
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Introduction 

The radiation dose in cone beam computed tomography (CBCT) scans is causing a growing 
concern due to the widespread use in Dentistry and due to the stochastic biological effects. The field of 
view (FOV) choice is made taking into account the region of interest (ROI) and the clinical needs of each 
patient (1,2). In addition, the choice of a FOV restrict to the ROI reduces the effective dose and minimizes 
the scattering radiation, improving the image quality, thereby respecting ALADA principle ("as low as 
diagnostically acceptable") (3). 

Considering the use of CBCT in Pediatric Dentistry, the European project DIMITRA 
(Dentomaxillofacial Pediatric Imaging: an Investigation Towards Low-Dose Radiation Induced Risks) (4) 
proposed the evolution of the ALARA ("as low as reasonably achievable") and ALADA principles to 
ALADAIP (As Low as Diagnostically Acceptable being Indication-oriented and Patient-specific). DIMITRA 
proposes an examination with the best image quality accompanied by the lowest possible radiation dose 
based upon the indication and individuality of each patient (5,6). 

In this context, the operator's lack of experience in positioning the patient in the X-ray device, 
the inadequate adjustment of the FOV, or any physical movement of the patient during image acquisition 
can result in the need for the CBCT to be repeated, thereby doubling the patient´s radiation dose (7). 
Fortunately, the most current devices of a CBCT have the scout-view (SV) function which gives the ability 
to certify whether the selected FOV ensures that the entire ROI will be included prior to the image´s final 
exposure (8). 

The SV function involves a low-dose of radiation to acquire a preview image of the ROI. Despite 
of this very low exposure, the SV is considered an extra dose of radiation. The SV, however, allows a 
preview of the correct and effective positioning of the ROI within the FOV, thereby avoiding an exam 
re- -12). Considering the linear 
non threshold hypothesis (LNTH) as the current more accepted model to manage the radiation risk, even 
low doses might trigger the stochastic effects like cancer.  Therefore, this study aimed to oppose the 
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This study evaluated the centralization of the region of interest (ROI) in 
acquisition of the CBCT images, when the freely positionable scout-view (SV) 
function is applied. Additionally, the dosimetry of the acquired images was 
assessed in the SV function alone as well as in complete tomographic image 
in two different fields of view (FOV) (50x50 and 78x150mm). A three-location 
device was created to accommodate the dosimeters and the specimens, in the 
right, middle and left location during image acquisition. For dose assessment, 
thermoluminescent dosimeters were irradiated within the FOV and analyzed 
in a portable reader. For ROI evaluation, three specimens of gutta-percha stick 
were placed on the same device and the CT scans were acquired (CBCT OP 300 
Maxio device, 90kV, 13mA, 85 µm voxel size, FOV of 50X50mm), with and 
without the SV, in three positions (3-9, 1-7 and 5- ing 
different regions of the mouth. Two image evaluations were performed, an 
objective and subjective. There was a slight percentage increase (1.36% to 
1.40%) of the radiation dose with the use of SV. The distances were 
significantly greater in the images acquired without SV (p < 0.05). Every image 

results demonstrated that SVs function is effective to centralize the ROI in the 
FOV, increasing the scan precision and avoiding repetitions due to positioning 
errors. 
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dosimetry of the SV function to the centralization assessment of the ROI in CBCT scans, in order to 
investigate the practical value of the SV function.  
 

Material and methods 
Sample groups and device used 
For dosimetry analysis, a total of 25 thermoluminescence dosimeters (TL-LiF) were used. One 

dosimeter was placed outside of the examination room in order to measure the average background 
radiation dose. 
 For evaluation of the object positioning in the ROI related to the center of the FOV, a specimen of 
gutta-percha stick (Odahcam, Dentisply, Brazil) was used, considering the smallest image artifact for this 
material (13).  

A device of acrylonitrile butadiene styrene (ABS, Done 3D, Ribeirão Preto, Brazil) containing 
three locations was made to accommodate the dosimeter and, after the specimens in the right (1), middle 
(2) and left (3) location (Figure 1 A and B).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Device used for positioning of dosimeters and 
specimens. (A) and (B) show the positioning of a specimen in 
the middle of the device, in the front view (A) and top view (B). 
(C) Positioning of the dosimeters in the right (1), middle (2) and 
left (3) location. (D) Positioning at the right side of a small 
piece of gutta-percha on the front of the device. 

 
 The scout-view and CBCT acquisitions were performed using CBCT OP 300 Maxio device 

mendation using the standard 
protocol (90kV, 13mA).  The time for each shot for CBCT acquisition was 2,34s and 4,50s, for FOV 50X50 
mm and 78X150mm, respectively. For each shot for scout view acquisition, the time was 0,02s and 0,04s, 
for FOV 50 X 50 mm and 78X150mm, respectively.  
 

