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Abstract: Neuroblastoma is a common extracranial solid tumour of childhood, responsible for 15%
of cancer-related deaths in children. Prognoses vary from spontaneous remission to aggressive
disease with extensive metastases, where treatment is challenging. Tumours are thought to arise
from sympathoadrenal progenitor cells, which derive from an embryonic cell population called
neural crest cells that give rise to diverse cell types, such as facial bone and cartilage, pigmented
cells, and neurons. Tumours are found associated with mature derivatives of neural crest, such
as the adrenal medulla or paraspinal ganglia. Sympathoadrenal progenitor cells express anaplastic
lymphoma kinase (ALK), which encodes a tyrosine kinase receptor that is the most frequently mutated
gene in neuroblastoma. Activating mutations in the kinase domain are common in both sporadic and
familial cases. The oncogenic role of ALK has been extensively studied, but little is known about its
physiological role. Recent studies have implicated ALK in neural crest migration and sympathetic
neurogenesis. However, very few downstream targets of ALK have been identified. Here, we describe
pathological activation of ALK in the neural crest, which promotes proliferation and migration, while
preventing differentiation, thus inducing the onset of neuroblastoma. Understanding the effects of
ALK activity on neural crest cells will help find new targets for neuroblastoma treatment.

Keywords: neuroblastoma; anaplastic lymphoma kinase; ALK; neural crest

1. Introduction

Neuroblastoma is a childhood cancer: 40% of patients are younger than one year old at
diagnosis [1,2]. Tumours are found along the peripheral nervous system and are composed
of undifferentiated neuroblastic cells. These cells most likely originate from sympathoad-
renal progenitor cells, which derive from neural crest cells. Although neuroblastoma only
represents 6–10% of all childhood cancers, it is the most common extracranial solid tumour
in young children, accounting for 12–15% of childhood cancer-related deaths [2]. Clinical
prognosis in neuroblastoma is heterogenous, with outcomes varying from spontaneous
remission to treatment-resistant progressive disease [1,2]. Overall survival in clinical low-
to intermediate- and high-risk disease is 85–90% and <50%, respectively. High-risk disease
represents approximately 40% of all diagnoses [1,2]. This depends not only on the age of
the child (>15-month-old children display poorer prognosis), but also on the stage and the
genetic makeup of the tumour [3].

Until now, no single genetic marker is accurately reflective of the complex clinical
scenarios described above, and a variety of chromosomal alterations are used or are entering
clinical consideration as potential risk-stratifying biomarkers. Structural chromosomal
alterations are common, including chromosomal deletions of 1p and 11q arms, 17q gain,
14q loss, and triploidy [4]. The first neuroblastoma predisposition gene identified was
paired-like homeobox 2B (PHOX2B), found in a familial case of neuroblastoma [5]. PHOX2B
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encodes a transcription factor essential for autonomic nervous system development, where
it functions in sympathoadrenal specification, supporting the idea that neuroblastoma
arises due to pathological development in this neural-crest-derived lineage [6]. Missense
variants in PHOX2B are known to be drivers of other neural-crest-related diseases, such as
congenital central hypoventilation syndrome and Hirschsprung disease [1]. However, only
1–2% of all neuroblastoma cases are familial [7,8], and, of these, only about 6–10% can be
attributed to PHOX2B mutations [1].

A second gene, MYCN, is directly linked to poor prognosis in neuroblastoma pa-
tients [9,10]. Somatic amplification of the MYCN gene is found in 20% of all neuroblastoma
patients, which results in higher MYCN protein levels [11]. In 1997, transgenic overexpres-
sion of MYCN in neural crest cells was shown to cause neuroblastoma in mice, helping to
clarify the role of MYCN in the genesis of this disease [12].

