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Abstract
Introduction: Using	 brain	 network	 and	 graph	 theory	 methods	 to	 analyze	 the	
Alzheimer's	disease	(AD)	and	mild	cognitive	impairment	(MCI)	abnormal	brain	func-
tion	 is	more	 and	more	popular.	 Plenty	of	 potential	methods	have	been	proposed,	
but the representative signal of each brain region in these methods remains poor 
performance.
Methods: We propose a highly-available nodes approach for constructing brain net-
work	of	patients	with	MCI	and	AD.	With	resting-state	functional	magnetic	resonance	
imaging	 (rs-fMRI)	data	of	84	AD	subjects,	81	MCI	subjects,	and	82	normal	control	
(NC)	 subjects	 from	 the	Alzheimer's	Disease	Neuroimaging	 Initiative	Database,	we	
construct connected weighted brain networks based on the different sparsity and 
minimum	spanning	tree.	Support	Vector	Machine	of	Radial	Basis	Function	kernel	was	
selected as classifier.
Results: Accuracies	of	74.09%	and	77.58%	in	classification	of	MCI	and	AD	from	NC,	
respectively.	We	also	performed	a	hub	node	analysis	and	found	18	significant	brain	
regions were identified as hub nodes.
Conclusions: The findings of this study provide insights for helping understanding 
the	progress	of	the	AD.	The	proposed	method	highlights	the	effectively	representa-
tive	time	series	of	brain	regions	of	rs-fMRI	data	for	construction	and	topology	analy-
sis brain network.
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1  | INTRODUC TION

Patients	with	Alzheimer's	disease	(AD)	or	mild	cognitive	impairment	
(MCI)	show	a	decline	in	memory	and	cognitive	functions	than	healthy	
people	(Watt	&	Karl,	2017).	Studies	have	shown	that	the	brains	of	
AD	or	MCI	patients	 changed	before	 the	clinical	 symptoms	appear	
early	(Celone	Willment	et	al.,	2006;	Greicius	et	al.,	2004).	Recently,	
many studies revealed the differences of functional connectivity of 
AD	 brain	 regions	 based	 on	 resting-state	 functional	 magnetic	 res-
onance	 imaging	 (rs-fMRI)	 (Ali	et	al.,	2017;	Sharaev	et	al.,	2016;	Yu	
et	al.,	2020).	Specially,	it	is	more	and	more	popular	that	using	brain	
network	and	graph	theory	methods	to	analyze	the	AD	and	MCI	ab-
normal	brain	function	(Lei	et	al.,	2020;	Wang,	Shen,	et	al.,	2018).

So	 far,	 several	 groups	 have	 developed	methods	 to	 investigate	
changes	 in	 functional	 brain	 organization	 in	 patients	 with	 AD	 and	
MCI.	Liu	had	used	a	method,	which	is	based	on	the	partial	correla-
tions and indirect dependencies between each pair of brain regions 
to	 calculate	 the	 abnormal	 patterns	 of	 AD	 brain	 (Liu,	 Zhang,	 Yan,	
et	 al.,	 2012).	 Zhang	 had	 constructed	 cortical	 diffusivity	 networks	
using	 graph	 theoretical	 approach.	 He	 defined	 connection	 as	 sta-
tistical	 associations	 in	 gray	matter	 elevated	mean	diffusivity	 (MD)	
value	between	every	 two	brain	 areas,	 and	 then,	 they	 constructed	
a	symmetric	connection	matrix	to	analyze	the	AD	and	MCI	abnor-
mal	brain	function	(Zhang	et	al.,	2015).	Cui	and	Liu	had	developed	
a	Multivariate	Predictors	model,	which	extracted	multiple	features	
from	different	modalities	of	data.	This	model	can	explore	an	optimal	
set	of	predictors	in	AD	abnormal	brain	(Cui	et	al.,	2011).	Ali	Khazaee	
had used directed graph measures to identify alteration of brain net-
work	in	MCI	and	AD.	They	drew	a	conclusion	that	patients	with	MCI	
and	AD	may	experience	disappearing	some	hub	regions	during	dis-
ease	progression	(Ali	et	al.,	2017).	Si	had	provided	a	brain	network	
model for studying the mechanism underlying the development of 
AD	and	MCI.	 In	this	model,	 they	had	adopted	not	only	anatomical	
distance	but	also	network	topology,	such	as	topology-based	link	pre-
diction	methods	and	naïve	Bayes	classifiers	 (Si	et	al.,	2019).	These	
methods	 effectively	 used	 information	 of	 brain	 network	 topology,	
and	they	had	obtained	rational	results	at	that	time.	Simultaneously,	
for	a	 large	proportion	of	these	methods,	the	first	step	was	to	seg-
ment	the	rs-fMRI	data	into	different	regions	by	using	some	kind	of	
partition	template,	and	then	signals	of	each	region	were	averaged	to	
generate a representative signal for each region. They calculated the 
correlation	of	different	regions	based	on	these	representative	vox-
els.	However,	the	averaged	signal	is	not	sufficient	to	reveal	complex	
topological information of the brain region. The connection network 
that construct based on averaged signals lacks a deeper interaction 
between the brain regions and the topological differences between 
patient	group	and	normal	control	(NC)	group.

