REVIEW

URRENT
PINION

Artificial intelligence-based predictions in

neovascular age-related macular degeneration

Daniela Ferrara®, Elizabeth M. Newton®, and Aaron Y. Lee®

Purpose of review

Predicting treatment response and optimizing treatment regimen in patients with neovascular age-related

macular degeneration (nAMD) remains challenging. Artificial intelligence-based tools have the potential to
increase confidence in clinical development of new therapeutics, facilitate individual prognostic predictions,
and ultimately inform treatment decisions in clinical practice.

Recent findings

To date, most advances in applying artificial intelligence to nAMD have focused on facilitating image
analysis, particularly for automated segmentation, extraction, and quantification of imaging-based features
from optical coherence tomography (OCT) images. No studies in our literature search evaluated whether
artificial intelligence could predict the treatment regimen required for an optimal visual response for an
individual patient. Challenges identified for developing artificial intelligence-based models for nAMD
include the limited number of large datasets with high-quality OCT data, limiting the patient populations
included in model development; lack of counterfactual data to inform how individual patients may have
fared with an alternative treatment strategy; and absence of OCT data standards, impairing the

development of models usable across devices.

Summary

Artificial intelligence has the potential to enable powerful prognostic tools for a complex nAMD treatment
landscape; however, additional work remains before these tools are applicable to informing treatment

decisions for nAMD in clinical practice.
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treatment prediction

Although anti-vascular endothelial growth factor
(anti-VEGF) therapy has been the gold standard
for treating neovascular age-related macular degen-
eration (nAMD) for over a decade [1], predicting
treatment response and optimizing treatment regi-
men remain challenging. Newer and emerging ther-
apies are expected to provide additional treatment
options for patients [2], increasing complexity of
treatment decisions.

Artificial intelligence-based models have the
potential to increase confidence in clinical devel-
opment of new therapeutics, facilitate individual
prognostic predictions, and ultimately inform
treatment decisions in clinical practice. However,
although much progress has been made in applying
artificial intelligence to nAMD, significant barriers
remain to bringing artificial intelligence-based
models to individual patients.
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Anti-VEGF therapy, notably aflibercept (Regeneron
Pharmaceuticals, Inc., Tarrytown, New York, USA),
ranibizumab (Genentech, Inc., South San Francisco,
California, USA), and off-label use of bevacizumab
(Genentech, Inc.), became standard-of-care treatments
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Artificial intelligence in retina

KEY POINTS

e Predicting treatment response and optimizing treatment
regimens in patients with nAMD remain challenging.

e Artificial intelligence has the potential to create powerful
tools for clinical research and clinical practice.

e Artificial intelligence-based models have facilitated
analysis of nAMD datasets on a scale not previously
possible, enabling automatic qualitative and quantitative
assessment of image biomarkers anchored on OCT.

e However, no studies to date have shown whether
artificial intelligence can predict the treatment regimen
to maximize an individual patient’s best possible vision
outcomes while minimizing treatment burden.

e Challenges identified for developing artificial
intelligence-based models for nAMD include the
absence of OCT data standards, limited number of
large datasets with high-quality OCT data, and lack of
counterfactual data to inform how individual patients
may have fared with an alternative treatment strategy.

for nAMD (3], following demonstration that dosing on
a fixed treatment regimen provided significant vision
gains, on average, from baseline in pivotal phase 3
clinical trials [1,4,5]. However, achieving these optimal
outcomes involved frequent intravitreal injections; in
clinical trials, mean vision gains from baseline of
approximately seven to 11 letters at 1year were
achieved with approximately 7.5-12 total anti-VEGF
injections [4-8].

In contrast, patients in real-world clinical practice
are not, on average, achieving these vision outcomes
(Fig. 1) [9,10]. This has been attributed to several
factors, particularly differences between real-world
and clinical trial patient populations and differences
in treatment frequency [11%]. Notably, several studies,
including large real-world studies [9,10,11%,12,13%,14]
and a recent systematic review [15%], found that dose
frequencyisa consistent indicator of vision outcomes,
with real-world studies reporting average vision gains
of zero to three letters with approximately five to
seven injections in the first year of treatment.

