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Abstract

IgG4-related disease (IgG4-RD) is a fibroinflammatory disorder
signified by aberrant infiltration of IgG4-restricted plasma cells into
a variety of organs. Clinical presentation is heterogeneous, and
pathophysiological mechanisms of IgG4-RD remain elusive. There
are very few cases of IgG4-RD with isolated central nervous system
manifestation. By leveraging single-cell sequencing of the cere-
brospinal fluid (CSF) of a patient with an inflammatory intracranial
pseudotumor, we provide novel insights into the immunopatho-
physiology of IgG4-RD. Our data illustrate an IgG4-RD-associated
polyclonal T-cell response in the CSF and an oligoclonal T-cell
response in the parenchymal lesions, the latter being the result of a
multifaceted cell–cell interaction between immune cell subsets and
pathogenic B cells. We demonstrate that CD8+ T effector memory
cells might drive and sustain autoimmunity via macrophage migra-
tion inhibitory factor (MIF)-CD74 signaling to immature B cells and
CC-chemokine ligand 5 (CCL5)-mediated recruitment of cytotoxic
CD4+ T cells. These findings highlight the central role of T cells in
sustaining IgG4-RD and open novel avenues for targeted therapies.
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Introduction

Immunoglobulin G4 (IgG4)-related disease (IgG4-RD) is the patho-

logical consequence of aberrant infiltration of IgG4-restricted plasma

cells into a variety of organs, most commonly the pancreas and

lymph nodes (Stone et al, 2018; Perugino & Stone, 2020). These

lesions are mostly accompanied by the excessive production of

IgG4, resulting in elevated IgG4 serum levels and an increased

IgG4/IgG ratio (Della-Torre et al, 2013). Parenchymal lesions of

IgG4-RD in the central nervous system (CNS) are very rare, and the

majority of these have additional systemic manifestations (Kuroda

et al, 2019; Temmoku et al, 2020). The pathophysiological mecha-

nisms of IgG4-related autoimmunity remain elusive, with many

immune cell subsets described to be involved in disease progression

(Baptista et al, 2017; Perugino & Stone, 2020).

Results

Here, we report on a 55-year-old male patient who was admitted to

our hospital with progressive blurry vision and a monocular visual

acuity reduction to 1% on the right side. At the time of admission,

he was not taking any immunomodulatory medication. MRI scans

showed a contrast-enhancing lesion within the right orbital cavity

and optic channel (Fig EV1, 05/2019). According to the patient’s

medical history, in previous years, the patient had had progressive

vertigo and right-sided hypoacusis followed by stereotactic radio-

surgery for a right temporal/petrosal contrast-enhancing lesion (Fig

EV1A, 09/2014). Following radiotherapy, the patient had developed

structural epilepsy, a progressive sixth nerve palsy, and headache.

A follow-up MRI scan had shown a progressive infiltration of the

contrast-enhancing lesion extending into the right temporal lobe

(Fig EV1A, 02/2015). Glucocorticoid therapy had been initiated

followed by a partial resection of the lesion and adjacent temporal

lobe. The histology of the resected lesion demonstrated no signs of

malignancy, but unspecific inflammation. At the time of admission,

all standard and extended diagnostics remained inconclusive and
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there were no extracranial disease manifestations found. However,

we observed cerebrospinal fluid (CSF) pleocytosis accompanied by

an isolated intrathecal immunoglobulin (Ig) production. In parallel

to an intravenous glucocorticoid re-challenge (Fig EV1B–D), we

therefore performed exploratory CSF single-cell sequencing (CSF

scSeq) and compared it to datasets of publicly available control and

multiple sclerosis (MS) patients (Fig 1A–C) (Schafflick et al, 2020).

We found a pleiotropic landscape of T cells, including na€ıve and

effector CD8+ and CD4+ T cells (Fig 1A). Furthermore, the inflamma-

tory pseudotumor (IPT) CSF exhibited a significantly increased

abundance of na€ıve and non-switched memory B cells as compared

to control and MS patient-derived CSF (Fig 1B and C). Pseudotime

analysis of the patient’s B-cell population revealed a trajectory from

these na€ıve, cycling B cells to IgG4-restriced B cells (Fig 1D) (Trap-

nell et al, 2014).

