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ABSTRACT
Background: Globally, the burden of obesity and associated
nonalcoholic fatty liver disease (NAFLD) are rising, but little is
known about the role that circulating metabolomic biomarkers play
in mediating their association.
Objectives: We aimed to examine the observational and genetic
associations of adiposity with metabolomic biomarkers and the
observational associations of metabolomic biomarkers with incident
NAFLD.
Methods: A case-subcohort study within the prospective China
Kadoorie Biobank included 176 NAFLD cases and 180 subcohort
individuals and measured 1208 metabolites in stored baseline
plasma using a Metabolon assay. In the subcohort the observational
and genetic associations of BMI with biomarkers were assessed
using linear regression, with adjustment for multiple testing. Cox
regression was used to estimate adjusted HRs for NAFLD associated
with biomarkers.
Results: In observational analyses, BMI (kg/m2; mean: 23.9 in
the subcohort) was associated with 199 metabolites at a 5% false
discovery rate. The effects of genetically elevated BMI with specific
metabolites were directionally consistent with the observational
associations. Overall, 35 metabolites were associated with NAFLD
risk, of which 15 were also associated with BMI, including glutamate
(HR per 1-SD higher metabolite: 1.95; 95% CI: 1.48, 2.56), cysteine-
glutathione disulfide (0.44; 0.31, 0.62), diaclyglycerol (C32:1) (1.71;
1.24, 2.35), behenoyl dihydrosphingomyelin (C40:0) (1.92; 1.42,
2.59), butyrylcarnitine (C4) (1.91; 1.38, 2.35), 2-hydroxybehenate
(1.81; 1.34, 2.45), and 4-cholesten-3-one (1.79; 1.27, 2.54). The
discriminatory performance of known risk factors was increased
when 28 metabolites were also considered simultaneously in the
model (weighted C-statistic: 0.84 to 0.90; P < 0.001).

Conclusions: Among relatively lean Chinese adults, a range of
metabolomic biomarkers are associated with NAFLD risk and these
biomarkers may lie on the pathway between adiposity and NAFLD.
Am J Clin Nutr 2022;115:799–810.
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Introduction
Globally, obesity affects more than 670 million adults,

with rapidly rising prevalence and associated disease burden
in many low- and middle-income countries, including China
(1). In China, approximately 30% of the adult population
have nonalcoholic fatty liver disease (NAFLD) diagnosed by
ultrasound or computed tomography (CT) (2), despite having
relatively low BMI (3). Individuals with NAFLD have higher
risks of cirrhosis, liver cancer, cardiometabolic disease, and all-
cause mortality (2, 4, 5). Of all established risk factors, adiposity
is the strongest determinant of NAFLD risk both in Western
countries and in China (2, 4, 5). Several mechanisms have been
proposed to explain the strong association between adiposity
and NAFLD, including chronic inflammation, oxidative stress,
and insulin resistance (2, 5, 6). However, there is still limited
understanding of the pathophysiology of NAFLD, as well as of
the metabolic derangements associated with adiposity and their
role in the development of NAFLD. Metabolomics quantifies a
broad range of small-molecule metabolites at the cellular level
and has emerged as a powerful technique that might be of utility
in shedding light on biomarkers associated with NAFLD (7).
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Over 20 studies have assessed the associations of
metabolomics with NAFLD or liver fat content (7). These studies
have identified several pathways underlying the development
of NAFLD, including glutamate, branched-chain amino acids
(BCAAs), glycolysis, sex hormones, fatty acids, and very low
density lipoproteins (8–17). However, the majority of these
studies were cross-sectional, involved a small number of cases
(typically <50), and measured a limited set of metabolomic
biomarkers (typically <100). More importantly, no studies
have assessed simultaneously associations of adiposity with
metabolomics and the role of metabolomics in potentially
mediating the association between adiposity and NAFLD.
Reliable assessment of any apparent mediating effects of
metabolomic biomarkers should improve the understanding
of pathways linking adiposity and metabolic liver diseases
and could inform the development of potential therapeutic
opportunities.

The causal effects of adiposity on metabolites associated
with NAFLD have yet to be fully characterized but can be
established by Mendelian randomization (MR) (18, 19). MR
utilizes the random assortment of genes from parents to offspring
at conception, and uses gene variants associated with the
exposure of interest as unconfounded markers, thus providing an
approach for assessing causation (18, 19). Assessing the genetic
associations of adiposity with metabolomics can inform the
selection of biomarkers associated with NAFLD and circumvent
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reverse causality, where the presence of NAFLD could cause
changes in the metabolite profile.

Using a case-subcohort study embedded within the prospective
China Kadoorie Biobank (CKB), this study aims to examine
1) the observational and genetic associations of adiposity with
blood-based metabolites, 2) the observational associations of
circulating metabolites with incident NAFLD risk, and 3) the role
of metabolomics in predicting incident NAFLD risk.