This gap highlights the overall unmet need to
balance anti-VEGF injection frequency and burden
in clinical practice. To date, efforts to address this
have focused on understanding which baseline
characteristics are associated with treatment
response and exploring different regimens, particu-
larly as-needed (PRN) and treat-and-extend.

Several studies have identified baseline visual
acuity as a consistent predictor of long-term visual
outcomes [16-19]; however, it is thought to correlate
indirectly with disease severity and anatomical
changes of the neurosensory retina. Baseline
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anatomical features, including larger choroidal neo-
vascularization (CNV) lesion size, ellipsoid zone dis-
ruption, external limiting membrane interruption,
intraretinal fluid (IRF) presence, subretinal fluid (SRF)
absence, and increased choroidal thickness have
been associated with worse vision outcomes
[16,19]. In a study of treatment frequency, patients
with occult CNV, presence of retinal fluid, and fluo-
rescein leakage after lyear of fixed monthly/
bimonthly dosing were less likely to achieve every-
12-week dosing in year 2 [20].

In the clinic, physicians make treatment decisions
for individual patients, while treatment paradigms are
traditionally based on average treatment response of a
cohort. A key unsolved challenge is identifying the
optimal treatment regimen for each individual, with
the least burden and maximum visual gains, particu-
larly because need for frequent treatment [20-22] and
anti-VEGF treatment response under real-world con-
ditions (Fig. 2; Supplemental Movie, http://link-
s.lww.com/COQOP/A43) vary greatly. For example, in
the HARBOR clinical trial, treatment required by
patients on a PRN regimen ranged from 3 to 24 injec-
tions over 2 years, with a nearly flat distribution [22].
In year 2 of the VIEW clinical trial, about half of
patients had PRN treatment intervals of at least every
12 weeks, with similar vision outcomes as patients
requiring more frequent treatment [20]. Although
informative on a population level, these traditional
analyses based on standard imaging evaluations have
not greatly influenced individual treatment decisions.

Artificial intelligence, and particularly the subfield of
deep learning, has the potential to identify features
prognostic for individual patient outcomes. However,
most advances in applying artificial intelligence to
nAMD have focused on development and application
of models to facilitate image analysis, particularly for
automated segmentation, extraction, and quantifica-
tion of imaging-based features from optical coherence
tomography (OCT). Key artificial intelligence-based
models for OCT image analysis and recent applications
of artificial intelligence to nAMD are discussed herein.

Training, tuning, and testing of artificial
intelligence-based algorithms typically require
large, high-quality datasets. Nonetheless, in nAMD,
multiple research groups have developed artificial
intelligence-based algorithms using relatively few
datasets, of which HARBOR and the Moorfields Eye
Hospital real-world age-related macular degeneration
(AMD) database stand out in the literature.
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Mean change in visual acuity score from baseline over time for all patients by country: (a) Germany, France, United
Kingdom, ltaly, and the Netherlands, and (b) Canada, Ireland, and Venezuela in the AURA retrospective, observational,
multicenter study of patients with neovascular age-related macular degeneration who started treatment with ranibizumab between
January 1, 2009 and August 31, 2009 [10]. Data based on effectiveness analysis set using a last observation carried forward
(LOCF) approach. The mean number of injections received in 2 full years was: United Kingdom, 9.0; the Netherlands, 8.7;
France, 6.3; Germany, 5.6; ltaly, 5.2; Ireland, 11.0; Canada, 9.9; Venezuela, 3.2. Figure reprinted from Ref [10].

The phase 3 HARBOR trial (NCT00891735)
assessed ranibizumab for 1097 patients with treat-
ment-naive nAMD, comparing two dosages and
monthly and PRN treatment regimens [8,22]. Nota-
bly, HARBOR was the first major clinical trial for

nAMD to use spectral-domain OCT, which allows
for high-sensitivity feature extraction.