As these findings were highly suggestive of IgG4-RD, we aimed

to retrospectively validate the diagnosis in accordance with the

consensus statement on the pathology of IgG4-RD (Deshpande

et al, 2012): Strikingly, all resected tissues showed characteristic

histological features such as dense lymphoplasmacytic infiltrate,

obliterative phlebitis, storiform fibrosis, and IgG4 positivity (Fig

EV2). Moreover, the IgG4/IgG ratio as determined by histology

was greater than 0.4, thereby fulfilling the diagnostic criteria of

IgG4-RD (Figs 1E and EV3 and EV4). Lastly, we found co-

localization of astrocytes and IgG4+ cells, suggestive of a hitherto

undescribed primary intraparenchymal manifestation (Fig EV5A).

Based on the highly suggestive CSF scSeq results and in line with

the clinical course with repeated sensitivity to glucocorticoids, the

increased IgG4/IgG ratio as well as characteristic pathological

features, the diagnosis of primary intracerebral IgG4-RD was con-

firmed. Based on the high abundance of na€ıve B cells on an IgG4

trajectory, suggestive for a strong recruitment of B cells into the

CSF, we aimed to investigate the underlying mechanism. The

chemokines C-X-C motif chemokine 13 (CXCL13) and CC motif

chemokine ligand 21 (CCL21) are particularly known to regulate B-

cell migration into the CNS and to promote intrathecal accumula-

tion of B cells (Kowarik et al, 2012). Specifically, CXCL13 was

suggested to play a role in the formation of ectopic lymphoid

tissues within the CNS (Aloisi et al, 2008). Interestingly, CXCL13

CSF levels were remarkably higher in IPT CSF compared with

control or MS patient-derived CSF (Fig 1F). CD4+ central memory

and CD8+ effector memory T cells were the immune cell subset

with the highest median expression of CXCL13 (Figs 1G and EV5B).

Importantly, CD4+ memory T-cell subsets identified by Seurat v4

reference mapping expressed a T helper 2 cell (Th2)-associated

cytokine profile including IL-4, IL-10, and IL-21. Previous studies

suggest that Th2 cells drive the class switch toward IgG4 via IL-4

signaling (Baptista et al, 2017; Akiyama et al, 2018). Consistently,

na€ıve B cells found in our IPT CSF dataset showed increased

expression of IL4R. As IL-10 is suggested to preferentially promote

class switch toward IgG4 over IgE (Jeannin et al, 1998), we found

expression of IL10RA on all CSF-localized B-cell subsets in conjunc-

tion with a pronounced IL-10 expression in CD4+ memory T cells

(Fig 1G and H).

Our data suggested that the disease is driven by B cells in the

CSF that are recruited to intraparenchymal lesions to become

clonally expanding plasma cells secreting IgG4 that becomes

detectable in the brain parenchyma and CSF. Several studies have

assessed the pathological T-cell response in IgG4-RD, with a focus

on Th2 cells (Zen et al, 2007; Tanaka et al, 2012; M€uller et al,

2013; Heeringa et al, 2018) and, more recently, CD4+ cytotoxic T

lymphocytes (CD4+ CTL) (Mattoo et al, 2016; Maehara et al,

2017) and PD-1hiCXCR5� peripheral T helper (Tph)-like cells (Rao

et al, 2017; Kamekura et al, 2018). Interestingly, we found an

increased abundance of CD4+ CTL in IPT CSF compared with

control and MS patient-derived CSF (Fig 2A), while 10% of CD4+

T cells in IPT CSF were Tph-like cells (Fig EV5C and D).

However, CSF T-cell repertoire was polyclonal (Fig 2B), arguing

against recruitment of antigen-specific T cells. Most CD4+ T cells

demonstrated expression of TCF7 consistent with a dysfunctional

state, while most CD8+ T cells exhibited a phenotype reflective of

cytotoxic activity, expressing granzyme and granulysin (Fig 2C)

(Li et al, 2019). We therefore aimed to further characterize the

functional interactions between pathogenic B cells and highly

▸Figure 1. Comparative cerebrospinal fluid single-cell profiling of an inflammatory pseudotumor.