Methods

Study population and design

The CKB is a prospective cohort study of 512,891 adults
aged 30–79 y, recruited in 2004–2008 from 10 (5 urban and
5 rural) geographically defined areas in China. Details of the
CKB design, survey methods, and long-term follow-up have
been previously described (20). At the baseline survey, and
subsequent periodic resurveys in a random subset of participants,
participants completed an interviewer-administered laptop-based
questionnaire on sociodemographic characteristics, smoking,
alcohol consumption, diet, physical activity, and medical history,
and underwent a range of physical measurements, including
height, weight, hip and waist circumference, bioimpedance, lung
function, blood pressure, and heart rate. All participants provided
a 10-mL nonfasting (with time since last meal recorded) blood
sample for immediate on-site testing of random plasma glucose
(RPG) and long-term storage. The study was approved by the
ethics committee and research council of the Chinese Centre
for Disease Control and Prevention and the Oxford Tropical
Research Ethics Committee at the University of Oxford. All
participants provided written informed consent.

For the present case-subcohort study, a random sample of
192 NAFLD cases [International Classification of Diseases,
10th Revision (ICD-10), K76.0] out of a total of 961 cases
accumulated until 1 January 2016 were included, as well as
a subcohort of 192 participants who were randomly sampled
from the baseline cohort with genotyping data available as
part of a random sample with genotyping. All NAFLD cases
were ascertained from medical records and 93% of cases had
ultrasound or CT (21).

Assessment of adiposity

All anthropometric measurements were taken by trained
technicians while participants were wearing light clothes and no
shoes, usually to the nearest 0.1 cm or 0.1 kg. Standing height
was measured using a stadiometer. Weight was measured using
a body-composition analyzer (TANITA-TBF-300GS; Tanita
Corporation), with subtraction of weight of clothing according to
season (ranging from 0.5 kg in summer to 2.0–2.5 kg in winter).
Waist circumference (WC) and hip circumference (HC) were
measured using a soft nonstretchable tape, with HC measured
at the maximum circumference around the buttocks. BMI was
calculated as the measured weight in kilograms divided by the
square of the measured height in meters.

https://academic.oup.com/ajcn/
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FIGURE 1 Flow diagram of the study design. CLD, chronic liver disease; CVD, cardiovascular disease; GWAS, genome-wide association study; MR,
Mendelian randomization; NAFLD, nonalcoholic fatty liver disease.

Metabolomics assay

The Metabolon platform was used to quantify levels of
1208 metabolites in baseline blood samples (Supplemental
Table 1). The metabolites were grouped into 8 chemical
classes (amino acids, carbohydrates, cofactors and vitamins,
energy metabolites, lipids, nucleotide metabolites, peptides, and
xenobiotics), which were further classified into 9 super-pathways
and 105 sub-pathways (Supplemental Table 1). The Metabolon
Discovery HD4 platform used a single nontargeted extraction
with methanol and recovered a diverse set of metabolomic
biomarkers by protein precipitation (22). Samples were then
analyzed using ultra HPLC and GC coupled with tandem MS
and MS. The mass spectra peaks were compared with a chemical
reference library generated from 2500 standards to identify
individual metabolomic biomarkers. In-house peak detection and
integration software was used whose data output was a list
of m/z ratios, retention indices, and AUC values. Metabolite
peak intensities were run-day normalized. Values below the
limit of detection were assigned the minimum observed value
for that metabolite in the dataset. There were 1208 metabolites
of known and unknown identity measured at detectable levels
(Supplemental Table 1). Metabolites were excluded if missing in
>95% of participants, leaving 1153 metabolites for the present
analysis (Supplemental Table 1).

Genotyping

Genotyping was conducted using a custom-designed 800K-
SNP (single nucleotide polymorphism) array (Axiom;
Affymetrix) with imputation to 1000 Genomes Phase 3. In CKB
release 15, genotyping data were available for 100,408 partic-
ipants with quality control (overall call rate >99.97% across
all variants), including 75,736 randomly selected participants
from the CKB cohort and 24,672 selected for various nested

case-control studies of incident cardiovascular disease (CVD)
or chronic obstructive pulmonary disease. To avoid potential
selection bias, the present study only used genotyping data from
a population-based random sample (Figure 1).

