
Masella et al. BMC Bioinformatics (2016) 17:305
DOI 10.1186/s12859-016-1162-y

SOFTWARE Open Access

BAMQL: a query language for extracting
reads from BAM files
Andre P. Masella1, Christopher M. Lalansingh1, Pragash Sivasundaram1, Michael Fraser2, Robert G.
Bristow2,4,5 and Paul C. Boutros1,3,4*

Abstract

Background: It is extremely common to need to select a subset of reads from a BAM file based on their specific
properties. Typically, a user unpacks the BAM file to a text stream using SAMtools, parses and filters the lines using
AWK, then repacks them using SAMtools. This process is tedious and error-prone. In particular, when working with
many columns of data, mix-ups are common and the bit field containing the flags is unintuitive. There are several
libraries for reading BAM files, such as Bio-SamTools for Perl and pysam for Python. Both allow access to the
BAM’s read information and can filter reads, but require substantial boilerplate code; this is high overhead for mostly
ad hoc filtering.

Results: We have created a query language that gathers reads using a collection of predicates and common logical
connectives. Queries run faster than equivalents and can be compiled to native code for embedding in larger
programs.

Conclusions: BAMQL provides a user-friendly, powerful and performant way to extract subsets of BAM files for ad
hoc analyses or integration into applications. The query language provides a collection of predicates beyond those in
SAMtools, and more flexible connectives.

Keywords: BAMQL, Query language, BAM-format

Background
Binary Alignment/Map (BAM) provides a common for-
mat to hold large quantities of genomic read data after
alignment to a reference genome. Reads are annotated
with supplementary information not present in FASTA
or FASTQ files, such as target position and chromosome,
and information about the mate pair.
Often, only a subset of reads are needed for further anal-

ysis. SAMtools, the standard software for manipulation of
BAM files, provides options to perform limited filtering
of BAM files and collect matching reads [1]. The inter-
face is neither expressive nor user-friendly: the user must
indicate which bit flags they require not using names,
but the numeric values of those flags. Further, the selec-
tion condition is restricted to a filter that describes which

*Correspondence: Paul.Boutros@oicr.on.ca
1Ontario Institute for Cancer Research, Suite 510, 661 University Avenue, M5G
0A3, Toronto, Canada
3Department of Pharmacology & Toxicology, University of Toronto, Toronto,
Canada
Full list of author information is available at the end of the article

bit flags must match, which must not, a minimum qual-
ity score and a list of matching read groups. This limits
query expressiveness; for example, selecting reads with
poor quality is impossible.
General purpose programming languages can be used

with BAM file manipulation libraries to filter a file. Since
most subsetting operations are ad hoc, this is cumbersome
and requires substantial boilerplate code. More concern-
ing, there is a disparity between the checking done by
the language and what is needed by the BAM APIs. For
instance, it is possible to read only a subset of a file using
an index, but this requires correctly matching chromo-
some names between the index request and the filtering
expression. A mismatch may result in a silent omission
of data that is difficult to detect due to the complex,
mixed-language query.
To simplify the subsetting process, but retain the ability

to have powerful queries, we developed BAMQuery Lan-
guage (BAMQL), a domain-specific language for match-
ing BAM reads.

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1162-y-x&domain=pdf
mailto: Paul.Boutros@oicr.on.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Masella et al. BMC Bioinformatics (2016) 17:305 Page 2 of 6

Implementation
BAMQL queries are specified by predicates and logical
connectives. The predicates include ones which match
BAM flags, mapping information, auxiliary read infor-
mation, position and the sequence. For example, to
output a BAM file with all reads which are on chro-
mosome 1 and have a mate read, one could do the
following: bamql -f input.bam -o output.bam
’chr(1) & paired?’. An outline of all available con-
nectives and predicates can be found in Table 1.
BAMQL has a library which compiles a query into