A Uniform Manifold Approximation and Projection (UMAP) of sequenced single cells from inflammatory pseudotumor (IPT) CSF (n = 1 sample, n = 4,324 single cells, left),
control CSF (n = 6 samples, n = 15,467 single cells, middle), and multiple sclerosis (MS) patient-derived CSF (n = 6, n = 18,412 cells, right). Indicated immune cell
subsets as identified by Seurat v4 reference (ref) mapping.

B Stacked bar chart of relative B-cell abundances as identified by Seurat v4 reference mapping in inflammatory pseudotumor (IPT) CSF, control CSF, and MS patient-
derived CSF.

C Circle plots representing the relative abundance of B-cell subsets as identified by Seurat v4 reference mapping in inflammatory pseudotumor CSF, control CSF, and
MS patient-derived CSF.

D Pseudotime analysis of intrathecal B-cell subsets in inflammatory pseudotumor CSF with the na€ıve B-cell cluster, identified by canonical markers, as root node.
Percentage of cycling na€ıve B cells and IgG4 B cells depicted in pie charts.

E Retrospective immunohistochemistry DAB staining of IgG4 and IgG on archival temporal lobe resection tissue. As suggested by the consensus statement on the
pathology of IgG4-RD (Deshpande et al, 2012), three 40x fields with the highest number of IgG4+ and IgG+ cells were selected, counted, and averaged within these
fields. Cell counts as indicated.

F C-X-C motif chemokine 13 (CXCL13) concentrations measured by ELISA from inflammatory pseudotumor (IPT) CSF, control CSF, and MS patient-derived CSF.
Individual values, mean� SEM; n = 4 experiment repeats with technical replicates.

G Stacked bar chart depicting mean relative expression levels of T helper cell-associated cytokines in T-cell subsets as identified by Seurat v4 reference mapping in
inflammatory pseudotumor CSF as in (A). TEM, T effector memory; TCM, T central memory; Treg, regulatory T cell.

H Violin plot depicting relative expression levels of IL4R (left) and IL10RA (right) in B-cell subsets as identified by Seurat v4 reference mapping in inflammatory
pseudotumor CSF.

Data information: (B, C) Cell subsets as indicated by the legend on the right.
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abundant T-cell clusters. Strikingly, we found the strongest

predicted cell–cell interactions to be between pathogenic na€ıve,

intermediate and memory B cells and CD8+ T effector memory

cells (CD8 TEM) as well as a direct T-cell–T-cell crosstalk between

CD8 TEM and CD4+ memory cells, while plasmablasts did not

show potent intercellular interactions (Fig 2D). Analysis of co-

expressed interaction partner molecules revealed that—in addition

to canonical mediators of B-cell maturation, such as CD40—

CD40LG and ALOX5—ALOX5AP (Nagashima et al, 2011)—the

most highly co-expressed molecules were CD74 on B cells and its

ligand macrophage migration inhibitory factor (MIF) on CD8+ and

CD4+ T cells, which has recently been described as B-cell chemo-

kine that might be responsible for the migration of pathogenic B

cells to IgG4-RD manifestation sites as well as their aberrant

proliferation (Shi et al, 2006; Klasen et al, 2014, 2018; Della-Torre

et al, 2020) (Fig 2E–G). Lastly, we found signals of T-cell–T-cell

crosstalk via CC-chemokine ligand 5 (CCL5) on CD8 TEM binding

to C-C chemokine receptor type 4/5 (CCR4/5)-expressing T cells

that might facilitate recruitment of helper and cytotoxic CD4+ T

cells that have been shown to mediate inflammation in IgG4-RD

(Fig 2E–G) (Mattoo et al, 2016; Mattoo et al, 2017; Perugino et al,

2021).