Genetic risk score for BMI

We selected 670 independent SNPs (r2 ≤0.01 in Europeans)
as instrumental variables for BMI based on a meta-analysis of
UK Biobank and the Genetic Investigation of Anthropometric
Traits (GIANT) consortium (23). After excluding 84 SNPs with
low minor allele frequency (MAF <1%) in CKB, 586 SNPs
remained for the BMI genetic score (Figure 1 and Supplemental
Table 2). We constructed an externally weighted BMI genetic
score by summing the number of effect alleles carried by each
participant (SD difference in BMI per effect allele), weighted
by the reported effect size of each variant on BMI reported in
Biobank Japan (BBJ) (24). After excluding 15 SNPs with low
MAF (<1%) in BBJ, 571 SNPs remained for the weighted score.
Five of the 571 SNPs were unavailable in BBJ and proxy SNPs
were selected [R2 ≥0.8 using the linkage disequilibrium structure
in CEPH (Centre d’Etude du Polymorphisme Humain) from Utah
(CEU) (1000 Genomes Project)].

Long-term follow-up and ascertainment of NAFLD

The vital status of each participant was determined pe-
riodically through China CDC’s Disease Surveillance Points
system, supplemented by regular checks against local residential
records and health insurance records and by annual active
confirmation through street committees or village administrators
(25). Additional information about major diseases and any
episodes of hospitalization was collected through linkages, via
each participant’s unique national identification number, with
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disease registries [for cancer, coronary heart disease (CHD),
stroke, and diabetes] and national health insurance claims
databases (for any disease), which has almost universal coverage
in the study areas. ICD-10 code (K76.0) and Chinese keywords
were used to identify and allow standardization of NAFLD
cases in the health insurance database. NAFLD was diagnosed
according to the Chinese guidelines and was defined as the
presence of hepatic steatosis on ultrasound without significant
alcohol consumption (>40 g/d or 280 g/wk for women; 60 g/d
or 420 g/wk for men) and/or viral hepatitis (hepatitis B virus or
hepatitis C virus) (26). We additionally excluded participants who
reported excessive alcohol consumption (>40 g/d for women and
60 g/d for men) and tested positive for hepatitis B surface antigen
(HBsAg) at study baseline. All events were coded using the ICD-
10 by trained staff who were blinded to baseline information.

Statistical analysis

We excluded individuals with a prior history of cancer, cirrho-
sis, or hepatitis at baseline, leaving 176 incident NAFLD cases
and 180 subcohort participants for the main analysis (Figure 1).
The primary outcome was NAFLD, and the secondary outcomes
were metabolomic biomarkers. All metabolomic biomarkers
were log-transformed and then standardized to have an SD of
1. Mean values and prevalence of baseline characteristics were
calculated for the subcohort and NAFLD cases, standardized to
age (in 5-year groups), sex, and area structure (10 regions) of the
CKB population.

Observational analysis.

The observational associations of adiposity with metabolites
were examined in the subcohort using linear regression, adjusting
for age at baseline (continuous), sex, region (10 regions), educa-
tion (4 groups: no formal school, primary school, middle/high
school, or college/university), smoking (3 groups: never regular,
former regular, or current regular), and fasting time (continuous).
For WC, we additionally adjusted for BMI in a separate
analysis to assess whether central adiposity was associated with
metabolites beyond BMI. For each biomarker, the adjusted SD
differences and 95% CIs associated with 1-SD higher adiposity
were estimated. The observational associations of metabolites
with NAFLD risk were examined in all 356 participants using
Cox regression fitted using the Prentice pseudo-partial likelihood
(27), using time in study as the time scale and adjusting for
the same covariates as in the adiposity-metabolomics analysis.
For both analyses, we calculated false discovery rate (FDR)–
corrected P values using the Benjamini-Hochberg method (28).

MR analysis.

In MR analysis, the potential causal effects of BMI on
metabolites were assessed by the 2-stage least-squares method
using individual participant–level data (IPD). In the first stage, the
associations between the externally weighted BMI genetic score
and BMI were examined in 75,736 participants in the genome-
wide association study (GWAS) population subset using linear
regression, adjusting for age, age squared, sex, area, the first
12 principal components, education, smoking, and alcohol. To

account for population structure, covariates for genetic analyses
included 12 principal components derived using 72,473 unrelated
participants and a linkage disequilibrium (LD)-pruned set of
140,830 variants. In the second stage, the associations of the
resulting predicted BMI values with metabolomics were exam-
ined in the subcohort of 180 individuals using linear regression
with the same adjustments. We calculated effect estimates per
3.4 kg/m2 higher genetically elevated BMI (corresponding to
1-SD baseline BMI in CKB) on metabolomic biomarkers to
allow comparison with the estimates for observational BMI.
Unadjusted P values were reported for the genetic associations
of BMI with metabolomic biomarkers to avoid over-correction.
The genetic associations were compared with the corresponding
observational associations using Cochran’s Q test.

Multivariable models.