Here, we focus on anaplastic lymphoma kinase (ALK), which is the most frequent
single-gene alteration encountered in primary neuroblastoma. Heterogeneity at the ALK
locus is found in almost all familial neuroblastoma cases [8,13–15] and is associated with
poor prognosis in sporadic cases [16]. Subsequent tissue-specific ALK-overexpressing
mouse models have been constructed that demonstrate synergy with MYCN in the ability
to generate neuroblastoma [17,18] and have helped to clarify the oncogenic role of ALK,
but, similarly, little is known about its physiological function. In this review, we will
summarise the current understanding of ALK function and consider its potential role in
neural crest development and in the onset of neuroblastoma tumorigenesis.

2. ALK Protein Structure and Interactions

ALK is a receptor tyrosine kinase (RTK) first identified in anaplastic large cell lym-
phoma patients, where ALK translocations led to an aberrant fusion protein with nucle-
ophosmin (NPM) (discussed in more detail below, Morris et al., 1994). ALK, together with
leukocyte tyrosine kinase (LTK), forms the LTK receptor subfamily [19,20]. Structurally,
ALK comprises an extracellular glycine-rich domain, a transmembrane domain, and an
intracellular tyrosine kinase domain (Figure 1).

In human ALK, the extracellular domain (ECD) is uniquely composed of two meprin,
A-5 protein, and receptor protein–tyrosine phosphatase mu (MAM) domains, which sur-
round a low-density lipoprotein receptor class A (LDL) domain (Figure 1). In contrast, the
closely related human LTK has neither MAM nor LDL domains [21,22]. While these ALK
domains have been identified, the complete structure and functions of the ECD still need
clarification [20,23]. In other proteins, MAM domains are involved in cell–cell interactions
through homophilic binding [24]. The LDL domain is likely to bind to ligands [25]. While
full-length ALK protein is approximately 180 kDa, N-glycosylation of the extracellular
domain increases the protein to a molecular weight of 220 kDa [20,26]. Altogether, the
ECD is divided into presumed functions of ligand binding, interactions with potential
coreceptors and regulatory proteins, and dimerisation [27].

The intracellular domain of ALK consists of the juxtamembrane region [28] and
the tyrosine kinase domain [20]. The kinase domain has a small amino-terminal lobe
and a large carboxy-terminal lobe and is highly conserved across species [29] (Figure 1).
The kinase activity is dependent upon the catalytic loop, activation loop, αC-helix, and
the glycine-rich region [29,30]. In the absence of a ligand, ALK has an autoinhibitory
conformation, where the juxtamembrane domain clamps the αC-helix in a quiescent state
with the activation loop, blocking substrate binding [31]. In addition, absence of a ligand
induces the cleavage of ALK within the juxtamembrane domain by caspase-3. This cleavage
releases an intracellular ALK fragment, shown to enhance apoptosis [28].
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Figure 1. ALK mutations and alterations in neuroblastoma and other cancers. (A) Structure of ALK and neuroblastoma-
associated mutations: the extracellular domain of ALK is composed of two meprin, A-5 protein, and receptor protein–
tyrosine phosphatase mu (MAM) domains surrounding a low-density lipoprotein receptor class A (LDL) domain, a gly-
cine-rich (GR) domain, transmembrane (TM) domain, and an intracellular tyrosine kinase (TK) domain. Neuroblastoma-
associated mutations of ALK are found within the TK domain, and the majority of these lie in three distinct positions (bold 
font): R1275 (43%), F1174 (30%), and F1245 (12%). (B) Truncated ALK in neuroblastoma and fusion ALK proteins in other 
cancers. Four different truncated ALK proteins have been found in neuroblastoma. This is caused by translocation of ALK, 
leading to exclusion of ALK exons. ALKΔ2–3, ALKΔ1–5, and ALKΔ4–11 display altered or loss of MAM/LDL domains, which 
lead to constitutively active ALK. ALK fusion proteins NPM–ALK and EML4–ALK have been found in anaplastic large 
cell lymphoma (ALCL) and non-small cell lung cancer (NSCLC), respectively. The break point in ALK lies in introns flank-
ing exon 16 and 17. This results in ALK fusion proteins displaying a complete loss of the extracellular domain and the TM 
domain. 