Dosimetry 
The assessment was performed on FOV 50 X 50 mm and FOV 78 X 150 mm. In order to organize 

image acquisitions and data tabulation, four groups were determined based on the isolated presence of 
SV or associated with FOV.  These groups were named G1, G2, G3 and G4, as described in Table 1. 
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Table 1. Distribution of sample groups for dosimetry analysis. 

Groups Description 

G1 (n=6) Isolated SV (FOV 50X50 mm) 

G2 (n=6) SV+ FOV acquisition 50X50 mm 

G3 (n=6) Isolated SV (FOV 78X150 mm) 

G4 (n=6) SV+ FOV acquisition 78X150 mm 

 

Dosimetry was performed in the SV alone (15 shots; G1 and G3), as well as in complete 
tomographic image (SV + FOV, 5 shots; G2 and G4), at 50 X 50 mm and 78 X 150 mm FOV. The number 
of the shots to achieve measurable radiation values was carried out according to a pilot study.  

Dosimeter readings were taken after exposures using a reader (LandauerTM microSTARiiTM, Vélizy-
Villacoublay Cedex, France).  

The acquisitions were carried out in duplicate to ensure the accuracy of the experiments. 
 

Evaluation of the  
The specimens (gutta-percha) were positioned on the device in three locations and were named 

object 1 (right), object 2 (middle) and object 3 (left). To identify the positioning of the specimen, a small 
piece of gutta-percha (3mm length) was placed on the front of the device, at the right side (Figure 1 C 
and D). 

The FOV elected to calculate the positioning of the specimen, as it relates to the center of the 
FOV, was 50 X 50mm because this is the smallest one in this CBCT unit (presenting the greatest difficulty 
in positioning).  This assessment was made with and without the SV function. 

Three image acquisitions were performed centralizing the objects within the ROI, with and 
without the SV, in three different posi - -
simulating different locations within the mouth (Figure 2). The repetitions were performed interspersed 

. For the acquisition 
of images without the SV, the light guides of the devices were used to center the specimen within the 
desired location. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Specimens placed in the positions of 5- - -7 
 

 
The tomographic images of the specimens were assessed in three different days and was 

objectively measured and subjectively evaluated by two trained and experienced observers. 
In order to standardize the objective (quantitative) evaluation at the XelisTM dental viewer 

software (LED dental, USA), the center of the FOV and the lower part of the specimen were located in 
the sections (axial, sagittal and coronal) of the multiplanar reconstruction window (Figure 3). In the axial 
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the intersection of the reference lines (Figure 4). Only the brightness and contrast could be adjusted by 
the observers; the use of improvement filters was not allowed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Multiplanar reconstruction window. The intersection of the lines is in the 
center of the FOV at the sagittal, coronal and axial sections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Measurements taken from the center of the specimen to the center of the 
FOV with and without SV at (L) left, (M) middle and (R) right positions. 

 
A score was applied for the subjective (observational) assessment. A circular grid (50 mm of 

diameter) was designed and sectioned by four lines, creating 3 sections on the X-axis (1, 2 and 3) and 3 
sections on the Y-axis (A, B and C) (Figure 5). This grid was positioned over the axial section to check 
where the specimen was located within the FOV. Position 2B was identified as the zone within the center 
of the FOV and considered as the ideal location for acquisition. 
 

Statistical analysis 
For a comparative analysis of the dosimetry images, after verifying the normalization of the 

data, a Student t-
(with and without SV), it was calculated the averages of the distances of the three measurements 
performed on the same images. Then, a descriptive and exploratory analyzes of the data was performed. 
For the variable location of the FOV (in the center or outside the center), it was calculated the mode 
(highest frequency) of the three evaluations that were performed on the same images. The chi-squared 
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test was then applied. All analyzes were performed on the R program, and a 5% significance level was 
considered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Grid used to evaluate the positioning of the specimens in relation to the center 
of the FOV. 

 

Results 
Dosimetry 
Table 2 shows that for the FOV 50X50mm, the average values obtained for the absorbed dose 

were 4.68 (±0.71) mSV for the acquisition of the complete image and 0.064 (±0.012) mSV, for the SV 
only. For the FOV 78X150mm, it was observed that the average value obtained for the dose was 5.03 
(±1.29) mSV for the acquisition of the complete image and 0.07 (±0.02) mSV, for the SV only.  

The percentage gain value was 1.36% and 1.40%, respectively, for the FOV 50X50mm and 
78X150mm. Therefore, regardless of the size of the FOV as well the use of SV function, the radiation dose 
was statistically the same (p > 0.05). 