In	 order	 to	 address	 the	 above	 problem,	 we	 propose	 a	 high-
ly-available nodes approach for constructing brain network of pa-
tients	with	MCI	and	AD.	The	connected	weighted	brain	networks	at	
the	different	sparsity	and	minimum	spanning	tree	(MST)	were	con-
structed	base	on	this	method.	To	date,	many	studies	employed	the	
classification of function brain networks to investigate alterations 

in	MCI	and	AD	brain	regions	(Ali	et	al.,	2017;	Yue	et	al.,	2011;	Wee	
et	al.,	2012).	The	performance	for	classification	of	patients	with	AD	
and	MCI	from	NC	subjects	was	selected	to	evaluate	the	preponder-
ance	of	our	algorithm	and	conventional	algorithm.	In	addition,	stud-
ies have shown that identifying the brain regions associated with 
neurodegeneration	was	correlated	the	complex	interactive	informa-
tion	 in	the	network	 (Celone	Willment	et	al.,	2006;	Liu,	Zhang,	Bai,	
et	al.,	2012).	We	hypothesized	that	identifying	the	hub	nodes	of	AD,	
MCI,	 and	NC	 brain	 regions	would	 achieve	 better	 results,	 because	
the	node	information	is	more	effective,	in	which	the	brain	networks	
were constructed base on our method.

2  | MATERIAL S AND METHODS

Data	 used	 in	 the	 preparation	 of	 this	 article	 were	 obtained	 from	
the	 Alzheimer's	 Disease	 Neuroimaging	 Initiative	 (ADNI)	 Database	
(http://adni.loni.usc.edu/).	A	 large	proportion	of	the	 information	 in	
the	 ADNI	 are	magnetic	 resonance	 imaging	 (MRI),	 other	 biological	
markers,	and	clinical	and	neuropsychological	assessment	about	MCI	
and	AD.	For	up-to-date	 information,	see	www.adni-info.org.	ADNI	
researchers collect several types of data from study volunteers 
throughout	their	participation	in	the	study,	using	a	standard	set	of	
protocols	and	procedures	to	eliminate	inconsistencies.	At	the	time	of	
enrollment	for	data	collection,	subjects	gave	written	informed	con-
sent and completed questionnaires approved by each participating 
site's	Institutional	Review	Board.

The	 data	 processing	 procedures	 were	 approved	 by	 the	 First	
Affiliated	Hospital	of	Zhengzhou	University	Scientific	research	and	
clinical	trial	ethics	committee	(No:	2018-KY-88).

2.1 | Subjects

We	selected	247	subjects	from	the	ADNI	Database,	124	males	and	
123	females,	aged	from	47	to	82	years:.	84	patients	with	AD,	81	pa-
tients	with	MCI,	and	82	NC	subjects.	The	dementia	severity	of	sub-
jects	was	evaluated	by	the	Mini-Mental	State	Examination	(Folstein	
et	al.,	1975)	and	the	Clinical	Dementia	Rating	 (Morris	et	al.,	1997).	
For	the	details,	see	Table	1.

2.2 | Data acquisition and preprocessing

Functional	 and	 structural	 MRI	 scans	 were	 acquired	 from	 three	
tesla	 (3T)	scanner.	Functional	MRI	 images	were	acquired	with	rep-
etition	 time	 (TR)	=	3,000	ms,	echo	 time	 (TE)	=	30	ms,	 slice	 thick-
ness =	 3.0	 mm	 and	 flip	 angle	 (FA)	=	 80°.	 Structural	 MRI	 images	
were obtained using a 3-dimensional high-resolution sagittal T1W. 
Parameters: TR =	600	ms,	TE	= 11 ms and slice thickness =	0.9	mm.

All	 preprocessing	 steps	 were	 performed	 with	 Statistical	
Parametric	 Mapping	 (SPM8)	 software	 (https://www.fil.ion.ucl.
ac.uk/spm/)	 (Litvak	et	al.,	2011)	and	Data	Processing	Assistant	for	
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Resting-State	 fMRI	 (DPARSF)	 toolbox	 (http://www.restf	mri.net)	
(Yan	&	Zang,	2010).	The	first	10	volumes	of	the	functional	images’	
session were discarded to allow for equilibrations of the magnetic 
field	and	slice-timing	correction	 to	 the	 last	 slice.	All	 the	 remaining	
volumes were realigned for head movement compensation correct 
using	the	least-squares	minimization	(Li	et	al.,	2020).	Without	sub-
jects	 had	 head	 rotations	 greater	 than	 1°	 or	 head	 movements	 ex-
ceeding	2	mm	on	any	axis.	Then,	the	imaging	data	were	standardized	
based	on	the	Montreal	Neurological	Institute	space	and	resampled	
at 3 mm × 3 mm ×	3	mm	(Ashburner	&	Friston,	1999).	Finally,	the	im-
aging	data	were	smoothed	by	using	a	Gaussian	filter	with	full	width	
at	half	maximum	(FWHM)	of	4	mm	(Guo	et	al.,	2019).	Temporal	band-
pass	filtering	(0.01–0.08	Hz)	was	performed	to	reduce	the	effects	of	
low-frequency	drifts	and	high-frequency	noise	(Sharaev	et	al.,	2016).