Moorfields Eye Hospital, a tertiary referral retinal
center in the United Kingdom, maintains a real-
world database of electronic medical records and

1040-8738 Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. www.co-ophthalmology.com 391



Artificial intelligence in retina

Baseline VA <29 ETDRS letters, n=1326

ETDRS VA
o

P p &
0 0 Months 0 o

Baseline VA 50-69 ETDRS letters, n=8032

ETDRS VA
o

Months

ETDRS VA
o

ETDRS VA

Baseline VA 30-49 ETDRS letters, n=5222

0 20 Months 40 60

Baseline VA 270 ETDRS letters, n=2810

Months

Illustration of individual responses to anti-vascular endothelial growth factor therapy for patients with neovascular
age-related macular degeneration, stratified by baseline VA from a real-world large electronic medical records-extracted
database [47]. Each faint line represents the VA (Early Treatment Diabetic Retinopathy Study [ETDRS] letter score) from one
patient (one eye) over 5years of time, with one line, representing one patient, bolded for illustration in each panel. Black lines
represent the mean. See also Supplementary Movie, http://links.lww.com/COOP/A43. VA, visual acuity.

associated OCT images from patients with AMD
treated with at least one ranibizumab or aflibercept
injection from 2008 to 2018 and with at least 1 year of
follow-up [23]. Altogether, the Moorfields AMD data-
set includes 8174 eyes of 6664 patients; a de-identi-
fied version of the segmentation results is openly
available to the research community [23,24"].

A key model for OCT image segmentation and
disease classification, developed by De Fauw and
colleagues [25], uses a deep learning-based frame-
work with two independent networks to perform
automated diagnosis of retinal diseases on OCT
scans. This methodology has been applied to inves-
tigating imaging biomarkers and visual outcomes
[24%,26]. Following this, another group developed
a novel automated segmentation model using a
convolutional neural network [27"]. This model
was built using a large, real-world electronic medical
records-based dataset from the United Kingdom,
annotated by clinical experts with 13 of the most
common AMD biomarkers on OCT, including IRF,
SRF, and pigment epithelial detachment (PED) [277].

The Notal OCT Analyzer [28] and Medical Uni-
versity of Vienna artificial intelligence-based Fluid
Monitor [29] are fully automated tools for fluid
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detection and quantification on OCT images. These
have facilitated quantitative measurements across
multiple large datasets [30"] and been applied to
questions investigating retinal fluid measurements
and visual outcomes [17,30%,31,32%,33" 34" 35], par-
ticularly to more precisely quantify and map
changes in IRF and SRF over time.

As an illustration, application of the Notal OCT
Analyzer to a real-world dataset demonstrated that,
by quartile, larger fluctuations in IRF, SRF, PED,
central subfield thickness, and total fluid during
the anti-VEGF maintenance phase were associated
with worse visual acuity at 2years [34"]. Other
exploratory studies applying the artificial intelli-
gence-based Fluid Monitor supported differential
impact of IRF and SRF on vision outcomes. In both
the HARBOR and FLUID trials, increased IRF, but
not SRF, volumes in the central 1 mm were nega-
tively associated with visual acuity [letters per 100
nl fluid, IRF: -4.00 and -2.84; SRF: +1.10and +1.43
(notsignificant), respectively] [32%,33"]. Similarly, a
stronger association of IRF than SRF with
visual acuity was found by applying the De Fauw
et al. [25] methodology to the Moorfields AMD
database [24"].
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Other studies have developed and applied arti-
ficial intelligence-based models to OCT image anal-
ysis for a diverse set of research questions, including
determining whether visual acuity can be predicted
from OCT [36]; extracting higher-order features,
such as ellipsoid zone integrity and subretinal
hyperreflective material volume [37]; facilitating
correlational analysis among multiple features on
OCT [35]; comparing ‘typical’ nAMD with polypoi-
dal choroidal vasculopathy [38,39]; and clustering
patients based on CNV features using unsupervised
machine learning [39].