Figure 1. ALK mutations and alterations in neuroblastoma and other cancers. (A) Structure of ALK and neuroblastoma-
associated mutations: the extracellular domain of ALK is composed of two meprin, A-5 protein, and receptor protein–
tyrosine phosphatase mu (MAM) domains surrounding a low-density lipoprotein receptor class A (LDL) domain, a glycine-
rich (GR) domain, transmembrane (TM) domain, and an intracellular tyrosine kinase (TK) domain. Neuroblastoma-
associated mutations of ALK are found within the TK domain, and the majority of these lie in three distinct positions (bold
font): R1275 (43%), F1174 (30%), and F1245 (12%). (B) Truncated ALK in neuroblastoma and fusion ALK proteins in other
cancers. Four different truncated ALK proteins have been found in neuroblastoma. This is caused by translocation of
ALK, leading to exclusion of ALK exons. ALK∆2–3, ALK∆1–5, and ALK∆4–11 display altered or loss of MAM/LDL domains,
which lead to constitutively active ALK. ALK fusion proteins NPM–ALK and EML4–ALK have been found in anaplastic
large cell lymphoma (ALCL) and non-small cell lung cancer (NSCLC), respectively. The break point in ALK lies in introns
flanking exon 16 and 17. This results in ALK fusion proteins displaying a complete loss of the extracellular domain and the
TM domain.
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Upon ligand binding to the ECD, ALK undergoes dimerisation or oligomerisation,
leading to activation of the tyrosine kinase [27,31] and transphosphorylation of one or
more tyrosine residues in the juxtamembrane domain (Y1078, Y1092, Y1096, Y1131) [31].
Phosphorylation of the activation loop leads to a conformational change, allowing the active
state of αC-helix [31]. In contrast to other receptor tyrosine kinases, ALK almost exclusively
phosphorylates the first tyrosine of the Y-x-x-x-Y-Y motif [32]. Followed by ALK kinase
activation, additional tyrosine residues in the C-terminus of ALK are phosphorylated,
which function as docking sites for downstream targets [33].

Due to its high substrate specificity, not many ALK ligands have been found. In
Drosophila melanogaster, jelly belly (Jeb), a secreted protein, has been identified as an Alk
ligand. However, Jeb is unable to activate the mouse ALK orthologue, suggesting this
interaction is not evolutionarily conserved [34]. In C. elegans, HEN-1 has been shown to
bind and activate SCD-2, an ALK orthologue. This sensory pathway modulates trans-
forming growth factor-β (TGF-β) signalling in response to environmental cues [35]. More
recently, a screen for extracellular proteins identified two mammalian cytokines capable of
binding LTK: family with sequence similarity 150 member A and member B (FAM150A and
FAM150B). FAM150A binds LTK with high affinity and induces its phosphorylation [36].
However, FAM150A was shown to bind only weakly to ALK, while FAM150B binds to both
ALK and LTK [37]. Moreover, in studies using zebrafish larvae, the three Danio rerio Fam
homologues are all able to activate Ltk [38]; however, it is worth noting that, in zebrafish,
Ltk is more similar to human ALK.

In primary neuroblastoma tumours, two neurotrophic factors, pleiotrophin (PTN)
and midkine (MDK), are highly expressed and have been postulated to bind and activate
ALK in vitro [39,40]. PTN seems to be expressed in samples from earlier stages and
inversely correlates with MYC amplification, while MDK is similarly expressed across
different stages [41]. However, there is conflicting evidence in the literature. Mathivet
et al. showed that PTN failed to activate ALK in comparison to monoclonal antibody
activation [42,43]. Moreover, Miple1 and Miple2, Drosophila homologues of the PTN/MDK
family, are not required for embryonic development and failed to activate human ALK
in vivo [44]. Nevertheless, PTN has been shown to increase ALK phosphorylation via the
PTN/receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ) signalling pathway [45].