2.3 | Highly-available node calculation

The overall procedure of the highly-available node calculation is 
shown	in	Figure	1.	At	first,	we	extracted	all	of	the	3	× 3 × 3 mm3 
voxel	time	series	from	the	preprocessed	rs-fMRI	data,	and	then,	let	
these	 voxels	 compose	 pairs	 randomly	 and	 calculated	 the	 Pearson	
correlation	of	every	voxel	pair	by	the	following	algorithm.

In	Equation	(1),	the	xi and xj	are	the	BOLD	signal	of	voxel	 i and 
voxel	j at time t,	the	Xi and Xj	represent	the	average	value	of	voxel	i 
and	voxel	j.

In	 this	 paper,	 a	 nondirectional	 connected	 Pearson	 correlation	
was used to make for the judgment of whether it was correlative 
between	voxels	(or	brain	regions).	The	Pearson	r of auto correlation 
and	negative	correlation	was	deemed	to	zero.

Secondly,	 the	 rs-fMRI	 data	 were	 segmented	 into	 different	 re-
gions	base	on	some	anatomically	divisional	template.	 In	this	study,	
90	 regions	 of	 interest	 (ROIs),	 each	 hemisphere	 45	 ROIs	were	 ob-
tained	by	using	the	anatomical	automatic	labeling	template	(Tzourio-
Mazoyer	et	 al.,	2002).	Removing	 the	voxel	pairs	 in	each	ROIs,	 the	
rest	 of	 the	 voxel	 pairs	 are	 between	 different	 ROIs.	 Based	 on	 a	
threshold of Pearson r	to	remove	those	voxel	pairs	with	low	scores,	
we speculated the suitable threshold of Pearson r according to the 
following criteria:

Ⅰ,	under	the	threshold	of	Pearson	r,	for	each	voxel,	if	there	is	at	
least	one	voxel	in	different	ROI	connect	with	it,	it	is	defined	as	
an	effective	voxel.
Ⅱ,	 for	every	ROI,	 there	 is	at	 least	one	effective	voxel	being	 in-
cluded in it.
Finally,	 each	 ROI	 was	 regarded	 as	 a	 highly-available	 node.	 In	

order	to	constrain	each	pair	of	voxels	from	different	ROIs	in	a	ran-
domly	 way,	 we	 calculated	 the	 representative	 time	 series	 of	 each	
node by the following algorithm.

In	Equation	(2),	two	voxels	of	each	voxel	pair	were	coming	from	
different	ROIs.	The	N	is	the	number	of	voxel	pairs	of	all	voxels	in	this	
ROI;	the	Nk	is	the	number	of	voxel	pairs	of	voxel	k; the Ak is the time 
series	of	voxel	k.

2.4 | Brain network construction

For	every	subject,	with	90	brain	ROIs	for	the	node,	build	full	con-
nected weighted brain networks. We calculated the Pearson correla-
tion	between	each	pair	of	ROIs,	as	node	connection	strength	in	the	
brain	network	(Schindler	et	al.,	2008).

(1)rij =

∑
[xi ( t ) − Xi ] [xj ( t ) − Xj ]

�∑
[xi ( t ) − Xi ]

2
∑

[xj ( t ) − Xj ]
2

(2)A =

1

N

∑
NkAk

AD MCI NC

Number 84 81 82

Male/female 41/43 42/39 41/41

Age	range	(year) (51–82) (49–77) (47–73)

Age	(Mean	± SD) 74.17	±	5.28 70.31 ±	3.18 69.88	±	6.13

MMSE	score	(Mean	± SD) 16.28	± 3.27 27.85	±	2.42 28.97	±	6.48

CDR	score	(Mean	± SD) 0.93	±	0.28 0.48	± 0.07 0.02 ± 0.17

Abbreviations:	AD,	Alzheimer's	disease;	CDR,	Clinical	Dementia	Rating;	MCI,	mild	cognitive	
impairment;	MMSE,	Mini-Mental	State	Examination;	NC,	normal	control.

