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Abstract

Sensing of pathogens by innate immune cells is essential for the initiation of appropriate

immune responses. Toll-like receptors (TLRs), which are highly sensitive for various struc-

turally and evolutionary conserved molecules derived from microbes have a prominent role

in this process. TLR engagement results in the activation of the transcription factor NF-κB,

which induces the expression of cytokines and other inflammatory mediators. The exquisite

sensitivity of TLR signalling can be exploited for the detection of bacteria and microbial

contaminants in tissue cultures and in protein preparations. Here we describe a cellular

reporter system for the detection of TLR ligands in biological samples. The well-character-

ized human monocytic THP-1 cell line was chosen as host for an NF-κB-inducible enhanced

green fluorescent protein reporter gene. We studied the sensitivity of the resultant reporter

cells for a variety of microbial components and observed a strong reactivity towards TLR1/2

and TLR2/6 ligands. Mycoplasma lipoproteins are potent TLR2/6 agonists and we demon-

strate that our reporter cells can be used as reliable and robust detection system for myco-

plasma contaminations in cell cultures. In addition, a TLR4-sensitive subline of our reporters

was engineered, and probed with recombinant proteins expressed in different host systems.

Bacterially expressed but not mammalian expressed proteins induced strong reporter activ-

ity. We also tested proteins expressed in an E. coli strain engineered to lack TLR4 agonists.

Such preparations also induced reporter activation in THP-1 cells highlighting the impor-

tance of testing recombinant protein preparations for microbial contaminations beyond

endotoxins. Our results demonstrate the usefulness of monocytic reporter cells for high-

throughput screening for microbial contaminations in diverse biological samples, including

tissue culture supernatants and recombinant protein preparations. Fluorescent reporter

assays can be measured on standard flow cytometers and in contrast to established
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detection methods, like luciferase-based systems or Limulus Amebocyte Lysate tests, they

do not require costly reagents.

Introduction

A recurrent problem in biomedical research is the presence of microbial contaminants in

biological samples. Prominent and widespread examples are mycoplasma infestations of

long-term cell cultures or presence of gram-negative endotoxins in recombinant proteins.

Unchecked contaminations with bacterial products seriously impact on experimental research

and can render data unusable. Sensitive detection methods for the presence of microbial prod-

ucts are therefore of vital importance. Various test systems are currently in routine use: The

Limulus amebocyte lysate (LAL) test for endotoxin and various PCR-based or enzymatic tests

for mycoplasma detection [1, 2]. Most of these assays are time intensive and require additional

non-standard reagents and equipment. For the current study we aimed to exploit the exquisite

sensitivity of evolutionary conserved pattern recognition receptors (PRRs) for the generation

of a sensitive cellular reporter platform.

PRRs enable innate cells to recognize molecular structures conserved across microbial spe-

cies, also known as pathogen-associated molecular patterns (PAMPs). As such, they are a cru-

cial component of the first-line defence mechanisms following barrier breach by microbes.

Additionally, several PRRs can initiate sterile inflammation by responding to endogenous

danger signals, or damage-associated molecular patterns (DAMPs), released by damaged or

dying cells. Currently four classes of PRRs are known: The transmembrane Toll-like receptors

(TLRs), the C-type lectin receptors (CLRs), the cytoplasmic retinoic acid-inducible gene

(RIG)-I-like receptors (RLRs) and NOD-like receptors (NLRs). Toll was discovered two

decades ago as an essential receptor in anti-fungal host defence in Drosophila, which lacks

adaptive immunity [3–5]. Shortly afterwards, TLR4 was described as the first mammalian

homolog of Toll, driving NF-κB-mediated expression of inflammatory cytokines in response

to lipopolysaccharide (LPS) [5]. TLRs are type I integral membrane glycoproteins with an N-

terminal ligand recognition domain, a single transmembrane helix, and a C-terminal cyto-

plasmic signalling domain. The N-terminal TLR ectodomains (ECDs) encounter microbial

components either at the exterior cell surface or intracellularly in the lumen of the endosomal/

lysosomal compartment. TLR-ECDs are composed of 19–25 leucine-rich repeats (LRR), giving

rise to the prototypic large horseshoe shape. The C-terminal signalling domains are known as

Toll/IL-1 receptor (TIR) domains because they share homology with the signalling domains of

IL-1 receptor family members [6, 7]. Up to date ten TLR genes in humans have been identified,

yet the ligand of TLR10 is still unknown [8, 9]. PAMPs recognized by different TLRs include

bacterial cell wall components, bacterial DNA and viral double stranded RNA molecules [10–

12]. The nucleotide-sensing TLRs 3, 7, 8 and 9 are localized at intracellular membranes which

is in contrast to the plasma membrane where most microbial cell wall reactive TLRs reside.

Toll-like receptor 2 (TLR2) has been shown to play a crucial role in recognizing peptidoglycans

and lipopeptides [13, 14]. Heterodimerization with TLR6 confers specificity towards diacy-

lated lipopeptides derived from mycoplasma, whereas TLR1/2 heterodimers react towards

triacylated lipopeptides of gram-negative origin [13, 15]. LPS is the major component and vir-

ulence factor of the outer membrane of gram-negative bacteria and triggers TLR4 in complex

with CD14 and MD2 [16]. Several different lipopeptides commonly associated with LPS can in

addition trigger TLR2 responses [17]. Thus each individual TLR plays a specialized role in

detecting microbial components and thereby contributes to the shaping of an appropriate
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immune response against pathogens [18]. In addition, presence of TLR ligands even at very

low doses results in non-resolving inflammatory responses and might play a role in chronic

diseases like atherosclerosis [19, 20]. Upon ligand engagement, TLRs form homo- or heterodi-

mers and relay signals via two major downstream TIR-domain containing cytoplasmic adaptor

proteins, myeloid differentiation primary-response protein 88 (MyD88) and TIR domain-con-

taining adaptor protein inducing IFN-β (TRIF). While MyD88 is utilized by all TLRs, TRIF

mediates an alternative pathway downstream of TLR3 and TLR4. The MyD88-dependent sig-

nalling cascade is further propagated by the engagement of members of the IRAK (IL-1R-asso-

ciated kinase) serine/threonine kinases and the adaptor molecules TNF receptor-associated

factors (TRAFs). These complexes induce the activation of transcription factors like nuclear

factor-κB (NF-κB), activator protein 1 (AP-1) and the interferon-regulatory factors (IRFs) and

subsequently the release of pro- and anti-inflammatory cytokines [21, 22].