We fitted multivariable models with metabolomic biomarkers
using the method developed by Cox and Battey (29), without
transformations or interactions of variables. The 1153 markers
were laid on a 11 × 11 × 10 cuboid, with the remaining
21 positions filled with normally distributed random variables
(mean zero and variance 1). A regression was fitted with each
set of explanatory variables indexed by each dimension of the
cuboid, adjusting for age at baseline, sex, region, education,
smoking, and fasting time. The metabolomic biomarkers showing
the strongest associations with NAFLD risk were kept from
each regression, defined as 1) those with z >2.5, 2) the 2 most
significant, or 3) the 3 most significant. Then, for each of the 3
criteria, biomarkers identified as such 3 times were selected and
included in a model, adjusting for the covariates above. After
the first round of selection, 122 metabolomic biomarkers were
selected by at least 1 of the 3 criteria. We repeated the selection
procedure with these 122 metabolomic biomarkers, retaining 15,
17, and 27 metabolomic biomarkers for each of the 3 criteria.

We then examined whether including selected metabolomic
biomarkers adds to the discriminatory ability of a model with
established risk factors by fitting 4 models: 1) model 1 included
age, age squared, sex, region, education, household income,
smoking, total physical activity, BMI, and diabetes, which have
been shown to be associated with NAFLD in Chinese (21);
2) model 2 additionally included the metabolomic biomarkers
identified from the multivariable models as being most associated
with risk of NAFLD—that is, variables selected 3 times from
the Cox–Battey procedure when keeping those with z >2.5 (i.e.,
model 1 plus 15 metabolic biomarkers by criterion 1); 3) model
3 additionally included metabolomic biomarkers selected when
keeping the 2 most significant (i.e., model 1 plus 21 metabolomic
biomarkers by criteria 1 and 2); and 4) model 4 additionally
including those selected when keeping the 3 most significant
(i.e., model 1 plus 28 metabolomic biomarkers by criteria 1–3),
such that models were nested. Discrimination of risk prediction
models was assessed using a weighted C-index (30, 31).

Sensitivity analyses.

In sensitivity analyses, the observational associations of BMI
with metabolomic biomarkers were additionally adjusted for
dietary factors, prevalent diabetes, systolic blood pressure (SBP),
and alcohol. We also conducted MR-Egger and weighted median
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TABLE 1 Baseline characteristics of subcohort participants and NAFLD cases1

Subcohort NAFLD cases
Variable (n = 180) (n = 176)

Age (±SD), y 50.6 ± 10.1 51.1 ± 9.1
Female, % 62.8 64.5
Socioeconomic and lifestyle factors, %

Urban residency 48.6 25.1
≥9 years of education 21.6 28.0
Household income ≥35 000 RMB/y 19.5 21.4
Ever regular smoking, %

Male 65.1 69.1
Female 5.9 9.2

Weekly alcohol drinking, %
Male 31.6 45.2
Female 4.5 4.6

Total physical activity (±SD), MET-h/d 21.8 ± 14.6 21.2 ± 13.4
Sedentary leisure time (±SD), h/d 3.1 ± 1.5 3.0 ± 1.9

Blood pressure and anthropometry
SBP (±SD), mmHg 131.2 ± 19.9 133.0 ± 19.7
RPG (±SD), mmol/L 5.9 ± 2.7 6.4 ± 2.5
BMI (±SD), kg/m2 23.9 ± 3.5 26.1 ± 3.5
Waist circumference (±SD), cm 79.6 ± 10.0 85.7 ± 9.9
Hip circumference (±SD), cm 90.5 ± 7.3 94.0 ± 7.2
Waist-to-hip ratio (±SD) 0.88 ± 0.07 0.91 ± 0.08
Percentage body fat (±SD), % 29.0 ± 8.2 33.4 ± 9.2
Standing height (±SD), cm 158.2 ± 7.9 158.7 ± 9.1

Prior disease history, %
Diabetes 5.8 6.5
Coronary heart disease 3.1 5.9
Stroke or TIA 2.9 0
Hypertension 10.9 13.7
Family history of diabetes 5.3 5.3
Family history of cancer 18.5 18.6

1Results by BMI categories are standardized by age, sex, and region, whereas for age they were adjusted for sex and region. Values are means unless
otherwise stated. MET, metabolic equivalent of task; NAFLD, nonalcoholic fatty liver disease; RMB, Renminbi; RPG, random plasma glucose; SBP, systolic
blood pressure; TIA, transient ischemic attack.

MR for the genetic associations of BMI with metabolomic
biomarkers, using 2-sample MR analysis, with the same ad-
justments as the IPD analysis. Statistical analyses were done
using R version 4.0.2 and package “MendelianRandomization”
(R Foundation for Statistical Computing).