TA B L E  1  Demographic	characteristics	
of subjects

F I G U R E  1  Flow	chart	representation	of	the	highly-available	
node calculation

http://www.restfmri.net
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Although	 full	 connected	 weighted	 brain	 networks	 theoretical	
analyses	are	helpful	for	understanding	disease	mechanisms,	it	may	get	
more incorrect results due to their redundant connective information. 
To	deal	with	this	problem,	we	used	MST	method	and	based	on	sparsity	
method to simplify the brain networks. The MST is acyclic and con-
nects	all	nodes	in	the	original	graph	(Mieghem	&	Magdalena,	2005).	
The method of MST can remove redundant connection and keep the 
network	 core	 structure	 simultaneously,	 and	 it	 does	 not	 affect	 the	
overall	analysis	of	the	network.	In	this	study,	the	MST	method	was	ap-
plied	based	on	the	weighted	networks	with	Kruskal's	algorithm	(Choi	
&	Lee,	2013).	 Suppose	WN = (V, E ) is a connection network with n 
nodes,	 in	which	the	set	of	nodes	is	V and the set of edges is E. The 
first	step	of	constructing	the	MST,	the	weights	of	all	links	are	ranked	
in an ascending order and a subgraph with only n nodes and empty 
edge	set	is	constructed	(Tewarie	et	al.,	2015).	Then,	an	edge	with	the	
largest weight is selected from E,	it	is	added	to	the	subgraph	if	the	two	
nodes of this edge belong to different trees. The following edges with 
the	largest	weight	are	added	to	the	subgraph	in	the	same	way,	until	
all nodes are connected in the subgraph that consists of n − 1 edges 
(Tewarie	et	al.,	2015;	Wang,	Miao,	et	al.,	2018).

To	ensure	that	the	resulting	graphs	metrics	were	accordant,	they	
would	 be	 composed	 of	 same	 numbers	 of	 edges,	 and	 the	 weights	
of the brain functional network must to be filtered by a threshold 
(Liu,	Zhang,	Yan,	et	al.,	2012).	The	sparsity	was	generally	used	as	the	
threshold metrics for all the correlation matrices to simplify the brain 
networks	 (Achard	 &	 Bullmore,	 2007;	 Scheltens,	 2007).	 Because	
there	is	no	gold	standard	for	threshold	selection,	we	simplified	each	
original	graph	over	a	wide	range	of	sparsity	(6%≤S	≤	36%),	and	based	
on	6%	step	length	in	this	interval.

2.5 | Feature selection and classification

In	 traditional	 brain	 function	 connection	 network	 analysis,	 the	 fol-
lowing	 graph	 measures	 had	 been	 calculated	 generally	 degree,	
betweenness	 centrality	 (BC),	 node	 strength,	 clustering	 coeffi-
cient,	 range	 coefficient,	 transitivity,	 and	 assortativity	 etc.	 (Guo	
et	 al.,	 2018;	 Shaoqiang	 et	 al.,	 2020).	 In	 this	 study,	weighted	 brain	
networks were constructed to study the deeper mutual informa-
tion	between	brain	regions.	The	degree,	BC,	and	clustering	coeffi-
cient have good performances of node aggregation degree in the 
weighted	network	(Bloznelis,	2013;	Sporns	et	al.,	2007)	and	can	well	
reflect the prevalence of each node and the situation around in brain 
network	(Rubinov	&	Sporns,	2010).	The	degree	ki is the number of 
connections of the node i	(Liu	&	Tian,	2014).	The	BC	is	the	number	
of shortest paths through a node. The clustering coefficient is frac-
tion of triangles around an individual node and is equivalent to the 
fraction	of	the	node's	neighbors	(Rubinov	&	Sporns,	2010;	Watts	&	
Strogatz,	1998).	The	degree,	BC,	and	local	clustering	coefficient	of	
each region were calculated for every weighted brain network. The 
features were selected by using the two-sample t	test	method,	and	
the functional connections which the p values of any two of these 
three	measures	were	 less	than	0.05	were	selected	as	feature.	The	

Bonferroni test was used as calibration method in the significance 
tests	(Bland	&	Altman,	1995).	In	this	study,	the	significance	level	was	
set at p <	.05.

Support	 Vector	 Machine	 (SVM)	 is	 a	 popular,	 powerful,	 super-
vised	 machine	 learning	 method	 for	 classification	 (Burges,	 1998;	
Chang	&	 Lin,	 2011).	 SVM	method	 usually	 constructs	 linear	 classi-
fication boundaries by using a kernel function in high dimensional 
spaces,	and	it	is	a	common	method	for	features	classification	in	brain	
networks.	 In	this	study,	a	SVM	that	kernel	 function	 is	Radial	Basis	
Function	(RBF)	was	selected	(Chang	&	Lin,	2011).	For	evaluating	the	
performance	of	classification,	the	accuracy,	specificity,	and	sensitiv-
ity	are	often	used	in	literature.	Here,	a	10-fold	cross-validation	was	
used to robust classification. The benchmark dataset was randomly 
divided	into	10	subsets.	One	subset	was	selected	as	a	test	set,	and	
the	other	subsets	composed	the	corresponding	training	set,	repeat	
that	10	times.	For	evaluating	the	performance	of	classification,	ac-
curacy,	 specificity,	 and	 sensitivity	 are	 often	 used	 in	 literature	 (Ali	
et	al.,	2017).