Here we describe the generation of a transcriptional fluorescent reporter system, based on

the human monocytic THP-1 cell line. THP-1 cells naturally express a broad range of PRRs

and are commonly used to explore TLR signalling or inflammasome activation [23]. A

reporter cassette comprising of an NF-κB-driven enhanced green fluorescent protein (eGFP)

gene was introduced into wild-type THP-1 cells. In their basic configuration, our THP-1 NF-

κB-eGFP cells displayed a high and strictly dose-dependent sensitivity towards TLR2 ligands.

We could demonstrate that our reporters detected mycoplasma contaminations from fresh,

heat-inactivated and cryo-stored cell culture supernatants with equally high sensitivity. By

introducing a combination of TLR4, CD14 and MD2, we widened the detection range towards

TLR4 ligands, and successfully applied the reporters to the detection of endotoxin in recombi-

nant protein preparations. Our novel THP-1-based reporter cell line thus represents a reliable

and cost-effective tool to monitor microbial contaminations in a high-throughput format that

can be conveniently analysed on standard flow cytometers.

Materials and methods

Reagents and cell culture

The human monocytic cell line THP-1 [24], the human myelogenous leukaemia cell line K562

[25] and HEK293 hTLR4A-MD2-CD14 (Invivogen, San Diego, CA) were maintained in

RPMI 1640 supplemented with 10% heat-inactivated fetal calf serum (FCS), 100 μg/mL strep-

tomycin and 100 U/mL penicillin. Cells were cultured in a humidified atmosphere (5% CO2)

at 37˚C. All materials were obtained from Sigma-Aldrich (St. Louis, MO), unless stated other-

wise. Agonists for TLR1/2 (Pam3CSK4, synthetic triacylated lipopeptide), TLR2/6 (FSL-1, syn-

thetic diacylated lipopeptide), TLR3 (poly I: C, synthetic analogue of double-stranded RNA

(dsRNA)), TLR4 (LPS-EB ultrapure), TLR5 (Flagellin), TLR7/8 (resiquimod (R848), imidazo-

quinoline analogue), TLR9 (Class B CpG oligonucleotide ODN 2006) and neutralizing TLR6

mAb clone C5C8 were purchased from Invivogen (San Diego, CA). The TLR2/6 agonist

MALP-2 was purchased from Novus Biologicals (Littleton, CO). Standard LPS (Escherichia
coli 0127:B8), Phorbol-12-myristat-13-acetat (PMA) and ionomycin were obtained from

Sigma Aldrich (St. Louis, MO). For mycoplasma detection experiments different potentially

contaminated cell sources were provided by Maria Eisenbauer (Institute of Cancer Research,

Medical University of Vienna, Austria). These cells originated from (1) mouse tail cells, (2)

human mesotheliom, (3) human melanoma brain metastasis-derived cell line YDFR, (4)

human LN229 glioblastoma, (5) human ovarian cancer cells, (6) COS-7 cell line and (7)

human skin fibroblasts (S1 Table). Recombinant TNF-α protein was purchased from Pepro-

tech (London, UK) and monoclonal TNF-α blocking antibody Adalimumab (trade name

Humira) was obtained from AbbVie Inc., North Chicago, IL.
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Flow cytometry

Acquisition of flow cytometry data was performed using FACS Calibur with CellQuest soft-

ware (both BD Biosciences, San Jose, CA). Data was analysed using FlowJo software (version

10.0.8., Tree Star, Ashland, OR). Fluorescence intensity is shown on a standard logarithmic

scale.

Generation of stable THP-1 NF-κB-eGFP and THP-1 TLR4-CD14 NF-

κB-eGFP reporter cells

The NF-κB-eGFP reporter construct was previously described [26]. The THP-1 cells were ret-

rovirally transduced with the NF-κB-eGFP construct and resting cells were sorted to eGFP-

low expression. From these, single cell clones were established to obtain a stable expressing

NF-κB-eGFP reporter cell line (S1 Fig). To obtain TLR4-sensitive reporter cells, retroviral

expression constructs encoding human TLR4, CD14 and MD2 were cloned into the retroviral

vector pCJK2 generated in our laboratory [27, 28]. The previously generated THP-1 NF-κB-

eGFP reporter cell line was transduced with these expression vectors and single cell clones

were established.

THP-1 reporter assays

For reporter assays, THP-1 NF-κB-eGFP cells were incubated in the presence of stimuli for 24

h. Assays were performed in 96-well flat bottom plates at 5x104 cells per well in a total volume

of 100 μl (including stimulus). Cells were then harvested and eGFP expression was analysed by

flow cytometry. Mean and standard deviation of the geometric mean of fluorescence intensity

(gMFI) of the viable population of reporter cells was determined. All samples were analysed in

triplicates, unless indicated otherwise. For TNF-α blocking assays, THP-1 reporter cells were

incubated together with a monoclonal TNF-α antibody Adalimumab (Humira; 10 μg/ml) and

different concentrations of LPS, TNF-α or mycoplasma supernatants. For TLR6 blocking

experiments, THP-1 reporter cells were pre-treated with 5 μg/ml mouse IgG1 (MOPC-21) or

TLR6 mAb (C5C8) for 30 min at 37˚C, then stimulated with FSL-1, MALP-2, LPS, or myco-

plasma supernatants. For mycoplasma detection, 50 μl cell-free tissue culture supernatants

were applied to THP-1 reporters in 50 μl fresh medium (final dilution 1:2). In some experi-

ments frozen (-20˚C for at least 1 h) or heat-treated (5 min 95˚C) cell culture supernatants

were used. Cell cultures whose supernatants induced eGFP gMFI values in the reporter

cells that were 50% higher compared to untreated reporter cells were scored as mycoplasma

positive.