Results
Compared with the subcohort, NAFLD cases were older,

more likely to be female and from rural areas, and had higher
educational levels (Table 1). NAFLD cases and subcohort
participants had similar levels of total physical activity and
sedentary leisure time, but NAFLD cases were more likely to
smoke and drink alcohol. High SBP, RPG, and adiposity, as well
as hypertension, diabetes, and CHD, were more prevalent among
cases than subcohort members (Table 1).

For the 1153 metabolomic markers, the majority were
approximately normally distributed, while the distributions of
several metabolites were right skewed (phenyllactate, hydantoin-
5-propionate) and left skewed (glutamine, tryptophan) (Supple-
mental Figure 1). There were low to moderate correlations
between metabolomic biomarkers [median (IQR) of pairwise
Pearson correlation coefficients: −0.036 (−0.19, 0.084)].

MR assumptions

The first MR assumption is that the BMI score is associated
with BMI, and this is supported by the data (F-statistic 1071,
variance explained 1.1%). The second MR assumption is that
the BMI score is associated with metabolomics only through
BMI. We showed that MR-Egger estimates were consistent
with the inverse variance weighted (IVW) estimates (Pearson
correlation coefficient r = 0.95; Supplemental Figure 2). The
third MR assumption is that the BMI score is not associated
with traits that can confound the associations between BMI and
metabolomics. The BMI genetic score was not associated with
potential confounders (Supplemental Table 3).

Observational associations of adiposity, metabolomic
biomarkers, and NAFLD

Overall, 199 of the 1153 metabolomic biomarkers were asso-
ciated with BMI after FDR correction, including predominantly
lipids (n = 84) and amino acids (n = 58) (Figure 2). The associa-
tions were positive for 172 metabolites and inverse for 27 metabo-
lites, with mean SD differences of metabolites ranging from
−0.82 to 0.50 per 1-SD higher BMI (Supplemental Table 4).
For central adiposity, 201 of the 1153 metabolomic biomarkers
were associated (at FDR <5%) with WC (Supplemental Figure
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FIGURE 2 Manhattan plot showing the P values for observational associations of adiposity, metabolomic biomarkers, and risk of NAFLD. Observational
associations of BMI and WC with all metabolomic biomarkers (A, B) and of metabolomic biomarkers with NAFLD risk (C) are shown. Metabolomic biomarkers
are the dependent variables in A and B, whereas NAFLD is the dependent variable in C. The x axis shows the numeric order of metabolomic biomarkers
shown in “Compound ID” Supplemental Table 1 within each super-pathway. The y axis shows log-transformed FDR-corrected P values. The horizontal line
denotes −log(0.05). The table shows the percentage of metabolomic biomarkers that passed the FDR threshold of 0.05 by super-pathways. The estimates
were adjusted for age, age squared, sex, area, smoking, education, and fasting time. FDR, false discovery rate; NAFLD, nonalcoholic fatty liver disease;
WC, waist circumference. An asterisk denotes that the metabolic biomarker is a mixture of isoforms (with the same number of carbons and carbon-carbon
double bonds).

3), with a Pearson correlation coefficient of 0.96 between the
2 sets of estimates (BMI-metabolomic biomarkers and WC-
metabolomic biomarkers). When additionally adjusting for BMI,
the associations of WC with metabolomic biomarkers tended
to attenuate towards the null and became nonsignificant (FDR-
corrected P values, Supplemental Table 4 and Supplemental
Figure 3).

At an FDR <5%, 35 of the 1153 metabolomic biomarkers
were associated with NAFLD risk, mostly lipids (n = 23)
(Supplemental Table 5), with positive associations for
26 biomarkers and inverse associations for 12 biomarkers.
Of these 35 biomarkers, 15 were also associated with BMI
(FDR-corrected P < 0.05; Figure 3). There was a concordant
pattern between the associations of BMI with metabolomic
biomarkers and of metabolomic biomarkers with NAFLD risk
(Figure 3).

Genetic associations of adiposity with metabolomic
biomarkers

For the 199 metabolomic biomarkers associated with both
BMI and NAFLD risk, there was general concordance between
the associations of observational BMI and of genetically elevated
BMI with metabolomic biomarkers, with greater magnitudes
of genetic than observational associations (Pearson correlation

coefficient r = 0.58; Supplemental Figure 4, Supplemental
Table 6). Cochran’s Q test showed no evidence that the
genetic estimates differed from the observational estimates,
with the exception of 3 biomarkers. The genetic associations
were stronger for 2 biomarkers (1,5-anhydroglucitol and N-
acetylglycine), whereas the genetic association was opposite
to the observational association for glucuronide of C10H18O2
(a partially characterized molecule). For the 15 metabolomic
biomarkers associated with both BMI and NAFLD risk, the as-
sociations between genetically predicted BMI with metabolomic
biomarkers were of a consistent direction in all cases and
nominally significant for 11 biomarkers (Figure 3).