We hypothesized that IgG4-plasma cell maturation mediated by

dysfunctional T helper cells is followed by T-cell–T-cell crosstalk

and a clonal cytotoxic T-cell response as effector arm of IgG4-

related autoimmunity. We here propose a novel pivotal role for

CD8 TEM in driving and sustaining IgG4-RD via distinct cell–cell

interactions and chemoattraction of pathogenic B cells and cyto-

toxic CD4+ T cells. However, we observed a polyclonal TCR reper-

toire in the CSF in both T-cell compartments (Fig 2B). We

therefore extracted FFPE-derived DNA from all available IgG4-RD

lesions (2015 temporal lobe parenchyma, 2018 cavernous sinus,

and 2019 optic nerve) and performed targeted TCR beta immune

repertoire sequencing (TCRB-Seq). Interestingly, we found an

oligoclonal TCR repertoire in all parenchymal lesions compared

with the polyclonal repertoire in the CSF (Fig 3A). Repertoire distri-

bution analysis indicated that hyperexpanded clones dominated

especially the early and latest lesions (Fig 3B). When adjusting

clonotype diversity for differences in library sizes across samples

by rarefaction analysis, T-cell clonality consistently increased over

time (2015< 2018< 2019; Fig 3C). TCR sequence overlap between

lesions revealed greatest overlap between 2015 and 2018, followed

by 2015 and 2019 as measured by Morisita’s overlap index (Fig

3D). A total of 17 clonotypes were shared between all sites and

time points of disease manifestation (Fig 3E), resulting in a number

of predominant TCRB amino acid motifs over the course of the

disease (Fig 3F). Strikingly, longitudinal tracking of the most abun-

dant clonotypes revealed dominance of two clones at first resection

(2015: CSARVDYNEQFF: 49.27%, CASSQEYSPYEQYF: 38.33%).

While productive frequency of clone CSARVDYNEQFF decreased

over time (2018: 9.12%, 2019: 0.07%), clone CASSQEYSPYEQYF

hyperexpanded, resulting in an almost completely monoclonal

disease at re-recurrence in 2019 (83.47% productive frequency;

Fig 3G and H). Taken together, these findings support the notion of

a dynamic, but highly clonal T-cell response as effector arm of

IgG4-related autoimmunity (Perugino & Stone, 2020; Perugino

et al, 2021).

Treatment paradigms for IgG4-RD have been extrapolated

primarily from observational studies of glucocorticoids in type 1

(IgG4-related) autoimmune pancreatitis (Ghazale et al, 2008; Kami-

sawa et al, 2009). Following diagnosis, the here-described patient

thus received high-dose glucocorticoid and consequently improved

clinically (Fig EV1B). Intrathecal protein and IgG levels declined,

while serum inflammation markers and immunoglobulin levels

remained stable, further highlighting the restriction of active disease

to the CNS (Fig EV1C and D). Similar to published casuistic reports,

IgG4 concentration in the CSF was elevated (Fig EV4D), but addi-

tional studies regarding CSF IgG4 quantification and IgG4 indices for

diagnostic purposes are required (Della-Torre et al, 2012; Della-

Torre et al, 2014).

Discussion

In summary, in this very rare case of primary cerebral IgG4-RD with

preceding standard diagnostic workup remaining inconclusive,

exploratory single-cell sequencing allowed for cell-subtype specific

diagnosis and further insights into the pathogenesis of this disease.

Based on our data, it is tempting to speculate that recurrent IgG4-RD

is driven by an oligoclonal to clonal T-cell response. Further

research is needed to determine the dynamics of clonal T-cell

autoimmunity and to identify potential disease-driving epitopes in

IgG4-RD. On a broader level, leveraging high-throughput single-cell

technologies and detailed bioinformatic analyses may not only guide

clinicians in the diagnosis of rare autoimmune disorders but also

targeted treatments.

◀ Figure 2. CNS manifestation of IgG4-RD with distinct cytotoxic T-cell–B-cell interactions.

A Relative abundances of cell types identified by Seurat v4 reference mapping as in Fig 1A in IPT CSF compared with control or MS patient-derived CSF.
Boxplot depicting 25th–75th percentiles with median shown as central band and whiskers extending from minimum to maximum values. FC, fractional
difference.

B TCR repertoire of IPT CSF as analyzed by single-cell VDJ sequencing. Top, all sequenced and paired TCR clonotypes shown, clonotypes ordered counterclockwise
according to abundance. Bottom, clonotype frequency stratified by T-cell subset.