As an added complication, ALK can be considered a “dependence” receptor: rather
than ligand binding acting as an on/off switch, the receptor may have ligand-independent
and ligand-dependent functions [46]. In the case of ALK, it appears that ligand binding pro-
motes signalling pathways driving survival, migration, and differentiation. In contrast, the
absence of ligand can lead to cleavage of the receptors within the intracellular domain, with
the generated intercellular fragment released into the cytosol and activating proapoptotic
pathways [47]. This raises the possibility that the consequences of activating mutations in
ALK are very much dependent on context, including availability of extracellular cues, such
as ligands, and intracellular signal integration, and that the main consequence of ectopic
activation is a failure to progress through the differentiation programme.

3. Developmental Roles of ALK
3.1. Expression Patterns of ALK

The role of ALK in embryogenesis is poorly understood, but its expression pattern
during embryonic development across different animal models points to a function in
the developing nervous system. In Drosophila, the Alk orthologue is expressed in the
developing nervous system, as well as in the visceral mesoderm [48]. In chick embryos, ALK
is expressed in the peripheral nervous system, in the sympathetic and dorsal root ganglia of
the spinal cord, specifically in motor neurons from stage HH19 to HH39 [49,50]. However,
in chicken, LTK is more structurally similar to human ALK and could be functionally more
similar to human ALK than human LTK. Chicken LTK is expressed in the neural plate
border and in migrating cranial and trunk neural crest cells [51].
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In mice, ALK protein and mRNA are seen in the brain when assessed in 1-day postnatal
(P1) to 2-week-old (P14) animals. In older mice, expression levels appear low. Transcripts
were also observed in the central and peripheral nervous system in embryonic day 15 and
19 mice (E15 and E19) [52]. Earlier in foetal development (E10.5-E16.5), Alk expression was
detected in neuronal tissues, in the brain and spinal cord, as well as in gastrointestinal
tissues, the lining of the gut, and in sensory organs, such as the tongue, skin, and the
nasal epithelium, and testis and ovaries [53]. Finally, Gonzalez Malagon et al., showed
ALK protein and mRNA expression in the neural plate border of E8 to E9.5 mice and in
migratory neural crest cells in explants of E8.5 embryos [54]. These stages correspond to
neural crest delamination and migration, and may be most relevant to neuroblastoma.

More recently, our group described the expression pattern of alk during embryonic
development of Xenopus. We found that alk is expressed in neural crest domains as early
as stage 13 (prior to neural tube closure), in the neural plate and in migrating neural
crest streams in the head, until later tadpole stages. Expression was also seen in other
ectodermal derivatives, such as ear vesicles, optic cup, in the lining of the pharynx, and in
head mesenchyme [55,56]. All in all, alk is expressed in the nervous system, particularly in
neural crest cells. Nevertheless, how Alk functions in these cells remains unclear.

3.2. Developmental Roles of ALK

While endogenous functions of ALK have mainly been examined in disease contexts,
substantial studies in Drosophila have linked Alk to gut development [57,58], eye develop-
ment [23], protection of neuroblasts during nutrient deprivation, and to a role in alcohol
resistance [59]. Both Alk and the Jeb ligand play roles in muscle founder cell specifica-
tion by inducing dumbfounded (duf ) expression through extracellular signal-regulated
kinase (Erk) and Ras/mitogen-activated protein kinase (Ras/Mapk) activation [57,60]. In
C. elegans, SCD-2 and its ligand HEN-1 are implicated in associated learning and sensory
integration [61–63].