Maturation of monocyte-derived dendritic cells by TLR agonists

Peripheral blood mononuclear cells (PBMCs) were isolated from heparinized whole blood

of healthy volunteer donors (red-cross Austria) by standard density-gradient centrifugation

with Lymphoprep (Axis-Shield PoC AS, Oslo, Norway). Donors gave their informed consent

and approval was obtained from the ethics committee of the Medical University of Vienna

(ECS1183/2016). Monocytes were isolated from PBMCs with the MagniSort1 Human CD14

Positive Selection Kit (Thermo Fisher Scientific, Waltham, MA). Monocyte-derived dendritic

cells (moDCs) were generated from the isolated monocytes by incubation with IL-4 and

GM-CSF (Peprotech, London, UK) as previously described [29]. Immature moDCs (1x106/

well) were either left untreated or stimulated with TLR ligands in a 24-well plate (Pam3CSK4

(100 nM), FSL-1 (100 nM), MALP-2 (46,8 nM), Poly I: C (10 μg/ml), standard LPS (300 ng/

ml), LPS (UP) (300 ng/ml), flagellin (100 ng/ml), imidazoquinoline (10 μg/ml) and CpG ODN
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2006 (10 μg/ml). After 24 h, cell surface expression of maturation markers was assessed by

flow cytometry. PE-labeled-CD83 (HB15e) and the appropriate labelled-Ab-isotype controls

(MOPC-21) were purchased from Biolegend (San Diego, CA). APC-labeled-CD86 (IT2.2) was

purchased from BD Bioscience (San Jose, CA).

Monitoring mycoplasma removal

Mycoplasma negative tested K562 cells were deliberately infected with supernatant containing

mycoplasma in a 24 well plate. A fully established infection was verified 7 days post infection

in K562 supernatants using both THP-1 reporter cells and the MycoAlert mycoplasma detec-

tion kit (Lonza Verviers, Belgium), according to the manufacturer´s instructions. The MycoA-

lert kit is based on a bioluminescent reaction and detects mycoplasma enzyme activities.

Following infection, four commercially available mycoplasma removal reagents were applied

on the mycoplasma contaminated K562 cells according to the manufacturer´s instructions:

Plasmocure (Agent 1), Plasmocin (Agent 2) (both Invivogen, San Diego, CA), BM-cyclin

(Agent 3) (Sigma-Aldrich, St. Louis, MO) and Biotool mycoplasma removal kit (Agent 4) (Bio-

tool, Houston, TX). In all cases cells were treated for three weeks. Supernatants were collected

at day 2, 4, 7, 10, 15, 17, 21, 23, 25 and 29 and frozen at -20˚C for further testing until the end

of the treatment. Afterwards, THP-1 reporter cells (5x104/well) were incubated with the col-

lected supernatants for 24 h followed by FACS analysis. At day 29 samples were additionally

tested with the MycoAlert mycoplasma detection kit. For the MycoAlert kit only fresh super-

natants at the day of collection were used.

Bacterial protein expression

A construct encoding human complement split product C4dg fused to a C-terminal 6xHIS Tag

was cloned into the IPTG-inducible bacterial expression vector pET21a(+) (EMD Millipore, Bil-

lerica, MA). The electrocompetent E. coli protein expression strain ClearColi BL21 was pur-

chased from Lucigen (Middleton, WI) and standard E. coli BL21 were obtained from New

England Biolabs (Ipswich, MA). Protein expression was performed in standard LB (for BL21)

or LB-Miller (10 g/L NaCl, for ClearColi BL21). Expression cultures of 1L were inoculated from

overnight cultures derived from single colonies and grown to an OD600 of 0.6 at 37˚C. Cultures

were induced with 1 mM IPTG and grown for 4 h at 37˚C. Bacterial pellets were washed once

in ice-cold Bacterial Resuspension Buffer (50 mM Tris-HCl pH8.0, 25% Sucrose, 5 mM MgCl2)

and stored at -80˚C. Pellets were resuspended in 3 ml/gram wet pellet of Bacterial Lysis Buffer

(50 mM Na-Phosphate pH8.0, 150 mM NaCl, 5% Glycerol, protease inhibitors, 2 mg/ml Lyso-

zyme) and incubated at 37˚C for 30 min followed by three freeze/thaw cycles. DNase I was

added at 1 mg/ml and samples were incubated at 37˚C for 15 min followed by centrifugation at

20,000xg for 20 min and filtration through a 0.45 μm syringe filter. All following protein purifi-

cation steps were performed at 4˚C. 1 ml HisTALON Superflow Cartridges (Clontech Laborato-

ries Inc, Mountain View, CA) were equilibrated with Running Buffer (50 mM Na-Phosphate

pH8.0, 150 mM NaCl) using a peristaltic pump. Cleared samples were passed over the column

twice, followed by extensive washing with Running Buffer overnight. Purified protein was

eluted in Na-Phosphate pH7.4, 150 mM NaCl, 100 mM Imidazole. Fractions of 0.5 ml were col-

lected and analysed by SDS-PAGE and Coomassie staining. Pure, high-protein fractions were

pooled and dialyzed against Na-Phosphate pH7.4, 150 mM NaCl for Imidazole removal.

Mammalian protein expression

A construct encoding human complement split product C4dg fused to an N-terminal human

CD5 signal peptide for secretion and a C-terminal 6xHIS Tag was cloned into the mammalian
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expression vector pCEP4 (Thermo Fisher Scientific, Waltham, MA). Transient expression was

performed under serum-free conditions in suspension HEK293-6E as described by Margreit-

ter et al. [30]. Briefly, transfection of the pCEP4 vector was performed with polyethylemine

(PEI; linear 25 kDA, Polysciences) at a cell density of 1x106/ml. At Day 7, supernatants were

filtered through a 0.45 μm syringe filter and dialyzed extensively against 50 mM Na-Phosphate

pH8.0, 150 mM NaCl prior to HisTALON IMAC purification (see above).