C Feature plot of UMAP of single cells from pseudotumor CSF shown in Fig 1A, depicting cell-wise representations of indicated transcripts. Relative expression shown.
D Heatmap of cell–cell interaction analysis depicting top predicted interactions based on receptor-ligand co-expression and reference-based cell subsets. Interaction z-

score shown.
E Dot plot representation of top 30 receptor–ligand interactions based on molecule co-expression and reference-based cell subsets. Mean relative expression of both

interaction partners (dot color) and interaction P-value (dot size) shown. P-values are derived from one-sided permutation tests and refer to the enrichment of the
interacting ligand–receptor pair in each of the interacting pairs of cell types.

F Relative expression of CD40, CD74, and CCL5 on indicated combined meta-clusters classified by reference-based cell identification as shown in Fig 1A.
G Circos plot representation of highlighted cell–cell interactions in IPT CSF between indicated cell subsets. Colored receptor–ligand interaction pairs from (E-F).
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B TCR repertoire distribution assessed as clonal space homeostasis, i.e., proportion of the repertoire occupied by the clones of a given size.
C Rarefaction analysis indicating estimated diversity of clonotype richness in inflammatory pseudotumor lesions (2015–2019). Sample size indicated on the x-axis.
D TCR sequence overlap between inflammatory pseudotumor lesions (2015–2019) measured by Morisita’s overlap index.
E Shared (absolute number) and unique (proportion) clonotypes between inflammatory pseudotumor lesions (2015–2019).
F Motif probability matrix depicting occurrences of amino acids in each position of all computed CDR3 beta chains.
G Longitudinal tracking of most abundant clonotypes in inflammatory pseudotumor lesions (2015–2019). CDR3 amino acid sequence and v-chain usage for each

clonotype annotated in the legend. Private clones are limited to each time point. Shared clones are found at all time points.
H Automated CDR3 beta chain high-resolution modeling of dominant T-cell clone CASSQEYSPYEQY.

6 of 10 EMBO Molecular Medicine 13: e13953 | 2021 ª 2021 The Authors

EMBO Molecular Medicine Mirco Friedrich et al



Materials and Methods

Ethical approval for human samples

Written informed consent was obtained by the patient prior to this

study conformed to the principles set out in the WMA Declaration

of Helsinki and in the Department of Health and Human Services

Belmont Report. Ethical approval for the isolation of cerebrospinal

fluid and single-cell analysis was obtained from the Mannheim

Medical Faculty Ethics Committee (Reference numbers 2017-589N-

MA / 2019-643N-MA).

Single-cell RNA and TCR sequencing, transcript quantification
and analysis

Patient CSF cells were sequenced in multiplexed libraries on an Illu-

mina NovaSeq sequencing system at a depth of � 130,000–200,000

reads per cell. MS and control datasets were obtained from GEO with

the accession code GSM4104122. Libraries with a total of 38,203 cells

(Control: 15,467; MS: 18,412; patient: 4,324) after quality control

were integrated and analyzed using Seurat v4 (Stuart et al, 2019).

Data analysis was performed using the Seurat v4 workflow. Patient

and reference datasets were mapped onto the multimodal PBMC

reference dataset (Hao et al, 2021) using FindTransferAnchors() and

MapQuery() with default settings. Pseudotime Analysis was

performed using the Monocle package v3 (Trapnell et al, 2014). The

CellRanger output was converted into a cell_data_set object filtering

out cells with less than 200 reads per cell, corresponding to the argu-

ment umi_cutoff= 200, using the load_cellranger_data function.

The cell_data_set object was preprocessed using the standard PCA

method computing 100 principal components, corresponding to

dims= 100 in the preprocess_cds function. Dimensionality reduc-

tion was performed using the default reduce_dimension() function.

For clustering, the community detection technique was used, corre-

sponding to the cluster_cells() function with the resolution set to

0.013. The top_markers function was used with default parameters

to identify cluster-specific markers, corresponding to the argument

group_cells_by= “cluster”. The trajectory graphs were fitted for

each partition applying the learn_graph() function. Using the

choose_cells() function, a subset was generated on the cluster

consisting of B cells, identified by canonical markers. Pseudotime

analysis was carried out on this B cell subset, using the order_cells()

function setting the na€ıve B-cell cluster, identified by canonical

markers, as root node. Receptor–ligand interaction analyses were

performed using the CellPhoneDB package (Efremova et al, 2020).