Although expression in humans and mice suggests that ALK is involved in nervous
system development, deletion of Alk in mice does not lead to obvious anatomical pheno-
types and, therefore, the requirements for ALK in mammals are still unclear [23]. However,
ALK depletion does lead to changes in neurogenesis and neuronal proliferation in several
animal models. In vitro experiments with immature sympathetic neurons from chickens
displayed increased proliferation dependent on ALK activity [64]. In vivo, ALK knockout
leads to a reduction in sympathetic ganglia size and reduction in proliferating immature
sympathetic neurons [64]. As noted, both chicken and zebrafish Ltk is structurally more
similar to human ALK, and zebrafish Ltk plays a role in neural crest cell differentiation
into eye iridophores [38]. Mutations in ltk or loss-of-function of either FAM homologue, alk
or ltk, all result in loss of iridophore patterning, while overexpression of the ligands drives
ectopic iridophore formation in vivo [38,65,66].

4. ALK in Neuroblastoma
4.1. Fusion Proteins NPM–ALK and EML4–ALK Are Common in Cancer

While the physiological role of ALK is not well understood, genomic variations in
ALK have been known for over 20 years. Nearly 30 different ALK fusion proteins have
been described, in which NPM–ALK and EML4–ALK are the most studied [67]. Morris and
colleagues first discovered ALK in 1994 as a fusion protein with nucleophosmin (NPM) in
anaplastic large cell lymphoma (ALCL) (Figure 1), which is a non-Hodgkin lymphoma [19].
EML4–ALK was described in 2007 in non-small cell lung cancer (NSCLC), where ALK is
fused to echinoderm microtubule-associated protein-like 4 (EML4) [68,69]. ALK fusion
proteins have also been described in diffuse large B-cell lymphoma, inflammatory myofi-
broblastic tumour, oesophageal squamous cell carcinoma, serous ovarian carcinoma, and
breast and colon cancer [70].
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ALK fusion proteins are able to oligomerise, which is mediated by ALK protein
partners [67]. They can gain additional functional and interaction partners mediated by its
fusion partner [71]. As the break point of ALK in every fusion is in the intron flanking exon
16 and 17, this leads to ALK fusion proteins containing the active intracellular region of
the ALK kinase domain. In NPM–ALK, this leads to a ligand-independent, constitutive
tyrosine kinase activity [70].

4.2. ALK Alterations in Neuroblastoma

To date, no fusion proteins have been reported in neuroblastoma. However, several
groups describe ALK rearrangements and amplification (Table 1). ALK rearrangements
are found in 23% of investigated neuroblastoma cell lines and a subset of neuroblastoma
tumours [72]. Miyake et.al. (2002) described ALK amplification in the NB-39-nu neurob-
lastoma cell line, which leads to constitutive activation of ALK [73]. NB-1 neuroblastoma
cells exhibit ALK amplification, in addition to truncated ALK∆2–3 caused by deletion of
exon 2 and 3 [74]. Other truncations seen in neuroblastoma cell lines include ALK∆4–11,
which lacks a partial MAM domain, the complete second MAM domain, and the LDL
domain [72], and ALK∆1–5, which lacks the first MAM domain and part of the LDL domain.
All three ALK deletion variants act in a ligand-independent manner and are constitutively
active, with ALK∆1–5 also showing downstream phosphorylation of ERK increases upon
stimulation [75].

Table 1. ALK alterations described in neuroblastoma.

Alteration Affected Domain Note Reference

Amplification 2p23 Full-length ALK Ligand-dependent [14]

Translocation/
amplification

∆1 Extracellular
N-terminal

Translocation to
11q14 [75]

∆2–3 Extracellular
N-terminal Enhanced kinase activity [74]

∆1–5 Extracellular
N-terminal

Translocation to
4q35 or 2p24 [75]

∆4–11 MAM and LDL domain loss Ligand-independent kinase activity [72,75]

3–4 exon Extracellular
N-terminal

Translocation to
2p16–2p14 region [75]

Gain-of-function mutations in ALK are the predominant driver of familial neuroblas-
toma (Table 2). The majority of these are found in three distinct positions located in the
kinase domain: R1275 (43%), F1174 (30%), and F1245 (12%) [16,76,77]. R1275 mutations are
present in familial and sporadic cases, whereas F1174 and F1245 are mostly found in spo-
radic cases [16,76,77]. They are associated with an aggressive tumour phenotype, and poor
prognosis and survival [76,78]. Mutations in R1275 and F1174 lead to a ligand-independent
activation of ALK, with increased kinase activity [13–15,27,79–81]. Other mutations are
found in I1170 (N or S), I1171N, and 15 further positions [8,76,82–86] (Table 1).
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Table 2. ALK point mutations described in neuroblastoma.