Endotoxin removal

Affi-Prep Polymyxin Resin (Bio-Rad Laboratories, Hercules, CA) was washed twice with

endotoxin-free PBS. Bacterial protein preparations were treated by bulk-purification under

constant agitation at room temperature for 8 h at a concentration of 1 mg total protein in 1 ml

with 200 μl pre-washed polymyxin resin beads.

Quantitative PCR

For quantitative real-time PCR (qPCR) analysis, RNA was isolated using TRIzol reagent (Peq-

lab, Erlangen, Germany) and transcribed with the RevertAid H Minus Reverse Transcriptase

(Thermo Fisher Scientific, Waltham, MA). Accumulation of PCR products was detected by

monitoring the increase in fluorescence of the reporter dye SYBR Green I on a CFX96 Real-

Time PCR System (both Bio-Rad Laboratories, Hercules, CA). The following primer sets were

used for qPCR reactions: hTLR4 (forward: 5´-CTCTCCTGCGTGAGACCAG-3´, reverse:

5´-TCCATGCATTGATAAGTAATATTAGGA-3´), CD14 (forward: 5´-ACGCCAGAACCTTG
TGAGC-3´, reverse: 5´-GCATGGATCTCCACCTCTACTG-3´) and MD2 (forward: 5´-CC
GAGGATCTGATGACGATT-3´, reverse: 5´-TGGGCTCCCAGAAATAGCTT-3´).

Microscopy

For image acquisition, 5x104 THP-1 NF-κB-eGFP reporter cells were stimulated with standard

LPS (3 μg/ml) and mycoplasma containing cell culture supernatants (1/10; 1/100; 1/1000 dilu-

tions) for 24 h in a 96-well plate. Unstimulated and stimulated THP-1 NF-κB-eGFP reporter

cells were directly recorded in cell culture medium. Image acquisition was performed on a

Leica DMI4000 B light microscope using a 63x dry objective (Leica Microsystems, Wetzlar,

Germany) and an Andor iXon Ultra-897 EM-CCD camera (Andor Technologies, Belfast,

UK). The system was controlled by MetaMorph software (Molceular Devices, Downingtown,

PA). Images were processed with the software ImageJ (Version 1.49, National Institute of

Health, Washington, DC).

Results

THP-1 NF-κB-eGFP cells exhibit selective sensitivity towards TLR

ligands

We have previously described the generation of Jurkat reporter cell lines based on a set of

highly sensitive and selective fluorescent transcriptional reporter constructs for the activity of

the transcription factors AP-1, NFAT and NF-κB [26, 31]. For the current study we aimed to

employ our reporter technology for the development of a test system for ligands to toll-like

receptors. We chose the human acute monocytic leukaemia cell line THP-1 for this purpose.

THP-1 cells are a widely used model for monocyte/macrophage function [23, 32], expresses

mRNAs encoding all known human toll-like receptors (TLR1-10) and were described to be

highly sensitive to microbial components [23, 33]. A retroviral NF-κB-driven eGFP reporter

construct was introduced into THP-1 cells and single cell clones were established by limiting

A monocytic fluorescent reporter line
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dilution culturing. A cell clone that was negative in a resting state and strongly expressed the

reporter gene upon activation with PMA and Ionomycin was selected from a large pool of

clones for further analysis (S1A and S1B Fig).

In a first set of experiments, we assessed the reactivity of our THP-1 reporter cells towards

TLR ligands. Cells were exposed to various TLR stimuli for 24 h and reporter gene expression

was measured by flow cytometry. Treatment with Pam3CSK4, FSL-1 and MALP-2 induced a

strong activation of the reporter gene, whereas flagellin and imidazoquinoline elicited lower

responses. No response to Poly I:C and the class B CpG oligonucleotide ODN 2006 was de-

tected. Interestingly, we found that although the addition of a standard LPS preparation

resulted in a dramatic induction of eGFP, which could readily be observed by standard fluores-

cent microscopy, our THP-1 reporter cells did not respond to highly pure LPS (Fig 1A–1C). It

has previously been shown that standard LPS preparations contain lipoproteins and that these
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Fig 1. THP-1 NF-κB-eGFP reporter cells show a selective sensitivity towards TLR ligands. (A) THP-1 NF-κB-eGFP cells were

incubated with Pam3CSK4 (TLR1/2; 100 nM), FSL-1 (TLR2/6; 100 nM), MALP-2 (TLR2/6; 46,8 nM), Poly I:C (TLR3; 10 μg/ml), standard

LPS (TLR2/4; 300 ng/ml), LPS ultrapure (UP) (TLR4; 300ng/ml), flagellin (TLR5; 100 ng/ml), imidazoquinoline (TLR7/8; 10 μg/ml) and CpG

ODN 2006 (TLR9; 50 μg/ml). After 24 h, eGFP expression was assessed by flow cytometry. Bar graphs show geometric mean of

fluorescence intensity (gMFI). Mean and SE were calculated from triplicates of five independently performed experiments (n = 5). (B)

Representative flow cytometry histograms of reporter gene expression in THP-1 NF-κB-eGFP cells as described in A. Open histograms:

TLR-activated reporter cells; filled histograms: unstimulated reporter cells. Numbers show gMFI. (C) Fluorescent microscopy images of

reporter cells activated with standard LPS (3 μg/ml) for 24 h (right panel). Unstimulated cells served as negative control (left panel). Bright

field images are shown for comparison (top row). Scale bar: 10 μm. (D) Immature human monocyte-derived DCs were incubated with various

TLR ligands (used at the same concentrations as in A) for 24 h or were left untreated. Expression of maturation markers CD83 and CD86 was

assessed by flow cytometry. Bar graphs show total percentage of gMFI normalized to standard LPS.

https://doi.org/10.1371/journal.pone.0178220.g001
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impurities are potent TLR2 agonists [17, 34]. This suggests that lipoprotein contaminations

rather than LPS itself mediate activation of our THP-1 reporter cells by standard LPS prepara-

tions. PAMP-sensing by dendritic cells (DCs) plays a central role in the initiation of immune

responses and DCs express a distinct repertoire of TLRs [35, 36]. Consequently, we assessed

the response of human monocyte-derived DCs (moDCs) to our set of TLR ligands. Up-regula-

tion of the maturation markers CD83 and CD86 was used as a read-out for moDC-activation.