2.6 | Identifying hub nodes

Hub	 nodes	 play	 a	 central	 role	 in	 overall	 organization	 of	 the	 brain	
network,	and	they	are	important	brain	regions	that	underpin	numer-
ous	aspects	of	complex	cognitive	function	(Ali	et	al.,	2017;	van	den	
Heuvel	 &	 Sporns,	 2013).	 In	 order	 to	 explore	 the	 changes	 of	 local	
brain	areas	during	the	pathological	process	of	AD,	we	identified	the	
hub nodes of function connection network by calculating the BC of 
nodes.	We	measured	the	normalized	betweenness	bi of the node i by 
the	following	equation.	Nodes	with	high	values	of	bi were identified 
as the hubs of the brain networks.

In	Equation	(3)	(He	et	al.,	2008),	Bi is the BC of the node i; ⟨B ⟩ is 
the average BC of the network.

3  | RESULTS

3.1 | Constructing function connection brain 
network

In	this	study,	the	MST	of	all	subjects	were	constructed,	each	MST	
contained	 90	 nodes	 and	 89	 edges.	 To	 further	 show	 the	 distinc-
tions	of	MST	within	 three	groups,	we	constructed	 the	MST	based	
on	the	average	adjacency	matrix	of	each	group	respectively	(shown	
in	Figure	2).	In	this	paper,	graph	theoretical	visualization	were	per-
formed	by	BrainNet	 viewer	 software	 (https://www.nitrc.org/proje	
cts/bnv/)	(Mingrui	et	al.,	2013).	In	addition,	the	function	connection	
brain	networks	were	constructed	at	the	sparsity	of	6%,	12%,	18%,	
24%,	30%,	and	36%	orderly.

(3)bi =
Bi

⟨B ⟩

https://www.nitrc.org/projects/bnv/
https://www.nitrc.org/projects/bnv/
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3.2 | Classification of patients with AD and MCI 
from NC

To	examine	the	performance	of	our	algorithm	for	classification	of	
patients	with	AD	and	MCI	from	NC	subjects,	we	contrasted	it	with	
conventional	algorithm	on	the	same	dataset.	For	conventional	al-
gorithm,	the	representative	time	series	of	each	ROI	was	calculated	
by	averaging	the	time	series	of	voxels	within	each	of	90	regions.	In	

different	 function	 connection	 network,	 selecting	 SVM	with	 RBF	
kernel	as	classifier,	performance	of	these	two	algorithms	was	com-
pared	 using	10-fold	 cross-validation	 (shown	 in	 Table	 2).	A	 better	
performance was achieved using our algorithm than conventional 
method.	It	is	noteworthy	that	our	algorithm	achieved	an	accuracy	
of	 74.09%	 in	 classification	 of	MCI	 from	NC	 and	 77.58%	 in	 clas-
sification	of	AD	from	NC	 in	function	connection	networks	at	 the	
sparsity	of	12%.

F I G U R E  2  Network	structures	of	
average	MST	for	three	groups.	The	size	
of nodes represents the connective edge 
number	of	brain	regions,	bigger	size	said	
the number of connective edges about 
this	ROI	was	more,	and	smaller	size	said	
the edges was fewer. The color of edge 
indicates	the	path	length	between	nodes,	
blue	is	a	short	length,	black	represents	
a	long	length.	(a)	The	time	series	of	each	
ROI	was	calculated	by	the	method	of	
highly-available	node	calculation.	(b)	The	
time	series	of	each	ROI	was	calculated	by	
the conventional algorithm

TA B L E  2   Performance of classification using different function connection network

Network Method

Accuracy (%) Specificity (%) Sensitivity (%)