Several groups have begun to develop algorithms for
predicting treatment response and treatment fre-
quency needs. Within the parameters of our litera-
ture search, three studies to date specifically
examined treatment response using artificial intel-
ligence, with each approaching and defining
response differently.

Two studies focused on the anatomic response
to anti-VEGF treatment on OCT. The first developed
a novel method with convolutional neural net-
works, using data from a real-world cohort at Second
Affiliated Hospital of Xi’an Jiaotong University. The
study found that effectiveness of anti-VEGF treat-
ment on CNV or cystoid macular edema could be
predicted with area under the curve of 0.81 using
baseline OCT images [40]. However, ‘effective’
appeared to be a binary treatment response that
was not clearly defined. In the other study, a condi-
tional generative adversarial network was used to
develop a deep learning model capable of generating
posttreatment OCT images [41""]. This model,
trained on a real-world retrospective dataset from
Konkuk University Medical Center, was designed to
generate OCT images representing 1month after
completion of three monthly anti-VEGF loading
doses. A model including baseline OCT, fluorescein
angiography, and indocyanine green angiography
images, rather than OCT images alone, performed
best in its prediction of each of IRF, SRF, PED, and
subretinal hyperreflective material [41™].

To explore predictive ability of quantitative
OCT parameters for posttreatment visual outcomes,
Fu et al. [26™] applied De Fauw et al.’s [25] deep
learning method to the Moorfields AMD database.
Together, baseline visual acuity and OCT parame-
ters had a predictive accuracy for 3 months post
injection and 12 months post baseline of R?=0.49
and 0.38, respectively, which improved to R =0.79

1040-8738 Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.

and 0.63 by incorporating previous treatment
response (incremental visual acuity and OCT
changes).

Finally, one group developed an end-to-end
deep learning model for predicting treatment
requirements for patients receiving anti-VEGF on
a PRN regimen per investigator discretion; the spe-
cific patient population was not identified [42"].
OCT images were analyzed based on previous mod-
els [29] for fluid quantification to exclude patients
for whom model and investigator decisions dis-
agreed on more than three noninjection events over
2years. Based on longitudinal images, the model
categorized patients as having ‘low,’ ‘intermediate,’
and ‘high’ treatment requirements (up to five, five
to 15, and >16 injections, respectively). Although
the model did not perform well classifying patients
in the intermediate group, area under the curve of
0.85 and 0.81 was achieved in binary classifications
of low versus all or high versus all treatment require-
ments [42™]. However, this study did not ultimately
correlate these treatment requirements with vision
outcomes [42""].

Highlighting challenges in the field to date, no
studies were identified in our literature search that
evaluated whether artificial intelligence-based mod-
els could predict the treatment regimen required for
an ‘optimal’ visual response for an individual
patient. Thus far, studies have largely explored
anti-VEGF treatment response, either indirectly,
by studying association between OCT parameters
and vision outcomes, or directly, by approaching
the question of whether treatment response could
be predicted based on retinal images.

A well-known issue in machine learning is that
artificial intelligence-based models reflect the biases
inherent to the datasets used to develop them.
Unfortunately, in nAMD, few large datasets with
high-quality spectral-domain OCT data are avail-
able, and these same datasets have been utilized
by multiple groups for training, tuning, and testing
of artificial intelligence-based models. This has also
limited the nAMD population characteristics
included in the models to date. Clinical trial pop-
ulations, defined by specific inclusion and exclusion
criteria, are generally more homogenous and less
demographically diverse than real-world popula-
tions. In contrast, real-world patient populations,
such as the Moorfields AMD database [23], have
larger variability in demographics, disease state
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and severity, treatment approaches, and OCT imag-
ing schedule and protocols.