We observed that except for flagellin and imidazoquinoline that acted as weak stimuli for both

cell types, our THP-1 reporters and moDCs had a quite distinct reactivity profile towards TLR

ligands (Fig 1D). The weak stimulation of moDCs by Pam3CSK4, FSL-1, and MALP-2 indi-

cates a poor reactivity towards ligands for TLR2 heterodimers. In contrast to our THP-1

reporters, moDCs were strongly responding to both standard and highly pure LPS. Like THP-

1 cells, moDCs did not react towards CpG ODN 2006. This is in line with previous observa-

tions and can be attributed to low levels of TLR9 expression in human moDCs and THP-1

cells [37, 38].

Dose-dependent transcriptional activation of THP-1 NF-κB-eGFP

reporters to specific TLR ligands

In order to further assess the sensitivity and dose-response characteristics of our THP-1

reporters we exposed the cells to serial dilutions of the TLR2 ligands Pam3CSK4 (TLR1/2),

FSL-1 (TLR2/6), standard LPS (TLR2/4) and MALP-2 (TLR2/6) as well as the TLR5 ligand fla-

gellin. Reporter gene expression was analysed 24 h later by FACS analysis. We observed dose-

dependent and highly sensitive expression of eGFP in our THP-1 reporter cells, which should

allow calibrating the system for quantitative measurements (Fig 2A–2E). Microbial pattern

recognition by monocytes triggers the release of pro-inflammatory cytokines, like IL1-β and

TNF-α. Signals emanating from the TNF-receptors and TLRs converge into the canonical

pathway of NF-κB-activation [39]. TNF-α produced in response to TLR stimuli might there-

fore act in an autocrine feedback loop on our THP-1 reporter cells to increase NF-κB activa-

tion. To test this hypothesis, we performed blocking experiments using the clinical-grade

TNF-α blocking antibody Adalimumab. Incubation of THP-1 reporter cells with TNF-α leads

to a dose-dependent increase of NF-κB-eGFP expression, demonstrating the TNF-α-respon-

siveness of our cells (S2 Fig). Addition of the TNF-α blocking antibody could completely

inhibit NF-κB-activation. We then cultured our THP-1 reporters with titrated amounts of LPS

or mycoplasma supernatants in the presence or absence of TNF-α blocker. NF-κB-activity in

response to TLR engagement was decreased under TNF-α blocking conditions and revealed

an autocrine contribution of secreted TNF-α to total NF-κB-activity.

High sensitivity of THP-1 NF-κB-eGFP reporter cells towards

mycoplasma lipoproteins

Persistent mycoplasma contaminations in cell culture are a major concern in experimental

research affecting the function and activity of eukaryotic cells on many levels [2]. Synthetic for-

mulations of mycoplasma-derived diacylated lipopeptides like MALP-2 and FSL-1 are proto-

typic TLR2/6 ligands and our results demonstrate that our reporter cells are highly reactive to

these molecules [40]. Thus we wished to explore whether our reporter cells have utility in

detecting mycoplasma contaminations and probed them with supernatants from mycoplasma

contaminated cell cultures. We observed that synthetic TLR2/6 ligands and infected culture

supernatants both induced a strong and dose-dependent eGFP up-regulation in our THP-1

reporter cells. Moreover, a blocking antibody to TLR6 was effective in reducing reporter gene

expressing elicited both by synthetic ligands and cell culture supernatants, whereas it did not
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affect the response to LPS (Fig 3A). This strongly indicates that TLR2/6 ligands in mycoplasma

contaminated cell culture supernatants are indeed responsible for the strong reactivity of the
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https://doi.org/10.1371/journal.pone.0178220.g002
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THP-1 reporter cells. This response to the presence of mycoplasma can readily be monitored

by fluorescence microscopy even when contaminated cell culture supernatants were used at

high dilutions (Fig 3B). Next we wanted to assess the robustness and reliability of our reporter

system by directly comparing it to a commercially available mycoplasma detection kit. There-

fore we analysed cell culture supernatants derived from various cell lines that were obtained

from different laboratories (S1 Table). These cell lines were put into culture and supernatants

were tested in parallel using our THP-1 reporter cells and a commercial test system, which

uses a bioluminescent reaction to detect mycoplasma enzyme activity (see Material and Meth-

ods). Both assays yielded identical results, which were in line with initial tests upon receipt of

the cell lines (Fig 3C and S1 Table). Thus our THP-1 reporter cells allow for sensitive and cost-

effective detection of mycoplasma contamination by FACS or fluorescence microscopy.

Various agents for the removal of mycoplasma contaminations in cell culture are available.

They contain different classes of antibiotics and therefore differ in their mode of action.

We went on to use our reporter cells to monitor the treatment of infected cell cultures using

four commercially available agents (for details see Material and Methods). At the onset of

the experiment, human K562 cells were deliberately infected using a generic mycoplasma

supernatant. Mycoplasma removal treatment was then performed in parallel according to the

manufacturer’s instructions. Supernatants collected at various time points throughout the

treatment course were probed with our THP-1 reporter cells. The results demonstrated that

two agents quickly removed the mycoplasma contamination in the cell cultures and superna-

tants obtained already after one week of treatment no longer induced reporter activity (Fig 3D,

upper panel). By contrast the two other agents were ineffective as culture supernatants derived

from treated cells retained their capacity to elicit strong reporter gene expression throughout

the course of the treatment. Testing the cell cultures six days post treatment using a commer-

cial detection kit fully confirmed the results obtained in our reporter experiments (Fig 3D,

lower panel). These results point to a great variability in the effectiveness of commonly used

mycoplasma removal regimens and highlight the importance of thorough routine testing to

evaluate the success of mycoplasma treatment.