MCI AD MCI AD MCI AD

MST This paper 72.11 76.32 80.73 79.28 86.40 89.52

Conventional algorithm 63.85 69.08 74.62 71.85 78.33 81.09

Sparsity	of	6% This paper 69.36 71.54 72.83 77.42 67.20 66.71

Conventional algorithm 59.92 62.16 60.70 73.52 53.28 61.44

Sparsity	of	12% This paper 74.09 77.58 85.38 81.07 85.00 88.13

Conventional algorithm 70.43 70.99 81.27 73.31 76.52 82.40

Sparsity	of	18% This paper 70.82 72.07 80.10 79.28 79.91 81.07

Conventional algorithm 65.33 69.76 73.05 69.48 70.37 78.59

Sparsity	of	24% This paper 68.00 67.46 70.30 75.93 73.04 79.82

Conventional algorithm 60.53 61.47 64.86 69.57 70.48 69.55

Sparsity	of	30% This paper 62.77 64.28 72.00 79.88 73.92 77.19

Conventional algorithm 55.92 59.28 67.93 72.01 66.00 71.52

Sparsity	of	36% This paper 59.01 61.36 65.73 77.24 65.17 68.77

Conventional algorithm 52.40 54.71 59.97 69.38 62.44 61.06

Abbreviations:	AD,	Alzheimer's	disease;	MCI,	mild	cognitive	impairment;	MST,	minimum	spanning	tree.
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Several other algorithms had also been applied in classification 
of	patients	with	MCI	and	AD	from	NC.	To	prove	the	classification	
performance	of	our	algorithm,	we	contrasted	it	with	Feng	Li's	Robust	
Deep	Model	(Li	et	al.,	2015)	and	Ali	Khazaee's	directed	graph	mea-
sure	 (Ali	 et	 al.,	 2017)	 on	 the	 same	 dataset.	 In	 order	 to	 perform	 a	
fair	 comparison	with	 different	methods,	 all	methods	 used	 exactly	
the	same	SVM	with	RBF	kernel	as	classifier,	10-fold	cross-validation,	
and	MST	 network.	 Particularly,	 the	 classification	 performances	 of	
different	methods	were	clearly	shown	in	Table	3,	which	indicate	that	
our method had the best classification performance.

3.3 | Brain regions related to the cognitive status 
related to AD and MCI

As	 reported	 in	 Section	 3.2,	 the	 connection	 networks	 at	 the	 spar-
sity	of	12%,	we	got	the	best	classification	of	AD	and	MCI	from	NC.	
The brain regions with large values in bi > 1.7 were identified as the 
hubs	of	connection	networks	(He	et	al.,	2008;	Liu,	Zhang,	Yan,	et	al.,	
2012).	In	this	study,	we	constructed	the	brain	network	at	the	spar-
sity	of	12%,	and	the	hub	nodes	were	identified	with	bi >	1.7.	For	our	
method,	18	ROIs	were	identified	as	hub	nodes	in	the	three	groups	
(shown	 in	 Table	 4).	 For	 the	 conventional	 algorithm,	 15	ROIs	were	
identified	as	hub	nodes	in	the	three	groups	(shown	in	Table	5).

Finally,	we	examined	 the	 changes	of	 the	normalized	betweenness	
between	different	groups	(AD	and	MCI,	AD	and	NC,	MCI	and	NC)	sev-
erally.	The	ROIs	of	the	significant	changes	(p <	 .05)	between	different	
groups	were	shown	as	follows.	For	our	method,	compared	with	MCI,	AD	
subjects showed the BC decreases in the brain regions of the left supe-
rior	temporal	gyrus,	the	right	rolandic	operculum,	and	the	left	amygdala,	
while the BC increases were in the brain regions of the right olfactory 
cortex,	 the	 left	orbital	superior	frontal	gyrus,	and	the	right	parahippo-
campal	(shown	in	Figure	3).	Compared	with	NC,	AD	subjects	showed	the	
BC	decreases	in	the	brain	regions	of	the	right	hippocampus,	the	left	pos-
terior	cingulate	gyrus,	the	right	rolandic	operculum,	and	the	left	amyg-
dala,	while	the	BC	increases	were	in	the	brain	regions	of	the	left	middle	
frontal,	 the	right	middle	frontal,	 the	 left	 lingual,	 the	 left	middle	frontal	
orbital,	and	the	right	amygdala	(shown	in	Figure	4).	Compared	with	NC,	
MCI	subjects	showed	BC	decreases	in	the	brain	regions	of	the	right	pos-
terior	cingulate	gyrus,	the	left	middle	temporal,	the	right	middle	tempo-
ral,	and	the	left	hippocampus,	while	the	BC	increases	were	in	the	brain	

regions	of	the	left	superior	temporal	gyrus	and	the	left	calcarine	(shown	
in	Figure	5).	For	conventional	algorithm,	compared	with	MCI,	AD	subjects	
showed	the	BC	decreases	in	the	brain	area	of	the	right	amygdala,	while	
the	BC	increases	were	in	the	brain	regions	of	the	left	middle	frontal,	the	
left	lingual,	and	the	right	parahippocampal	(shown	in	Figure	3).	Compared	
with	NC,	AD	subjects	showed	the	BC	decreases	in	the	brain	regions	of	
the	right	hippocampus,	 the	 left	superior	 temporal	gyrus,	and	the	right	
posterior	cingulate	gyrus,	while	the	BC	increases	were	in	the	brain	re-
gions	of	the	left	middle	frontal,	the	right	olfactory	cortex,	left	calcarine,	
and	the	left	orbital	superior	frontal	gyrus	(shown	in	Figure	4).	Compared	
with	NC,	MCI	subjects	showed	the	BC	decreases	in	the	brain	regions	of	
the	left	posterior	cingulate	gyrus,	the	right	middle	temporal,	and	the	left	

Method

Accuracy (%) Specificity (%) Sensitivity (%)

MCI AD MCI AD MCI AD

This paper 72.11 76.32 80.73 79.28 86.40 89.52

Feng	Li's	Robust	
Deep	Model

70.93 72.41 75.02 76.37 81.94 85.06

Ali	Khazaee's	
directed graph 
measure

71.85 72.90 74.55 79.07 80.52 87.33

Abbreviations:	AD,	Alzheimer's	disease;	MCI,	mild	cognitive	impairment.