 
Table 2. Dosimetry obtained in the different groups. Mean values (standard deviation), expressed 
in mSV, and percentage differences, representing dose gain for each size of FOV. 

Groups mSV % 

G1 0.064 (±0.012)  

1.36 
G2 4.68 (±0.71) 

G3 0.07 (±0.02) 1.4 

G4 5.03 (±1.29) 

Caption: G1 = SV only (FOV 50X50 mm), G2 = SV + FOV 50X50 mm, G3 = SV only (FOV 78X150 mm), G4 = SV 
+ FOV 78X150mm.  

 
 

Table 3 and Figure 6 show the results of the distances from the center of the FOV. There was a 
significant difference between the distances measured with and without SV (p < 0.05) in all evaluated 
positions. It can be noted that the distances were significantly greatest in the images taken without the 
SV function (p < 0.05). In both studied conditions (with and without SV function), there was a significant 
difference between the positions (p < 0.05). 

 
 
 
 



36 

 

Table 3. 
and position. 

Position With SV Without SV 

Right 

3-  0.99 (±0.38) Bc 4.82 (±1.70) Ab 

1-  6.44 (±2.10) Ba 15.11 (±1.77) Aa 

5-11  1.50 (±0.67) Bb 2.30 (±1.60) Ac 

Middle 

3-  *$3.30 (±0.44) Ba *$11.52 (±1.58) Aa 

1-  *$1.44 (±0.15) Bb 13.52 (±2.88) Aa 

5-  *2.61 (±0.54) Ba *$6.08 (±2.21) Ab 

Left 

3-  1.00 (±0.29) Bb 5.68 (±1.26) Ab 

1-7  *3.86 (±0.78) Ba 12.28 (±2.58) Aa 

5-  *3.39 (±0.93) Ba *12.87 (±2.74) Aa 

Caption: *Differs from the right position under the same conditions as the other factors (p <0.05). $Differs from the left 
position under the same conditions as the other factors (p <0.05). Different letters (upper case comparing horizontally 
between with and without scout-view and lower case comparing vertically between each position under the same 
conditions as the other factors) indicate significant differences (p <0.05). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Box-  

 
Table 4 shows a significant association between the use of the SV function and the location of 

the object image inside the FOV, by subjective analysis (p < 0.05). All object images acquired with the SV 
function were classified as being in the center of the FOV (position 2B). Meanwhile, among the images 
acquired without the SV, 55.6% were classified as the object out of the center. 
 
 
 
 
 
 
 
 
 



37 

 

Table 4. Absolute and relative location in the FOV by subjective evaluation according to the use of the SV function and 
position. 

Position 
With SV Without SV 

Centered Out of Center Centered Out of Center 

Right 

3-  3 (100.0%) 0 (0.0%) 3 (100.0%) 0 (0.0%) 

1-  3 (100.0%) 0 (0.0%) 0 (0.0%) 3 (100.0%) 

5-  3 (100.0%) 0 (0.0%) 3 (100.0%) 0 (0.0%) 

Middle 

3-  3 (100.0%) 0 (0.0%) 0 (0.0%) 3 (100.0%) 

1-  3 (100.0%) 0 (0.0%) 0 (0.0%) 3 (100.0%) 

5-  3 (100.0%) 0 (0.0%) 3 (100.0%) 0 (0.0%) 

Left 

3-  3 (100.0%) 0 (0.0%) 3 (100.0%) 0 (0.0%) 

1-  3 (100.0%) 0 (0.0%) 0 (0.0%) 3 (100.0%) 

5-  3 (100.0%) 0 (0.0%) 0 (0.0%) 3 (100.0%) 

Total Images 27 (100.0%)* 0 (0.0%)** 12 (44.4%)* 15 (55.6%)** 

Caption: * and ** indicates statistical difference (p <0.05) 

 
 

Discussion 
The results of the present study revealed that prior to image acquisition, the scout preview 

function proves to be a useful tool for screen alignment, being effective to centralize the ROI in the FOV, 
increasing the scan precision and avoiding repetitions due to positioning errors. 

The biological effects from the radiation exposures and the high demand for ordering CBCT 
exams in the dental field has raised concerns about the dose received by patients. In this sense, the 
principle of justification must be respected in the indications for radiographic examinations. 
Additionally, considering the greater radiosensitivity of the children, imaging requests should be guided 
by the appropriate indications, being specific for each patient following the ALADAIP principle (3-
6,14,15). 

Because of this, dental surgeons require constant reminding of these radioprotection measures 
and the biosafety protocols must be respected (16). In this scenario, it is important to emphasize that 
most of the CBCT units have the SV function thus providing a means to ascertain whether the ROI is 
included in the selected FOV prior to the exposure, thus avoiding repetition of exams (8). 