native code, then checks the reads in the input BAM file,
saving the matched reads to a user-specified output BAM
file. A recursive descent parser reads the query and the
resulting structure is converted into native code using
LLVM 3.4.0 or later [2]. A driver program reads the input
BAM file, checking each read against the query and track-
ing the number of accepted and rejected reads, which it
then writes to BAM files. All BAM file operations are done
using HTSlib 1.3 [1]. The command line interface uses
filename specifiers for input and output so, when utilizing
pipes in the bash environment, /dev/stdin and /dev/stdout
will allow for writing across pipes.
If an indexed BAM is provided, the query automati-

cally determines if only a subset of the file needs to be
analysed to improve performance. SAMtools has the same
performance gain by specifying regions, but, there is the
possibility of mismatching the regions specified and those
in filter.

Results
To test the efficacy, we compared several equivalent
queries written in BAMQL, SAMtools (v1.3) + GNU
AWK (v4.0.1), Sambamba (v0.5.9), Python using pysam
(v0.8.2) [3], Perl using Bio-SamTools (v1.41) [4], and C
using HTSlib (v1.1). We compared execution times and
the quantity of code written. Execution time is an imper-
fect metric, as it is dependent on various properties of
the system at runtime, such as CPU load, disk operations,
and the hardware specifications of the system. By keeping
these factors equivalent when performing benchmarks,
we can see relative differences between the tools. All tests
are provided in the additional files [see Additional file 1]
and examples of queries and a list of predicates can be
found on the github wiki page [see Availability of data and
materials]. Six tests were defined:

• all – copies the input to establish a baseline I/O cost.
• paired – keeps only reads which are paired.
• chrY – keeps reads on the Y chromosome, whether it

is named “Y” or “24”, optionally prefixed with “chr”,
irrespective of case.

• mt – keeps all reads which they or their mate pair are
unmapped or mapped to the mitochondrial genome

(named “M”, “MT” or “25”, optionally prefixed with
“chr”, irrespective of case).

• nt – keeps all reads which have base C at position
13353 of the reference genome after alignment.

• chain – filters chromosomes 1, 2 and 3 into separate
BAM files.

The tests were written as simply as possible. No profiling
or intentional optimisations were done as this test code is
meant to be a single-use ad hoc query.

Method-comparison
It must be noted that nt, mt and chrY tests could not be
written with SAMtools alone and required output to be
piped through AWK scripts for the actual filtering pro-
cess. Similarly, Sambamba required an AWK script to
implement filtering for the nt test.
The difference in user-friendliness between BAMQL

and SAMtools is evident in the relatively simple chrY
test. The BAMQL query for a chrY test (listing 1) is
a one-line query since BAMQL recognizes the differing
names for the human Y chromosome and checks them
automatically.

Listing 1 chrY test in BAMQL

bamql − f $1 −o $2 ‘ chr (y) ’

The same query implemented using SAMtools (listing 2)
however requires the query to be run using an AWK fil-
ter in order to manually check for the multiple ways Y
chromosome could be labelled in the BAM file.

Listing 2 chrY test in SAMtools

samtoo l s view −h $1 |
awk ‘ / ^ {@} / | | $3 ~/^(chr) ? (y |Y | 2 4) $ /
{ p r i n t $0 } ’
| samtoo l s view −b −S −o $2 −
Sambamba was more expressive than SAMtools in this

case. However, Sambamba requires chromosomes to be
specified using reference ID rather than chromosome
name [5]. Sambamba’s expressiveness also do not extend
to complex queries such as the chain test that requires
chaining filters. While BAMQL had a dedicated function
for handling a chain of filters, each with an optional out-
put file, Sambamba and SAMtools both required separate
queries for each of the filters.
A summary of the differences in capabilities of the tools

used for testing is shown in Table 2.