TCRB deep sequencing

Genomic DNA was isolated from FFPE tissues using QIAamp DNA

FFPE Tissue Kit (cat. no. 56404 QIAGEN) and Deparaffinization

Solution (cat. no. 19093, QIAGEN) as per the manufacturer’s instruc-

tions. TCR beta chain (TCRB) deep sequencing was performed to

detect rearranged TCRb gene sequences using hsTCRB Kit (Adaptive

Biotechnologies) according to the manufacturer’s protocol. The

prepared library was sequenced on an Illumina MiSeq by the Geno-

mics & Proteomics Core Facility, German Cancer Research Center

(DKFZ). Data processing (demultiplexing, trimming, gene mapping)

was done using the Adaptive Biotechnologies proprietary platform

as previously described (Platten et al, 2021). ImmunoSEQ data were

exported, supplemented with metadata and analyzed with R using

the immunarch 0.6.6 package infrastructure. Repertoire overlap was

calculated using Morisita’s overlap index. Estimation of repertoire

diversity was performed using the repDiversity function.

The.method parameter was adjusted to rarefaction analysis. Longitu-

dinal clonotype tracking was calculated with the.trackClonotypes

function using the following settings: Value list(“2015”, “10”) of

the.which argument. Value “aa+v” of the.col argument, so that the

function takes both CDR3 amino acid sequences and V gene

segments of the most abundant clonotypes. K-mer and sequence

motif analysis and visualization were performed using the default

getKmers() filter settings to exclude all non-coding sequences before

counting the k-mer statistics. The resulting amino acid position

frequency matrices (PFM) were used for motif visualization. Auto-

mated high-resolution modeling of CDR3B sequence was performed

using TCRmodel (Gowthaman & Pierce, 2018).

Immunoglobulin and cytokine ELISA

Supernatants of IgG4-RD CSF and control CSF from patients without

any resulting neurological diagnosis were transferred to cytokine-

specific antibody-coated or uncoated ultra-low binding 96-well

plates (Corning), respectively, and immunoglobulin and cytokine

ELISA based on horseradish-peroxidase were performed according

to the manufacturer’s instructions (Thermo Fisher, R&D Systems).

Development process was stopped with 1M H2SO4, and optical

density (OD) was measured at 570 and 450 nm. Cytokine concentra-

tions were calculated based on OD [450nm] – OD [570 nm] accord-

ing to parallel serial dilutions of cytokine standards included in the

respective ELISA kit. ELISA detection was used for the following

human immunoglobulins and cytokines: IgG4 (IgG4 Human

Uncoated ELISA Kit with Plates, #88-50590-22, Thermo Fisher), total

IgG (IgG (Total) Human Uncoated ELISA Kit with Plates, #88-50550-

22, Thermo Fisher), CXCL13 (Human CXCL13/BLC/BCA-1 Quan-

tikine ELISA Kit, #DCX130, R&D Systems).

Immunofluorescence staining

For immunofluorescence stainings, formalin-fixed paraffin-

embedded (FFPE) tissue was used. After deparaffination and rehy-

dration, antigen retrieval was performed by boiling 10 µm sections in

10mM citric acid buffer, pH 6.0. Sections were covered with block-

ing solution (10% goat plasma, 2% BSA in PBS), followed by incuba-

tion with different primary antibodies overnight at 4°C: anti-GFAP

(1:150 dilution; 2E1.E9; BioLegend) and anti-IgG4 (1:200 dilution;

RM120; dianova). The secondary antibodies (Goat anti-Mouse IgG

(H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor

Plus 488, Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor Plus 546, Thermo Fisher) were

applied at 1 µg/ml to the sections in blocking buffer for 1h at RT. Tile

scans (20×) and higher-magnification images (40×) were acquired

using a Carl Zeiss Cell Observer HS fluorescence microscope.