TA B L E  3   Compared with different 
methods for performance of classification

TA B L E  4   Regions showing high betweenness in brain networks 
by using the highly-available nodes approach

Name of brain regions

Normalized betweenness,bi

AD MCI NC

Right hippocampus 0.326 1.970 4.842

Left	middle	frontal 3.831 1.512 0.327

Right middle frontal 4.271 1.176 0.315

Left	superior	temporal	gyrus 0.173 2.847 1.252

Left	posterior	cingulate	gyrus 0.378 0.832 2.311

Left	lingual 3.436 1.772 0.580

Right	olfactory	cortex 2.732 0.743 1.310

Left	orbital	superior	frontal	gyrus 2.169 0.352 1.601

Right rolandic operculum 0.073 1.874 2.501

Left	middle	frontal	orbital 3.809 1.630 0.427

Left	amygdala 0.134 2.878 3.180

Right posterior cingulate gyrus 1.483 0.532 2.392

Right middle temporal 1.431 0.589 2.875

Right parahippocampal 3.359 0.247 2.926

Left	middle	temporal 1.007 0.086 1.975

Right amygdala 3.642 1.576 0.722

Left	hippocampus 1.282 0.145 1.709

Left	calcarine 1.661 3.387 0.425

Note: The	bold	font	represents	the	ROI	being	with	bi > 1.7 in the 
corresponding group.
Abbreviations:	AD,	Alzheimer's	disease;	MCI,	mild	cognitive	impairment;	
NC,	normal	control.
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hippocampus,	while	the	BC	 increases	were	 in	the	brain	regions	of	the	
right	putamen	and	the	left	middle	frontal	orbital	(shown	in	Figure	5).

4  | DISCUSSION

Here,	we	have	presented	a	highly-available	nodes	approach	for	con-
structing	and	analyzing	brain	network	of	patients	with	MCI	and	AD.	
Based	on	this	method,	we	respectively	constructed	the	weighted	rs-
fMRI	brain	networks	for	each	subject	on	a	database	of	total	247	sub-
jects	(the	subjects	detail	shown	in	Table	1).	With	SVM	of	RBF,	kernel	
was	selected	as	classifier,	and	accuracies	of	74.09%	and	77.58%	were	
achieved	for	classification	of	MCI	and	AD	from	NC,	respectively.	In	
order to demonstrate the ability of our method for classification of 
patients	with	AD	and	MCI	from	NC	subjects,	we	contrasted	it	with	
conventional	algorithm	on	the	same	dataset.	Our	method	achieved	a	
better	performance	(shown	in	Table	2).

In	addition,	we	analyzed	the	property	of	connection	network	for	
each	subject,	and	18	significant	brain	regions	were	identified	as	hub	
nodes by using our method. Comparing with the conventional algo-
rithm,	four	brain	regions	were	more	obtained.	Remarkably,	the	brain	
regions of the right middle frontal and the left middle temporal gyrus 
had	been	 reported	 in	 the	studies	by	Ali	Khazaee	 (Ali	et	al.,	2017).	
In	the	studies	of	Liu,	the	brain	regions	of	the	right	rolandic	opercu-
lum and the left amygdala were reported as regions with significant 

F I G U R E  3  Brain	regions	showing	abnormal	nodal	centrality	in	AD	subjects	compared	with	MCI	subjects.	The	color	of	nodes	represents	the	
decreased	(black)	or	increased	(red)	nodal	centrality	in	AD	subjects	compared	with	MCI	subjects.	(a)	The	time	series	of	each	ROI	was	calculated	
by	the	method	of	highly-available	node	calculation.	(b)	The	time	series	of	each	ROI	was	calculated	by	the	conventional	algorithm.	Label:	Left	
hippocampus	(HIP.L),	Right	hippocampus	(HIP.R),	Left	middle	frontal	(FrontalMid.L),	Right	middle	frontal	(FrontalMid.R),	Left	superior	temporal	
(TemporalSup.L),	Right	posterior	cingulate	gyrus	(CingulumPost.R),	Left	posterior	cingulate	gyrus	(CingulumPost.L),	Left	lingual	(LING.L),	Right	
olfactory	cortex	(Olfactory.R),	Right	rolandic	operculum	(RolandicOper.R),	Left	calcarine	(CAL.L),	Left	amygdala	(AMYG.L),	Right	middle	temporal	
(TemporalMid.R),	Right	parahippocampal	(ParaHip.R),	Left	middle	frontal	orbital	(FrontalMidOrb.L),	Left	middle	temporal	(TemporalMid.L),	Left	
orbital	superior	frontal	gyrus	(FrontalSupOrb.L),	Right	amygdala	(AMYG.R),	Right	putamen	(Putamen.R),	Left	middle	frontal	orbita	(FrontalMidOrb.L)