Performance
All tests were run three times on an Intel Core i5 3.4GHz
Ubuntu 14.04 workstation with a 10GB indexed, sorted
BAM file containing male human whole exome sequence
as input. The reads from each implementation were com-
pared, and were identical in all cases. The coefficient of

M
asella

etal.BM
C
Bioinform

atics
 (2016) 17:305

Page
3
of6

Table 1 Descriptions of BAMQL connectives and predicates

Category Syntax Description

Logical Connectives ! expr Is satisfied if expr is not satisfied.

expr | expr Is satisfied if at least one operand is satisfied.

expr ^ expr Is satisfied if at exactly one operand is satisfied.

expr & expr Is satisfied only if both operands are satisfied.

cond then then_expr else else_expr If cond is satisfied, this expression will only be satisfied if then_expr is satisfied. If cond is not satisfied, then
this expression will only be satisfied if else_expression is satisfied.

BAM Flags paired? The read is paired in sequencing.

proper_pair? The read is mapped in a proper pair

unmapped? The read is unmapped.

mate_unmapped? The mate is unmapped.

mapped_to_reverse? The read is mapped to the reverse strand.

mate_mapped_to_reverse? The mate is mapped to the reverse strand.

raw_flag(int) The read matches the specified SAM flag.

read1? The read is the first read in a pair.

read2? The read is the second read in a pair.

secondary? The alignment is not primary.

failed_qc? The read failed platform/vendor quality control checks.

duplicate? The read is either a PCR or optical duplicate

supplementary? The alignment is supplementary.

Mapping Information chr(glob) The read is mapped to the specified chromosome.

mapping_quality(probability) Matches the read if the proability of error is less than the specified probability.

mate_chr(glob) The mate is mapped to the specified chromosome.

split_pair? Matches if both the read and it’s mate pair are mapped, but only if to different chromosomes.

Position after(position) Matches all reads that cover the specified position or any higher position.

before(position) Matches all reads that cover the specified position or any lower position.

position(start,end) Matches all sequences that cover the range of position from specified start to end, i.e. N matches any base.

Sequence nt(position,n) Matches all reads that are classified as the IUPAC-style nucleotide n at the specified position, i.e. N matches
N.

nt_exact(position,n) Matches all reads that exactly match the IUPAC-style nucleotide n at the specified position.

Miscellaneous read_group(glob) Matches the read group.

header ~ /regex/ Matches a Perl-compatible regular expression against the read’s header.

random(probability) The read is chosen based on a uniform pseudo-random variable.

true Always satisfied.

false Never satisfied.

M
asella

etal.BM
C
Bioinform

atics
 (2016) 17:305

Page
4
of6

Table 2 Comparison of the filtering capabilities of the various tools

Tool Dedicated filtering Supports multiple filters Supports logical connectives Supports chaining filters Filters reads by mapping Filters reads by flags Filters reads by sequence

BAMQL ✓ ✓ ✓ ✓ ✓ ✓ ✓

C ✗ ✓ ✓ ✓ lim ✓ ✓

Perl ✗ ✓ ✓ ✓ lim ✓ ✗

Python ✗ ✓ ✓ ✓ lim ✓ ✗

SAMtools ✓ ✗ ✗ ✗ lim lim ✗

Sambamba ✓ ✓ lim ✗ lim ✓ ✗

Masella et al. BMC Bioinformatics (2016) 17:305 Page 5 of 6

variation of user time was < 4% while that of system and
wall times were noisier, up to 15%.
The mt and nt tests, shown in Tables 3 and 4 respec-

tively, are more processing-intensive while the paired
and chain tests, shown in Tables 5 and 6 respectively,
are less processing-intensive and keeps more sequences,
causing it to be more output-intensive. Two notable out-
liers are Perl and Sambamba. Perl consumes much more
CPU time than the other tools; this is evidenced by high
user times in the mt test. Tests implemented with Sam-
bamba alone, paired and mt, have a low wall time due
to parallel processing capabilities of Sambamba. However,
Sambamba+AWK and SAMtools+AWK have high system
times, due to the overhead to cope with pipe operations.
C, Python and Perl seem to incur a high overhead in the
chain test due to multiple output files opened for deposit-
ing data. Overall, BAMQL, C and Python performed well.
In the output-dominated tests, paired and chain, the dif-
ferences in real processing become clouded by the cost of
writing the output. Notice that the user and wall times
show a smaller percentage difference in paired compared
to mt. In the more logic-intensive test, mt, the languages
separate out more.
With the exception of the nt test, the BAMQL

implementation is the most performant with 24%
to 90% faster system time than the C implemen-
tation. In terms of code volume, BAMQL required
much less code; typically half of the SAMtools+AWK
and a tenth of the C implementation. An addi-
tional csv file shows the compete results for all tests
[see Additional file 2].