Multivariable analysis

The metabolomic biomarkers associated with NAFLD iden-
tified using the Cox–Battey method largely overlapped with the
biomarkers identified in the univariable analyses (Supplemental
Table 7), with similar coefficients. The following metabolomic
biomarkers were identified by all 3 criteria (z >2.5, the 2
most significant, and the 3 most significant): 1H-indole-7-
acetic acid, 3-hydroxysebacate, 3b-hydroxy-5-cholenoic acid, ɑ-
tocopherol, cysteine-glutathione disulfide, glutamate, indolin-2-
one, saccharin, X-13729, X-17676, and X-21785. The addition of
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FIGURE 3 Associations of BMI, metabolomic biomarkers, and risk of NAFLD for 15 metabolomic biomarkers associated with both BMI and NAFLD at
5% FDR. Column A shows adjusted SD differences (95% CI) of metabolomic biomarkers per 1-SD higher observational BMI for 15 metabolomic biomarkers
associated with both BMI and NAFLD with FDR-corrected P values <0.05. Column B shows corresponding estimates per 1-SD higher genetically elevated
BMI. The observational estimates were adjusted for age, age squared, sex, area, smoking, education, and fasting time. The MR estimates were adjusted for age,
age squared, sex, area, the first 12 principal components, education, and smoking. The SD for BMI in the whole CKB cohort was 3.4 kg/m2. Column C shows
adjusted HR (95% CI) of NAFLD per 1-SD higher metabolomic biomarkers. An asterisk denotes that the metabolic biomarker is a mixture of isoforms (with
the same number of carbons and carbon-carbon double bonds). FDR, false discovery rate; GPG, glycerophosphoglycerol; GPC, glycerophosphocholine; OB,
observational; MR, Mendelian randomization; NAFLD, nonalcoholic fatty liver disease.

metabolomic biomarkers to a model with established risk factors
yielded small increases in the discriminatory ability of the model
(Table 2). The weighted C statistic increased from 0.84 (base
model, 95% CI: 0.80, 0.88) to 0.88 (0.85, 0.92) when adding
15 biomarkers (criterion 1), to 0.89 (0.86, 0.93) when adding
21 biomarkers (criteria 1–2), and to 0.90 (0.87, 0.93) when adding
28 biomarkers (criteria 1–3).

Subgroup and sensitivity analyses

In the observational analyses, the associations of BMI with
metabolomic biomarkers were similar for subgroups defined
by age, sex, region, and smoking (Supplemental Figure 5).
Similar associations were evident when further adjusting for
dietary factors, SBP, and diabetes (Supplemental Figure 6). In
the genetic analyses, MR-Egger and weighted median estimates
were consistent with the IVW estimates (Pearson correlation
coefficients r = 0.95 and 0.88; Supplemental Figure 2), whereas
MR-Egger estimates were more imprecise (Supplemental
Table 6).

Discussion
In this relatively lean Chinese population, BMI was associated

with a broad range of metabolomic biomarkers, which covered
amino acids, lipids, peptides, carbohydrates, cofactors and vita-
mins, and xenobiotics. MR analyses demonstrated directionally
concordant relations of observational and genetically elevated
BMI with metabolomic biomarkers. Some of the BMI-associated
metabolomic biomarkers (e.g., glutamate, butyrylcarnitine, 2-
hydroxybehenate) were associated with NAFLD risk, suggesting
they may act as potential mediators linking adiposity and NAFLD
(Figure 4). The discriminatory ability of a model with known risk
factors was increased when 28 metabolomic biomarkers iden-
tified by multivariable models were added. Although our study
suggests that several metabolomic biomarkers might lie on the
causal pathway between BMI and NAFLD, further investigations
are warranted to identify whether these metabolomic biomarkers
are causally related to NAFLD and to further evaluate their utility
in risk prediction.

The associations of metabolomic biomarkers with NAFLD risk
in the current study are generally consistent with previous cross-
sectional or case-control studies on amino acids, lipids, and other
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TABLE 2 Exploratory investigation of metabolomic biomarkers as predictors of incident diagnosis of NAFLD1

Variables included in model Weighted C statistic 95% CI P

Base model 0.84 (0.80, 0.88)
+ 15 metabolic biomarkers (criterion 1) 0.88 (0.85, 0.92) 0.005
+ 21 metabolic biomarkers (criteria 1, 2) 0.89 (0.86, 0.93) 0.002
+ 28 metabolic biomarkers (criteria 1–3) 0.90 (0.87, 0.93) <0.001

1Base model includes age, age squared, sex, region, education, household income, smoking, total physical activity, BMI, and diabetes. Discrimination of
models was assessed using a weighted C-index.