Lack of counterfactual data is another signifi-
cant limitation for both model development and
judging a model’s ability to predict treatment needs.
In the context of nAMD, each patient is unique in
their disease, baseline clinical presentation, and
treatment response; it may be argued that a specific
pretreatment state cannot be recreated. Therefore, it
may not be possible to assess how that patient may
have fared with an alternative treatment strategy or
to ascertain their best-achievable vision outcomes. A
potential strategy to mitigate this limitation is to
ensure that large, diverse patient populations with
accurate, thorough data are used for model devel-
opment. Absenting that, artificial intelligence-based
models may not accurately apply to individual
patients and will carry forward biases of the datasets
used to build them.

Finally, absence of OCT data standards [43]
impacts both availability of high-quality datasets for
artificial intelligence model development and gener-
alizability of these models. As a result, models created
to date are generally device specific, impairing their
broader application to clinical practice where different
OCT devices are in use. To be useful in clinical practice,
artificial intelligence-based models will need to be
designed for functionality and interpretability outside
of controlled research settings.

Artificial intelligence-based nAMD treatment pre-
dictions have potential applications for both clinical
research and clinical practice, with the goal of
achieving the best visual outcome for each
individual patient.

In clinical research, artificial intelligence-based
models could improve clinical trial design, includ-
ing patient identification, selection, and randomi-
zation, as well as adjustments in trial analysis.
Artificial intelligence can also improve efficiency
and standardization of image grading, enabling
analysis on a larger and more detailed scale than
possible with current practices and standard tech-
nologies. For smaller, early-stage studies, or those
with heterogeneous populations, application of arti-
ficial intelligence-based models could improve
understanding of treatment responses and increase
confidence in decision making. Artificial intelli-
gence can also create ‘synthetic’ treatment arms,
that is, hypothetical, simulated comparator arms
that could be used to model additional patient
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populations or alternative treatments for clinical
trials, including sham arms [44,45"].

In clinical practice, considering treatment
options for nAMD currently available, physician
decisions are limited by the optimal treatment regi-
mens for maximum visual gains and least treatment
burden. As an extreme example, physicians follow-
ing a monthly treatment regimen would not have a
compelling motivation to use an artificial intelli-
gence-based prediction model. However, in the near
future, complexity of treatment decisions is
expected to increase with the expansion of the
nAMD treatment landscape to potentially include
new mechanisms of action, long-acting delivery
options, and gene therapy [2].

Within the field of retina, and particularly OCT
image analysis, artificial intelligence has the poten-
tial to assist physicians in elucidating individual
needs as quickly and accurately as possible, thereby
improving patient care, in several ways. First, artifi-
cial intelligence can equip physicians with better
models for efficient image analysis, which could
expand the information readily available for making
treatment decisions. Also, given the variety of clini-
cal expertise, artificial intelligence could raise the
bar of standard of care by providing insights into
pathology that may fall outside a particular physi-
cian’s day-to-day experience. Finally, artificial intel-
ligence can extract features beyond what an expert
can discern on individual images; for example, a
deep learning model was developed to create OCT
angiography-like images from structural OCT [46].

Artificial intelligence-based models can potentially
improve clinical research and clinical practice in
nAMD, enabling best visual outcomes with least
treatment burden for each individual patient. Arti-
ficial intelligence has facilitated analysis of OCT and
multimodal image datasets on a scale not previously
possible, furthering knowledge of the disease and
response to treatment. Furthermore, artificial intel-
ligence has a number of applications to clinical trial
design, implementation, and analysis, which could
improve the process of clinical development at all
stages and improve confidence in decision making,
particularly for early-stage clinical trials. Artificial
intelligence also has the potential to create powerful
tools to inform point-of-care treatment decisions in
a treatment landscape for nAMD of increasing com-
plexity. However, a large gap remains between appli-
cation of artificial intelligence to research and
application to treatment decisions in clinical prac-
tice. A key limitation toward this goal is the shortage
of large, robust datasets that represent the
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heterogeneity of the patients, their disease, and
treatment response.
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