Discussion
Since most BAM filtering operations are ad hoc, the run-
time performance of BAMQL is not especially important,
although it outperforms most standard approaches. We
believe that BAMQL’s major impact is the simplicity of
the queries and the automatic guards against common
mistakes. In particular, BAMQL generates index requests
from the BAM and does the filtering using the same

Table 3 Comparison of performance for selecting mitochondrial
sequences (mt)

System User Wall Code
Tool time (s) time (s) time (s) (bytes)

BAMQL 3.65 133.86 150.28 86

C 3.80 126.28 138.16 1315

Perl 4.57 1704.05 1716.72 498

Python 4.06 299.33 313.68 507

SAMtools+AWK 14.56 455.12 240.96 170

Sambamba +AWK 6.53 185.64 99.56 112

Best performer is highlighted in bold

Table 4 Comparison of performance for selecting reads with
base at a sequence position (nt)

System User Wall Code
Tool time (s) time (s) time (s) (bytes)

BAMQL 3.55 109.16 115.69 54

C 2.89 107.49 114.17 2590

Perl 3.73 264.84 356.29 1667

Python 4.24 137.06 171.77 1225

SAMtools+AWK 41.42 2591.00 2322.19 831

Sambamba+AWK 56.12 3446.93 3100.96 874

Best performer is highlighted in bold

query. This guards against accidental mismatches in chro-
mosome names caused by independent index requests
and filtering expressions (e.g. SAMtools with AWK filter).
It also automatically corrects for common chromosomal
name irregularities. These features make it easy to write
correct queries and, by reducing boilerplate, makes them
simple to read and understand.
Since the performance of BAMQL queries is good, it

is also possible to use them in other contexts. Queries
can be compiled to native machine code, making it triv-
ial to integrate into a larger C or C++ program. There are
queries that are outside the domain of BAMQL: BAMQL
queries are stateless, while general purpose languages are
not. Given the low overhead of integration, it is reasonable
to split a stateful query between C or C++ and BAMQL.

Conclusions
BAMQL is designed to improve the efficacy and user-
friendliness of the current tools like SAMtools and Sam-
bamba. It provides a larger collection of predicates than
SAMtools or Sambamba. These predicates can be joined
together with a wider set of logical connectives, allow-
ing for more expressive queries. By compiling queries into
native code using LLVM, BAMQL is also able to per-
form as well as C but with significantly simpler code.
BAMQL provides a powerful yet intuitive approach to ad
hoc querying BAM formatted data.

Table 5 Comparison of performance for selecting paired-end
sequences (paired)

System User Wall Code
Tool time (s) time (s) time (s) (bytes)

BAMQL 22.54 1271.20 1364.64 45

C 29.31 1277.55 1377.29 706

Perl 28.54 1383.65 1474.48 319

Python 29.48 1314.25 1413.04 262

SAMtools 28.26 1271.97 1382.81 46

Sambamba 35.11 1855.81 583.02 53

Best performer is highlighted in bold

Masella et al. BMC Bioinformatics (2016) 17:305 Page 6 of 6

Table 6 Comparison of performance for applying chain of filters
to separate by chromosomes (chain)

System User Wall Code
Tool time (s) time (s) time (s) (bytes)

BAMQL 4.83 305.66 345.19 123

C 9.31 385.05 422.02 1027

Perl 11.18 2552.69 2585.88 800

Python 11.18 576.44 643.36 907

SAMtools 6.71 302.15 329.63 156

Sambamba 8.45 441.58 145.49 174

Best performer is highlighted in bold

Availability of data andmaterials
The complete test-suite as well as results supporting the
conclusions of this article are included as additional files.
The test-suite is also available on the homepage. Ubuntu
packages for the latest version of BAMQL are available.