TA B L E  5   Regions showing high betweenness in brain networks 
by using the conventional algorithm

Name of brain regions

Normalized betweenness,bi

AD MCI NC

Left	middle	frontal 3.712 1.624 0.319

Left	superior	temporal	gyrus 0.278 1.342 2.612

Left	posterior	cingulate	gyrus 1.935 0.109 2.783

Left	lingual 3.063 0.760 1.512

Right	olfactory	cortex 3.025 0.691 0.408

Left	calcarine 2.726 1.080 0.319

Right putamen 1.201 2.931 0.213

Right posterior cingulate gyrus 0.075 1.804 2.192

Right middle temporal 1.022 0.118 1.783

Left	orbital	superior	frontal	gyrus 2.027 1.605 0.267

Right parahippocampal 3.518 0.728 1.652

Left	middle	frontal	orbital 1.928 2.705 0.137

Right amygdala 0.367 1.158 2.870

Right hippocampus 0.218 1.452 3.734

Left	hippocampus 0.957 0.031 1.995

Note: The	bold	font	represents	the	ROI	being	with	bi > 1.7 in the 
corresponding group.
Abbreviations:	AD,	Alzheimer's	disease;	MCI,	mild	cognitive	impairment;	
NC,	normal	control.
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different	 nodal	 centrality	 between	MCI	 patients	 and	 AD	 patients	
(Liu,	Zhang,	Yan,	et	al.,	2012).	So,	the	result	of	these	hub	brain	re-
gions was dependable.

What's	more,	using	network	graphs	to	study	clinical	problems	
can provide useful insights for helping understanding the progress 
of	 the	disease.	 In	 this	 research,	we	examined	 the	changes	of	 the	
brain	 regions	nodal	 centrality	 between	different	 groups	 (AD	and	
MCI,	AD	and	NC,	MCI	and	NC)	severally.	We	obtain	that	the	brain	
regions	of	the	left	superior	temporal	gyrus,	the	left	amygdala,	and	
the left middle frontal showed significant difference in at least two 

groups	 of	 AD	 -	MCI,	 AD	 –	NC,	 and	MCI	 -	 NC.	 Previous	 studies	
suggest	 that	 ceruloplasmin	 level	 and	gene	expression	 changes	 at	
the	 superior	 temporal	 gyrus	were	 associated	with	 aging	 and	AD	
(Connor	et	 al.,	 1993;	Horesh	et	 al.,	 2011).	The	neuropathological	
changes in the amygdala may be linked to the conversions from 
the	MCI	to	AD	(Gallo	et	al.,	2010;	Liu	et	al.,	2010).	A	recent	study	
found that the centrality of the right middle frontal was decreased 
in	AD	patients	 (Guo	et	 al.,	 2016).	 The	brain	 regions	 showing	dif-
ferent	nodal	centrality	in	AD	and	MCI	reflect	the	brain	functional	
transform	in	AD	and	MCI.

F I G U R E  5   Brain regions showing 
abnormal	nodal	centrality	in	MCI	subjects	
compared	with	NC	subjects.	The	color	
of nodes represents the decreased 
(black)	or	increased	(red)	nodal	centrality	
in	MCI	subjects	compared	with	NC	
subjects.	(a)	The	time	series	of	each	ROI	
was calculated by the method of highly-
available	node	calculation.	(b)	The	time	
series	of	each	ROI	was	calculated	by	the	
conventional algorithm. The label details 
were	shown	in	Figure	3

F I G U R E  4   Brain regions showing 
abnormal	nodal	centrality	in	AD	subjects	
compared	with	NC	subjects.	The	color	of	
nodes	represents	the	decreased	(black)	
or	increased	(red)	nodal	centrality	in	AD	
subjects	compared	with	NC	subjects.	
(a)	The	time	series	of	each	ROI	was	
calculated by the method of highly-
available	node	calculation.	(b)	The	time	
series	of	each	ROI	was	calculated	by	the	
conventional algorithm. The label details 
were	shown	in	Figure	3
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5  | CONCLUSION

In	this	article,	we	have	proposed	an	approach	for	constructing	and	
analyzing	brain	network	of	patients	with	MCI	and	AD.	Comparing	
with	the	conventional	algorithm,	it	achieved	a	better	performance	in	
classification	of	MCI	and	AD	from	NC.	In	addition,	with	analyzing	the	
nodal	centrality	of	the	brain	networks	in	AD,	MCI,	and	NC,	18	sig-
nificant	brain	regions	that	identify	as	hub	nodes	were	obtained.	In	a	
word,	the	highly-available	nodes	approach	provided	the	representa-
tive time series of brain area effectively and facilitated the algorithm 
of the brain network topology analysis to perform a precise level.
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