THP-1 NF-κB-eGFP reporter cells detect mycoplasma from heat-

denatured and cryo-preserved samples

Standard methods for mycoplasma detection often require cellular supernatants to be analysed

shortly after harvesting to preserve bacterial viability or enzyme activity. As demonstrated

above, mycoplasma sensing by our THP-1 reporter cells relies on TLR2/6-mediated recogni-

tion of lipoproteins like MALP-2 and FSL-1, which are very stable molecules [41]. In principle

our reporters should therefore not depend on live and or intact mycoplasma. To assess robust-

ness of detection, we incubated our reporters with serial dilutions of fresh, frozen and 95˚C

heat-killed mycoplasma supernatants of identical origin and followed NF-κB-driven eGFP

expression over a period of 6 days (Fig 4). Cyro-preservation of supernatants did not signifi-

cantly blunt sensitivity, and even heat-inactivation retained reporter activation. Importantly,

both for fresh (Fig 4, left panel) and frozen samples (Fig 4, middle panel), the serial dilution

profile was quickly lost with values reaching peak responses after day two, pointing to active

proliferation of mycoplasma in the reporter cell cultures. Prolonging the duration of the assay

is thus an effective way to amplify and detect sub-threshold levels of mycoplasma contami-

nations, which might otherwise escape detection. Heat-inactivated supernatants were detected

with slightly reduced sensitivity (Fig 4, right panel), while fully preserving their graded re-

sponse throughout the entire six days of the assay. These data demonstrate that a heat-in-

activation step can be introduced without significantly sacrificing overall sensitivity. Such
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pre-treatment will render supernatants biologically safe and greatly minimize the risk of myco-

plasma spread within the tissue culture laboratory. Taken together, THP-1 reporter cells repre-

sent a selective and highly sensitive tool to detect mycoplasma contaminations in cell culture

with considerable advantages over existing methods.

Establishing a TLR4 sensitive THP-1 NF-κB reporter line

As shown above, our THP-1 NF-κB reporter cells are unresponsive towards TLR4 ligands, like

highly pure LPS. LPS sensing is unique in that TLR4 relies on the accessory molecule MD2 to

capture its ligand LPS. Secreted LPS binding protein (LBP) and surface or soluble CD14 assist

in the transfer of LPS from bacterial membranes to TLR4-MD2. The TLR4-MD2-LPS complex

dimerizes, thereby initiating signalling from the intracellular TIR domains contained in TLR4

[16]. A possible explanation for the observed unresponsiveness of our THP-1 reporter cells

towards ultrapure LPS is the lack of TLR4 and/or accessory molecule expression like CD14.

Thus, in an effort to furnish our reporter cells with reactivity to TLR4 ligands, we introduced

TLR4 and the accessory molecules CD14 and MD2 into our THP-1 reporter cells by retroviral

transduction. Following cell sorting and cloning by limiting dilution, a single cell clone with

high sensitivity towards highly pure LPS was obtained (Fig 5A). In comparison to the parental

THP-1 reporter cells, this clone (THP-1 TLR4-CD14 NF-κB-eGFP hereafter) exhibited a sig-

nificant increase of CD14 and TLR4 expression as shown by qPCR analysis (Fig 5B).

To assess the sensitivity of our THP-1 TLR4-CD14 reporter cells to microbial contamina-

tions in more complex biological samples, we focussed on a recombinant protein produced in

different expression systems. Human complement split product C4dg, with a C-terminal

6xHIS Tag (C4dg-HIS) was chosen as model protein. Three different host cells were used for

protein expression: Human embryonic kidney cells subline 293-6E (HEK293-6E), standard E.

coli BL21 and E. coli ClearColi BL21. A highly efficient serum-free mammalian expression sys-

tem based on the HEK293-6E cell line has been described in detail [30]. The recently devel-

oped endotoxin-free E. coli strain ClearColi BL21 is characterized by modifications in the LPS

structure to disable TLR4 triggering [42, 43]. Purification of recombinant protein from all

three hosts was performed by cobalt-based HisTALON immobilized metal affinity chromatog-

raphy following identical workflows. First, we assessed the degree of LPS contamination by
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using HEK293 hTLR4A-MD2-CD14 cells, which produce Interleukin-8 in response to TLR4

engagement. We could indeed confirm that E. coli ClearColi BL21 and HEK293-6E protein

preparations are free of TLR4-reactive impurities, whereas E. coli BL21 expressed C4dg

induced strong TLR4 triggering (Fig 5C). However, when using THP-1 TLR4-CD14 reporter

cells, both proteins from E. coli BL21 and E. coli ClearColi BL21 elicited high NF-κB-driven

eGFP induction, while no response was obtained with mammalian-expressed protein (Fig

5D). In comparison, parental THP-1 reporter cells showed only weak reactivity towards pro-

teins derived from both bacterial strains. CD14 is a well-documented amplifier of non-

TLR4-mediated signals [44–46]. Thus, the heightened responsiveness towards ClearColi BL21

protein, as seen in our THP-1 TLR4-CD14 reporter cells, may be attributed to increased CD14

expression (Fig 5B and 5D). ClearColi expressed protein also induced upregulation of matura-

tion markers on human moDCs albeit at much lower level than protein expressed in standard

BL21 (Fig 5E). We next wanted to assess whether such residual impurities could be removed

by standard endotoxin removal regimens. We chose an affinity matrix based on polymyxin B,

a cationic cyclic antibiotic isolated from Bacillus polymyxa, which displays high affinity for

bacterial lipopolysaccharides [47]. Recombinant C4dg from ClearColi BL21 was subjected to

treatment with a polymyxin B resin and then tested on THP-1 TLR4-CD14 reporter cells (Fig

5F). Despite the absence of classical LPS contamination, polymyxin-treatment of ClearColi

BL21-expressed protein led to a strong reduction in THP-1 reporter cell activation. Previous

studies using HEK293 reporter cells expressing human TLR2 have shown that polymyxin B

can indeed supress non-TLR4 impurities in LPS preparations [48]. Our findings highlight the

importance to use test-systems sensitive towards a broad array of microbial contaminations.