Project Name: BAMQL
Project home page: https://labs.oicr.on.ca/boutros-lab/
software/BAMQL
Version: 1.1
Operating System: Platform independent
Programming language: C++, C
Other requirements: LLVM 3.4.0 or higher, CLANG,
HTSlib and libuuid are required to compile
License:MIT
Any restrictions to use by non-academics: None

Additional files

Additional file 1: This directory contains tests written in BAMQL, C, Perl,
Python, SAMtools and Sambamba languages. A binary file with the
appropriate version is provided for Sambamba. (ZIP 1495 kb)

Additional file 2: This file contains the complete results of the test-suite
in a csv format. (XLS 32 kb)

Abbreviations
BAM, binary alignment/map; BAMQL, BAM query language

Acknowledgements
Special thanks to Dr. Julia F. Hopkins for testing.

Funding
This study was conducted with the support of the Ontario Institute for Cancer
Research to PCB through funding provided by the Government of Ontario.
This work was supported by Prostate Cancer Canada and is proudly funded by
the Movember Foundation – Grant #RS2014-01. PCB was supported by a Terry
Fox Research Institute New Investigator Award and a CIHR New Investigator
Award. This project was supported by Genome Canada through a Large-Scale
Applied Project contract to PCB, Dr. Sohrab Shah and Dr. Ryan Morin.

Authors’ contributions
APM and CML designed and implemented the software. APM did
benchmarking and first draft of the paper. PS wrote the second draft,
performed additional benchmarks, and made bug fixing updates to the
software. MF, RGB and PCB supervised research. All authors read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Ontario Institute for Cancer Research, Suite 510, 661 University Avenue, M5G
0A3, Toronto, Canada. 2Ontario Cancer Institute, Princess Margaret Cancer
Centre/University Health Network, Toronto, Canada. 3Department of
Pharmacology & Toxicology, University of Toronto, Toronto, Canada.
4Department of Medical Biophysics, University of Toronto, Toronto, Canada.
5Department of Radiation Oncology, University of Toronto, Toronto, Canada.

Received: 8 April 2016 Accepted: 21 July 2016

References
1. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,

Abecasis G, Durbin R. The sequence alignment/map format and SAMtools.
Bioinformatics. 2009;25(16):2078–9. doi:10.1093/bioinformatics/btp352.

2. Lattner C, Adve V. LLVM: a compilation framework for lifelong program
analysis transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization, 2004. Washington: IEEE Computer
Society; 2004. p. 75–86. doi:10.1109/CGO.2004.1281665.

3. Heger A, Belgard TG, Finkernagel F, Goodstadt L, Goodson M, Jacobs KB,
Lunter G, Martin M, Schiller B. Pysam: Python Interface for the SAM/BAM
Sequence Alignment and Mapping Format. via PyPI. https://github.com/
pysam-developers/pysam. Accessed 2016-02-01.

4. Stein L. Bio-SamTools. via CPAN. http://search.cpan.org/~lds/Bio-
SamTools. Accessed 2016-02-12.

5. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast
processing of NGS alignment formats. Bioinformatics. 2015;31(12):2032–4.
doi:10.1093/bioinformatics/btv098.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

https://labs.oicr.on.ca/boutros-lab/software/BAMQL
https://labs.oicr.on.ca/boutros-lab/software/BAMQL
http://dx.doi.org/10.1186/s12859-016-1162-y
http://dx.doi.org/10.1186/s12859-016-1162-y
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1109/CGO.2004.1281665
https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam
http://search.cpan.org/~lds/Bio-SamTools
http://search.cpan.org/~lds/Bio-SamTools
http://dx.doi.org/10.1093/bioinformatics/btv098

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Results
	Method-comparison
	Performance

	Discussion
	Conclusions
	Availability of data and materials
	Additional files
	Additional file 1
	Additional file 2

	Abbreviations
	Acknowledgements
	Funding
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