The criterion was each defined as 1) those with z >2.5, 2) the 2 most significant, or 3) the 3 most significant. P values are for comparison with the base
model. NAFLD, nonalcoholic fatty liver disease.

metabolites (carnitines and urate) (Supplemental Table 8 and
Supplemental Figures 7 and 8). For amino acids, our results
are consistent with previous studies, particularly for glutamate,
cysteine-glutathione, γ -glutamyl dipeptide, and BCAAs (8, 9, 14,

15, 32, 33). For BCAAs, prospective cohort studies have shown
positive associations with insulin resistance and subsequent type
2 diabetes (34, 35), whereas case-control studies and prospective
cohort studies have shown consistently positive associations

FIGURE 4 Central illustration of BMI, metabolomic biomarkers, and risk of NAFLD. We assessed the associations of BMI with ∼1200 metabolomic
biomarkers and of these metabolomic biomarkers with risk of NAFLD. Previous reports in CKB showed observational and genetic associations between BMI
and risk of NAFLD (21, 62). For the associations between BMI and metabolomic biomarkers, this study showed that measured BMI was observationally
associated with 199 metabolomic biomarkers (amino acids, carbohydrates, cofactors and vitamins, lipids, nucleotides, peptides, and xenobiotics), with general
concordance between the observational and genetic associations (except for 3 biomarkers—i.e., 1,5-anhydroglucitol, N-acetylglycine, and C10H18O2). This
study also showed that 35 metabolomic biomarkers were associated with NAFLD risk. The lower panel illustrates the observational associations of BMI with
metabolomics and of metabolomics with NAFLD by sub-pathways. There were 15 metabolomic biomarkers that were associated with BMI and NAFLD risk.
CKB, China Kadoorie Biobank; HR, hazard ratio; NAFLD, nonalcoholic fatty liver disease.
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with NAFLD, including leucine, isoleucine, and valine (12–
16). Although the associations of BCAAs with NAFLD were
nominally significant in CKB, there was agreement of the
associations of BMI with BCAAs and of BCAAs with NAFLD.
Alterations in circulating concentrations of these amino acids and
peptides may be due to the following: 1) increased glutathione
turnover as a result of oxidative stress (35, 36), 2) increased
conversion from intermediates to amino acids in the tricarboxylic
acid (TCA) cycle (8), and 3) increased transamination of amino
acids being degraded in the liver and skeletal muscle (15).

For phosphatidylcholines di-acyl (PCs aa) and lyso-
phosphatidylcholines (LPCs), cross-sectional studies showed
positive associations between BMI and PC aa from C30 to C40,
whereas the associations of BMI with PC aa >C40 and LPC
varied by the degree of saturation and length of fatty acid chain
(37, 38). Similarly, the associations of PC aa and LPC with
hyperglycemia, type 2 diabetes, and NAFLD differed according
to the degree of saturation and length of fatty acid chain (10, 17,
39, 40). In addition to PC and LPC, case-control studies have
reported that several sphingomyelins (SMs) differed between
NAFLD cases and healthy controls (10, 17). Consistent with
previous studies, our study suggested that the associations of
BMI, SM, and NAFLD risk differed by the length of fatty acid
chain. Diacylglycerol (DAG) is derived from lipogenesis and
membrane phospholipid (41). Membrane PC may contribute to
the observed increase in DAG along with lipogenesis (41). A
previous review paper has suggested that DAG might serve as
the link between NAFLD and hepatic insulin resistance (42).

Recent studies have suggested sex differences in NAFLD
(43, 44). A recent meta-analysis involving 62,239 participants
identified women to have a 19% lower risk of NAFLD than
men but had a higher risk of progression (45). The sex
differences in the development and progression of NAFLD
might be modified by estrogen (43, 44). In our study, we
conducted sex-specific analyses and found overall consistent
patterns for BMI and metabolomics as well as metabolomics
and NAFLD in men and women (Supplemental Figure 5).
Nonetheless, the lack of sex differences might be due to the
small sample size. Future larger studies are warranted to assess
the sex-specific associations of metabolomics with NAFLD.
Apart from sex differences, NAFLD is a heterogenous disease
(46, 47). Recent development of ’omics technology enables the
characterization of disease sub-phenotypes, which can inform
better understanding of disease natural history and response
to therapy (48). These molecular phenotypes can improve our
understanding of NAFLD heterogeneity, which serves as the
basis of personalized medicine.

Our study showed that both general and central adiposity was
associated with metabolomic biomarkers in Chinese. However,
the associations between adiposity and metabolomics might
differ in Europeans because of different distribution of adiposity
in general populations (49). In addition, previous studies
have shown that metabolically healthy obesity (MHO) and
metabolically unhealthy obesity (MUO) both have higher risk of
developing NAFLD and nonalcoholic steato hepatitis (NASH)
compared with healthy individuals with normal weight, with
stronger associations in MHO than MUO (50, 51).