Despite the advantage of small FOVs on radiation dose reduction, a higher number of repetitions 
compared to large ones may occur, leading to re-exposures without any additional benefits (8,17). In 
this context, despite the additional low dose exposure of the scout view, it may be considered a 
radioprotection tool given that it avoids re-exposures for positioning errors.   

Despite the well-known low dose involved in the SV exposure, there is a lack of studies and 
scientific data on the dosimetry of the SV. Thus, the present study evaluated the dosimetry of two FOV 
sizes, 50X50 mm and 78X150 mm, in one CBCT unit (OP 300 Maxio), opposing this information to the 
assertiveness for obtaining images of the ROI within the center of the FOV. If the structure to be 
analyzed, the ROI, is eccentric in the field of view, the image evaluation might be jeopardized by 
truncation artifacts (5). Regarding the possible extra dose of ionizing radiation with the use of SV, 
confirmed as low by the findings of the present study, the protection offered to the patient is evident, 
since eventual double-exposure is avoided for positioning error (7-9).  

Smaller FOV sizes hinders the correct positioning of the ROI within its center and causes greater 
difficulty for the operator, thus increasing the chance of repeating the exam (17). Additionally, in most 
of the times, CBCT exams are repeated the lack of experience of the operator (18), which reinforces the 
importance of the use of SV before exam acquisition. 

 In this study the small FOV option of the OP300 Maxio (50 X 50 mm) was tested. Although not 
all CBCT units have the SV, the devices have guide lights, which assist in positioning the patient within 

-sagittal plans 
(11,12). The present study reinforces the importance of using the SV, that lies in the fact that the chances 
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of an error of centralization of the ROI increases when using only the guide lights.  This risk of error also 
increases when associated with the lack of operator experience (7,11,12).  

For the analysis of the ROI in relation to the center of the FOV, the results showed that there 
was a significant difference between the distances measured with and without SV in all of the evaluated 
positions. It was noted that the distances were significantly greater in the images taken without the SV 
function (p <0.05). It was found that 55.6% of the images obtained without the SV were displaced away 
from the center of the FOV.  In contrast, all images obtained with the SV were classified as being in the 
center of the FOV.  

The results obtained in the present study reinforce the importance of the SV for positioning the 
ROI. This finding is especially important using smallest FOV (50 X 50 mm), in which in addition to the 
difficulty of positioning the patient in the device by the operator (6-9,19), any movement during the 
scan may lead to an extra exposure of the patient, due to the exam repetition (16,20).  

However, considering that this study assessed an in vitro analysis, future studies should be 
performed in order to reproduce the proposed methodology in dosimetric phantoms or skulls. 
Additionally, other CBCT equipments, with different exposure geometries, and different FOV sizes and 
morphologies could be tested. 

Therefore, despite the low dose of radiation offered by SV, the results highlighted its importance 
as a radioprotection tool. All obtained images with the SV, allowed to position the ROI in the center of 
the FOV, increasing the scan precision which allows to avoid positioning error and, in consequence, re-
exposure of the patient.  
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Resumo 
Este estudo avaliou a centralização da região de interesse (ROI) na aquisição das imagens de 

TCFC, quando a função scout-view (SV) posicionável livremente é aplicada. Adicionalmente, a dosimetria 
das imagens adquiridas foi avaliada isoladamente na presença da função SV, bem como após aquisição 
de imagem tomográfica completa em dois diferentes campos de visão (FOV) (50x50 e 78x150mm). Um 
dispositivo de três localizações foi criado para acomodar os dosímetros e os espécimes, na localização 
direita, central e esquerda, durante a aquisição das imagens. Para avaliação da dose, dosímetros 
termoluminescentes foram irradiados dentro dos campos de visão e analisados em leitor portátil. Para 
avaliação da ROI, três espécimes de guta percha foram colocados no mesmo aparelho e as tomografias 
foram adquiridas (CBCT OP 300 Maxio, 90kV, 13mA, 85 , com e 
sem a SV, em três posições (3-9, 1-7 e 5-11 horas), simulando diferentes regiões da boca. Foram realizadas 
duas avaliações de imagem, uma objetiva e outra subjetiva. Houve um leve aumento percentual (1,36% 
para 1,40%) da dose de radiação com o uso de SV. As distâncias foram significativamente maiores nas 
imagens adquiridas sem SV (p < 0,05). Todas as imagens obtidas com SV foram classificadas como sendo 
do centro do FOV. Em conclusão, os resultados do presente estudo demonstraram que a função scout 
view é eficaz para centralizar a ROI no FOV, aumentando a precisão do escaneamento e evitando 
repetições devido a erros de posicionamento. 
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