Type Mutation Site Domain Note Reference

unknown p.(K1062M) AAG > ATG Kinase domain
(Juxtamembrane) Tumorigenesis in mice [14]

Germline p.(T1087I) ACC > ATC Kinase domain
(Juxtamembrane) unknown [14]

Germline p.(G1128A) GGG > GCG Kinase domain (P-loop,
glycine loop) Ligand-independent kinase activity [8,82,83]

Somatic p.(M1166R) ATG > AGG Kinase domain
(αC helix) Ligand-independent kinase activity [8,83]

Somatic p.(I1171N) ATC > ACC Kinase domain
(αC helix) Ligand-independent kinase activity [8,83]

Somatic p.(F1174I) TCC > ATC Kinase domain
(αC helix) Ligand-independent kinase activity [8,82]

Somatic p.(F1174L)
TTC > TTA
TTC > TTG
TTC > CTC

Kinase domain
(αC helix) Ligand-independent kinase activity [4,8,13,82]

Somatic p.(F1174C) TTC > TGC Kinase domain
(αC helix) Ligand-independent kinase activity [4,14,79]

unknown p.(F1174S) TTC > TCC Kinase domain
(αC helix) Ligand-independent kinase activity [80,86,87]

Somatic p.(F1174V) TTC > GTC Kinase domain
(αC helix) Ligand-independent kinase activity [4,14,81]

Germline p.(R1192P) CGG > CCG Kinase domain
(β4 strand) Ligand-independent kinase activity [4,8,83]

Somatic p.(F1245C) TTC > TGC Kinase domain
(catalytic loop) Ligand-independent kinase activity [8,13,83]

Somatic p.(F1245L) TTC > TTG Kinase domain
(catalytic loop) Ligand-independent kinase activity [14,76,84,88]

Somatic p.(F1245V) TTC > GTC Kinase domain
(catalytic loop) Ligand-independent kinase activity [8,13,76]

Somatic p.(I1250T) ATT > ACT Kinase domain
(catalytic loop) Kinase dead mutation [8,86]

Somatic/
Germline p.(R1275Q) CGA > CAA Kinase domain

(activation loop) Ligand-independent kinase activity [4,8,13,14]

Somatic p.(Y1278S) TAC > TCC Kinase domain
(activation loop) Ligand-independent kinase activity [4,83,85]

4.3. ALK and MYCN in Neuroblastoma

A key question in the field is whether ALK mutations themselves can initiate tumour
formation or whether other genomic alterations are required. ALKF1174L expression in
transgenic mice led to some tumour formation resembling human neuroblastoma [18].
However, this was challenged in 2014, when Cazes et al. showed that ALKF1174L and
ALKR1275Q variants indeed lead to abnormal proliferation of sympathetic ganglia, but
were not sufficient to initiate neuroblastoma formation. This suggests a requirement for
additional factors, such as MYCN amplification, to trigger tumorigenesis [89,90]. Increased
MYCN activity is likely to enhance neuroblast proliferation and survival [91]. Following
this, ALK activation may potentiate the oncogenic capacity of MYCN [17,90,92–94]. These
two factors are the most common predisposition markers of neuroblastoma and, together,
are associated with poor prognosis [77,95].
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MYCN is a transcription factor expressed early during neural crest induction [96] and
is thought to promote cell expansion during normal murine sympathoadrenal develop-
ment [97]. However, MYCN expression decreases during sympathetic neuron differenti-
ation [97] and no expression is detected in adult neural tissue [11]. Intriguingly, neural
crest cells with forced MYCN expression do not lose their ability to migrate but, rather, are
unable to differentiate normally [98].

