can be concluded from the results of this study that the union
model (C+R) which incorporates both the radiomics signature and
clinical risk factors is feasible, it provides valuable information to
predict the overall survival time in patients with osteosarcoma, and
improves the value of evaluation compared with the traditional clinical
model. It is worth mentioning that the radiomics model alone also has a
good prognostic ability, but in order to be more responsible for patients
with osteosarcoma, it is recommended to use the combined model for
prediction. This method may help better select patients most likely to
benefit from intensified multimodality diagnosis and therapies.
Optimization of the model is still needed with a study of larger cohorts
and inclusion of other categories of features, other imaging modalities,
and other "-omics" criteria.
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