We believe that the newly engineered THP-1 TLR4-CD14 reporter cell line represents such a

system combining broad specificity, high sensitivity and ease of use.

Discussion

Human Toll-like receptors (TLRs) play a central role in the first-line defence mechanisms of

innate immunity mediating recognition of conserved pathogen-associated molecular patterns

(PAMPs). TLRs have evolved to monitor both the extracellular and endosomal/lysosomal

space for the presence of microbial danger. Recent progress in our understanding of TLR biol-

ogy has led to the identification of a plethora of microbial ligands for TLRs [21]. The activation

of the transcription factor NF-κB is a major consequence of TLR-engagement by PAMPs. NF-

κB induces the release of cytokines and chemokines and thus acts as a key mediator of inflam-

matory responses, which are mandatory to control and eventually eliminate infections. For the

current study, we aimed to exploit the exquisite sensitivity and specificity of the TLR signalling

machinery for the development of a cell-based, fluorescent reporter system. THP-1, a human

monocytic cell line expressing a wide range of TLRs [33], was equipped with an NF-κB-driven

reporter construct we have described recently [26, 31, 49]. Our reporter cells are amenable to

high-throughput analysis of NF-κB-activity by flow cytometry. Importantly, in comparison to

E. coli BL21 and E. coli ClearColi BL21) was tested for TLR4-agonist contaminations using HEK293 hTLR4A-MD2-CD14 cells. Following 24 h of

incubation the IL-8 content in the culture supernatants was measured by ELISA. (D) Parental and TLR4-CD14 THP-1 reporters were incubated with the

protein preparations described in (C) and NF-κB-driven eGFP expression was assessed by flow cytometry 24 h later. Bar graphs show geometric mean of

fluorescence intensity (gMFI). Mean and SE were calculated from duplicates of four independently performed experiments (n = 4) (E) Immature human

moDCs were incubated with standard LPS, E. coli BL21 or E. coli ClearColi BL21 expressed C4dg protein at the indicated concentrations for 24 h or were

left untreated. Expression of maturation markers CD83 and CD86 was assessed by flow cytometry. (F) E. coli ClearColi BL21-expressed C4dg protein was

subjected to a single round of bulk chromatography using a polymyxin resin (see Material and Methods). Samples before and after chromatography were

tested using the THP-1 TLR4-CD14 reporters. Mean and SE were calculated from duplicates of four independently performed experiments (n = 4).

https://doi.org/10.1371/journal.pone.0178220.g005
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plate-based readout systems, acquisition by flow cytometry delivers information on cell viabil-

ity, which is a relevant parameter when testing cytotoxic pharmacological substances.

We observed that the resulting THP-1 NF-κB-eGFP reporter cell line is highly reactive to

ligands for TLR2 heterodimers. Since mycoplasmas are abundant in TLR2/6 agonists it was

explored whether these cells are useful for the detection of mycoplasma in cell culture samples.

Mycoplasma contamination is a common and persistent problem in cell cultures, with up to

35% of continuously cultured cell lines testing positive [50]. The presence of these bacteria can

lead to significant disturbances in experimental research due to alterations in gene expression,

chromosomal aberrations and changes in membrane composition [2]. Additionally, chronic

engagement of the TLR2 pathway may lead to artefactual results in cells of the myeloid linage

[51, 52]. Lack of a rigid cell wall makes beta-lactam antibiotics, which are commonly used as

tissue-culture supplement, ineffective against mycoplasma. Moreover their small size and pleo-

morphic shape allows mycoplasma to pass through standard sterile filtration units [2]. Thus

highly sensitive, standardized and cost-effective detection methods as well as efficient removal

regimens for mycoplasma contamination in cultured cells are of crucial importance. Most

mycoplasma tests either rely on PCR, qPCR, biochemical analysis with labelled probes or

lengthy agar and broth culture methods [53]. Since the use of these techniques is often expensive

and time consuming, there is demand for alternative testing methods. We demonstrate here

that THP-1 NF-κB-eGFP reporter cells reliably detect mycoplasma contaminations in cell cul-

ture supernatants from different sources and species. Moreover, our results indicate that TLR6

engagement is the basis of mycoplasma sensing by these cells. TLRs generally recognize highly

conserved structures, which play vital roles in the biology of microorganisms and it thus can be

expected that THP-1 reporter cells will detect contaminations caused by all strains of myco-

plasma. Moreover, mycoplasma lipopeptides are stable compounds and as a consequence, THP-

1 reporter cells detect the presence of mycoplasma in heat-denatured and cryo-stored samples

with high sensitivity. Implementing a heat-inactivation step for biological samples prior to test-

ing will greatly minimize the risk of mycoplasma spread within the tissue culture laboratory

without sacrificing detection sensitivity. We also employed our THP-1 reporter cells to follow

the efficacy of mycoplasma decontamination using four different commercially available antibi-

otics. To our surprise, successful removal of mycoplasma contaminations was achieved by only

two of the four tested treatment compounds. Chronic infections with Plasmocin-resistant

mycoplasma has been reported [54]. The authors could clear such established infections by the

use of BM-cyclin, which we also found to be efficient in eradicating mycoplasma. Taken

together, our THP-1-based reporter cell system is ideally suited for routine testing of myco-

plasma contaminations in tissue culture supernatants. It is highly sensitive and cost-effective

and can be performed on a high-throughput level without the need for additional reagents.