Immunohistochemistry staining of IgG4 and IgG

Immunohistochemistry was conducted on 3 µm thick FFPE tissue

sections mounted on StarFrost Advanced Adhesive slides
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(Engelbrecht, Kassel, Germany) followed by drying at 80°C for 15

min. Immunohistochemistry was performed on a BenchMark Ultra

immunostainer (Ventana Medical Systems, Tucson, USA). Slides

were pretreated with Cell Conditioning Solution CC1 (Ventana Medi-

cal Systems) for 32min at room temperature. For DAB staining of

IgG4 and IgG, anti-human-IgG4 (clone MRQ-44, Ventana/Roche,

ready-to-use dilution) and anti-human-IgG (clone A57H, Dako,

1:200 dilution) were used as primary antibodies. Primary antibodies

were incubated at 37°C for 32min, followed by Ventana standard

signal amplification, UltraWash, counter-staining with one drop of

hematoxylin for 4min, and one drop of bluing reagent for 4 min.

UltraView Universal DAB Detection Kit (Ventana Medical Systems)

was used for visualization. Tile scans (20×) and higher-

magnification images (40×) were acquired using a Carl Zeiss Cell

Observer HS fluorescence microscope.

Semiquantitative assessment of IgG4/IgG ratio

DAP-stained FFPE tissue slides were scanned using the Zeiss Axios-

canTM slidescanner. For each resection tissue, areas with the highest

IgG4 staining were analyzed in accordance with the consensus state-

ment on the pathology of IgG4-RD (Deshpande et al, 2012). One

high-power field (HPF) was defined as 0.4 mm2. Counting of IgG+

and IgG4+ cells was done semi-automated using the CellCount

plugin of the Fiji image analysis software. The number of IgG4+ and

IgG+ cells from 3 areas of each slide were averaged for calculation of

the IgG4/IgG ratio. Quantification results were validated by auto-

matic quantification as per default DAB parameters of QuPath 0.2.3

software.

Data visualization

Tabular data from single-cell sequencing analyses above were

processed using the tidyverse suite of packages [https://CRAN.R-

project.org/package=tidyverse] and visualized in the R program-

ming environment using the ggplot2 package. Data from all other

analyses were visualized using GraphPad Prism 9.0. Figures were

produced using Adobe Illustrator 2021.

Statistics (unless otherwise mentioned)

Data are represented as individual values or as median� SD, as

indicated. Group sizes (n) and applied statistical tests are indicated

in figure legends. Significance was assessed by either unpaired t-test

analysis, paired t-test analysis, or two-way ANOVA analysis with

Tukey’s post hoc testing as indicated in figure legends. Statistics

were calculated using GraphPad Prism 9.0. Due to the nature of this

study, sample size determination was not applicable, as all available

samples were included in this study. All cells passing QC, IPT CSF

(n=4,324 cells), control CSF (n=15,467 cells), and MS patient-

derived CSF (n=18,412 cells), were included in downstream analy-

ses on a single-cell basis in a similar procedure to other exploratory

neuroinflammation studies. For functional experiments, CSF

samples were blinded to the experiment performer.

Data and materials availability

Gene expression data that support the findings of this study have

been deposited in the Gene Expression Omnibus repository (E-

MTAB-10479). T-cell receptor deep sequencing data have been

deposited in the Adaptive Biotechnologies immuneACCESS� data-

base (https://doi.org/10.21417/MF2021EMBOMM). All additional

datasets generated or analyzed during this study are included in this

published article (and its supplementary information files). Imaging

source data for this manuscript can be found via URL: https://doi.

org/10.6084/m9.figshare.14522397.v1.

Expanded View for this article is available online.
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The paper explained

Problem
IgG4-related disease (IgG4-RD) is an autoimmune disorder signified by
infiltration of pathological plasma cells into a variety of organs. Clini-
cal symptoms are diverse, and the underlying mechanisms that lead
to IgG4-RD remain elusive. There are very few cases of IgG4-RD with
isolated central nervous system manifestation, and treatment is
unspecific and often not very successful.

Results
This paper aims at shedding new light into potential molecular mech-
anisms of cell-to-cell communication in IgG4-related disease. The
authors propose the idea that the abnormal immune response in
IgG4-RD is driven by single T-cell clonotypes.

Impact
This paper demonstrates the potential of single-cell profiling technolo-
gies to support clinicians in the diagnosis of rare autoimmune disor-
ders. Future studies might incorporate results and hypotheses of this
paper to develop new causal treatments against IgG4-RD.
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