Apart from showing consistency for the observational as-
sociations, we found that altered concentrations of several
metabolomic biomarkers that BMI is genetically associated with

were also observationally associated with NAFLD. The general
concordance between the observational and genetic associations
can improve understanding of the causes of NAFLD. Although
previous studies suggested genetic associations of BCAAs with
insulin resistance and diabetes (52, 53), there is limited evidence
on the genetic associations between metabolomic biomarkers
with NAFLD. A possible limitation may be the lack of available
instruments for metabolomic biomarkers, particularly in East
Asians (54).

Several prospective studies have constructed prediction mod-
els for imaging-diagnosed NAFLD using biomarker data and
achieved good prediction ability (55–59). A European cohort
study involving 1514 adults with MRI-derived liver fat content
reported that ’omics data (metabolomics, proteomics, genetics,
and transcriptomics) in combination with clinical variables had
better prediction ability than clinical variables alone (AUC: 0.84
and 0.82) (55). Of note, this study identified PCs, glycerophos-
pholipids, and valine among the highest-ranked metabolites,
which were also associated with NAFLD risk in the current
study. Previous prospective studies conducted in the Chinese
population, involving 577 to 8226 participants and ascertaining
NAFLD with ultrasound, showed that clinical variables (BMI,
lipids, and liver enzymes) could be used to identify individuals
at high risk of NAFLD, achieving an AUC between 0.72 and
0.93 (55–58). Consistent with previous studies, the current study
constructed a model for incident diagnosis of NAFLD and found
that combining metabolomic biomarkers with known risk factors
(demographic and clinical variables) achieved good prediction
performance (weighted C statistic: 0.90). Such a model may be
applicable to the general population in identifying individuals
at higher risk of NAFLD, who may benefit from additional
investigations.

The strengths of the current study included measurement of a
broad range of blood-based metabolomic biomarkers involved in
multiple biological pathways, assessment of different adiposity
measures, and use of MR to assess likely causal associations
of adiposity, metabolites, and NAFLD risk in the same study
population. Our study also had several limitations. First, our
study relied on hospital records to capture NAFLD. However,
we ascertained all NAFLD cases diagnosed between 2013 and
2015 and showed that 93% of all hospitalized NAFLD cases were
diagnosed by ultrasound or CT. In addition, the metabolomic
signatures of NAFLD observed in our study were consistent with
previous studies of biopsy-ascertained NAFLD (Supplemental
Table 8). Likewise, our previous reports on the associations of
metabolic risk factors (i.e., adiposity and diabetes) with NAFLD
in CKB were consistent with those in previous prospective studies
using imaging or biopsy to ascertain NAFLD (Supplemental
Table 9). Second, another limitation is the lack of validation
of findings on metabolomics and NAFLD using more accurate
diagnostic tools, such as biopsy. However, we showed consistent
patterns of metabolomic biomarkers associated with NAFLD
compared with hospital-based case-control studies of biopsy-
diagnosed NAFLD (Supplemental Table 8). Although biopsy is
unfeasible in large-scale cohort studies, future studies warrant
adopting noninvasive tools to diagnose NAFLD with greater
accuracy, such as controlled attenuation parameter and magnetic
resonance spectroscopy (60). Third, individuals hospitalized for
NAFLD may have more cardiometabolic comorbidities including
CVD and diabetes. However, we found similar associations of



808 Pang et al.

adiposity with metabolites and of metabolites with NAFLD
among participants without and with cardiometabolic comor-
bidities at baseline (Supplemental Figure 5). Fourth, we were
not able to assess the effects of subclinical NAFLD developed
at baseline on metabolic profiles, nor histological changes
after NAFLD diagnosis and their associations with repeated
measures of blood metabolomics due to lack of histological
assessment. A previous study has suggested that histological
progression in NAFLD patients is associated with metabolic
changes, particularly lipidomics (61). Fifth, the sample size in
the current study is relatively small because of the exploratory
nature of the study.

In summary, our study in a relatively lean Chinese population
shows that adiposity was associated with a range of metabolomic
biomarkers, with concordant associations for both observational
and genetic estimates. Some of the BMI-associated metabolomic
biomarkers were also associated with risk of NAFLD. By inte-
grating genomics and metabolomics, the current study findings
suggest that several metabolites might lie on the causal pathway
between BMI and NAFLD. Our findings provide insights into the
metabolomic disturbances and pathophysiological mechanisms
linking adiposity and NAFLD. Additional investigations are
warranted to further characterize the relation of these metabolites
with NAFLD and to evaluate their potential utility in risk
prediction.
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