Detection and quantification of endotoxins in biological samples, especially recombinant

proteins expressed in bacterial hosts, was another obvious and highly relevant application for

our reporter system. Recombinant protein expression in Escherichia coli (E.coli) is widely used

in basic research and a third of all approved recombinant therapeutics is produced in this host

system [55]. Major advantages include ease of handling, cost-effectiveness and high yields.

However, isolation of recombinant proteins from bacterial homogenates bears the risk of con-

tamination with cell wall components or lipids. Presence of endotoxin in recombinant protein

preparations can perturb experimental results and preclude in-vivo applications. Indeed, sensi-

tive primary cells like CD1c+ dendritic cells were demonstrated to respond even to minimal

amounts of LPS, as present in commercial protein preparation of high purity [56]. Thus thor-

ough downstream endotoxin-removal protocols need to be implemented, combined with

ultra-sensitive testing methods. The current gold standard for gram-negative endotoxin testing

in the pharmaceutical industry is the Limulus amebocyte lysate (LAL) test, which relies on an
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extract of blood cells from the horseshoe crab, Limulus polyphemus [1]. Although crabs are

released alive after a fraction of their blood is collected, significant post-bleeding mortality

rates of 5–30% have been reported [57]. In light of the growing demand for reliable endotoxin

tests, it is therefore highly desirable to find in-vitro substitutes for the LAL test. Despite being

of monocytic origin, our THP-1 reporter cells initially failed to respond to ultrapure LPS,

which represents a TLR4-only ligand. TLR4 triggering by LPS relies on the cofactors CD14

and MD2 [16]. By retrovirally introducing TLR4, CD14 and MD2, we broadened the target

range of our THP-1 reporters towards TLR4 PAMPs and rendered the resulting cells ultra-sen-

sitive for a diversity of endotoxin contaminations. Consequently, we employed our THP-1

TLR4-CD14 reporters to assess PAMP contamination of a recombinant protein produced in

three different hosts: E. coli BL21, E. coli ClearColi BL21 and mammalian HEK293-6E cells.

ClearColi BL21 is a novel strain of E. coli BL21, which has been genetically modified to express

an altered form of the LPS molecule, missing two out of six acyl chains thereby effectively abol-

ishing TLR4 triggering [42]. Despite the clear absence of TLR4 reactivity, ClearColi-derived

proteins still induced strong activation of THP-1 TLR4-CD14 reporter cells, indicating consid-

erable contamination with bacterial PAMPs. ClearColi expressed proteins also induced activa-

tion of moDCs but to a much lower extent compared to the THP-1 TLR4-CD14 reporter cells.

This result is consistent with the much lower sensitivity of moDCs towards TLR2 ligands,

which are the likely PAMPs contained in ClearColi-expressed proteins.

Polymyxin-B treatment of ClearColi-derived proteins led to a significant reduction in

THP-1 TLR4-CD14 reporter activity. This is an unexpected finding, since the only LPS related

molecule expressed in ClearColi BL21 is the tetraacylated endotoxin precursor lipid IVA,

which does not trigger TLR4 responses (Fig 5C) [42]. However, E. coli LPS preparations were

reported to contain LPS-mimetic TLR2-stimulatory substances other than lipopeptides or pep-

tidoglycans [58]. Additionally, polymyxin B has been shown to inhibit TLR2 stimulation via

endotoxin proteins only when they were physically associated with LPS [34, 48]. Therefore, a

possible explanation for our findings is that, like intact LPS, lipid IVA binds to polymyxin B.

Lipid IVA and closely associated endotoxin proteins are thereby removed from the protein

preparation, resulting in reduced TLR2 reactivity. Our findings are relevant for experimental

research relying on E. coli-expressed recombinant proteins and demonstrate the importance to

test for contaminations beyond the TLR4 spectrum.

Overall, by harnessing the evolutionary-conserved sensitivity of the TLR system and com-

bining it with our recently described fluorescent reporter technology [26], we have generated a

highly sensitive and versatile cellular test platform for microbial contaminants. We have suc-

cessfully applied our THP-1 NF-κB-eGFP reporter cells to the detection of mycoplasma and

endotoxin in biological samples. THP-1 and murine RAW macrophage-based NF-κB report-

ers, employing secreted alkaline phosphatase as readout, have been described previously [59,

60]. These systems require additional handling steps and non-standard reagents. In compari-

son, our cell-intrinsic fluorescent reporter system is unique in that it allows cost effective high-

throughput measurements with minimal hands-on time on standard flow cytometers without

the need for costly reagents.

Supporting information

S1 Table. Cell culture supernatants. Tissue culture supernatants from different cell sources

and species were tested for mycoplasma lipoprotein contaminations. The results for three dif-

ferent detection methods are shown: PCR-based technique, MycoAlert kit and THP-1 reporter

assay.

(PDF)
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S1 Fig. Generation of the monocytic THP-1 reporter cell line (THP-1 NF-κB-eGFP). (A)

Schematic illustration of the reporter construct encoding NF-κB-eGFP with restriction

enzyme recognition sites. MP: minimal promoter. (B) The retroviral NF-κB-driven eGFP

reporter construct was introduced into THP-1 cells and resting eGFP-low expressing cells

were sorted. From this cell pool single cell clones were established by limiting dilution cultur-

ing. A cell clone that was negative in a resting state and strongly expressed the reporter gene

upon activation with PMA and Ionomycin was selected for further testing.

(EPS)

S2 Fig. Effect of a TNF-α blocking antibody on activated THP-1 reporter cells. THP-1

reporter cells were incubated with the monoclonal TNF-α blocking antibody Adalimumab

(10 μg/ml) and with the indicated concentrations of LPS, recombinant TNF-α or mycoplasma

supernatants. NF-κB-driven eGFP expression was assessed by flow cytometry. Bar graphs

show geometric mean of fluorescence intensity (gMFI). Mean and SE were calculated from

triplicates of three independently performed experiments (n = 3).

(EPS)
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