ALK and MYCN are located in close proximity on chromosome 2, at 2p23 and 2p24.1,
respectively [99]. This appears to be a region of genomic instability. Gains of the 2p
chromosome are associated with MYCN and ALK amplification and, again, correlate with
poor prognosis. Amplification of ALK has been found almost exclusively concomitantly
with MYCN amplifications [76,99]. In 10.9% of neuroblastoma tumours with MYCN am-
plification, additional ALK mutations were found [76]. In total, 41% of these tumours
exhibit ALKF1174L mutations compared with other ALK mutations [76,77]. ALK activa-
tion also leads to MYCN transcription [100], whereas MYCN reciprocally regulates ALK
expression [92].

Interestingly, FAM150B is also located in the chromosome 2p arm along with MYCN
and ALK. Thus, it is possible that, in some cases, an amplification of FAM150B may play
a synergistic role in tumorigenesis, resulting in enhanced ligand-dependent activation of
wild-type ALK [101]. In fact, overexpression of FAM150B in the Th-Mycn neuroblastoma
mouse model (which has no ALK-activating mutations) induced tumours that are sensitive
to tyrosine kinase inhibitor (TKI) treatment, while ALK mutations confer resistance [102].

5. Downstream Targets of ALK

Downstream targets of ALK have mainly been studied in pathological disorders, such
as ALCL, and in the context of ALK fusion proteins, such as NPM–ALK. However, these
fusion proteins have altered intracellular localisation, having lost the extracellular and
transmembrane domains [71]. In these pathological conditions, ALK reportedly activates
MAPK/ERK and phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathways
(Figure 2). Additionally, phosphorylation of ERK1/2 is widely used to determine ALK
activation in in vitro assays [17,87,103,104].

The fusion protein NPM–ALK can directly interact with a variety of proteins. The
regulatory subunit p85 of PI3K binds directly to NPM–ALK, resulting in the activation of
the PI3K/AKT pathway [105]. The PI3K/AKT pathway is known to be involved in cell
proliferation and survival. Through activation of AKT and mTOR complex 1 (mTORC1),
PI3K promotes cell growth in neural crest cells [106]. In addition, PI3K activation leads
to increased FOXO3a phosphorylation, which affects cell survival and proliferation [107].
In neuroblastoma, FOXO3a is proposed to act as a tumour suppressor due to its reduced
expression in aggressive tumours. Inhibition of AKT leads to reactivation of FOXO3a and
induces apoptosis in neuroblastoma cell lines [108]. Activation of the PI3K/AKT pathway
mediated by NPM-ALK has also been shown to phosphorylate serine 9 of glycogen syn-
thase kinase 3 isoform β (GSK3β), which inhibits GSK3 kinase activity [109]. In neural crest
development, these inhibitory phosphorylations of GSK3 lead to Wnt signal activation and
neural crest induction [110]. Moreover, our group showed that neuroblastoma cell lines
with elevated (active) tyrosine-phosphorylated ALK present increased levels of (active)
tyrosine-phosphorylated GSK3α and GSK3β [54], raising the possibility that GSK3 may be
a direct phosphorylation target of ALK.
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Figure 2. Downstream signalling of wild-type ALK, mutant active ALK, and NPM–ALK. Wild-type ALK activation is 
dependent on ligand binding, leading to activation and transphosphorylation of tyrosine residues in the tyrosine kinase 
(TK) domain. Phosphorylated tyrosines (pY) can function as docking sites for downstream targets, e.g., Shc and p55γ. 
p55γ is a regulatory subunit of PI3K and its activation leads to increased phosphorylation of AKT. Binding of Shc to pY-
ALK leads to activation of the MAPK/ERK pathway and increased phosphorylation of ERK1/2. Both pathways are used 
as readouts of ALK activity. Mutations in the ALK tyrosine kinase domain can lead to constitutively active ALK inde-
pendent of ligand binding. In neuroblastoma cells, mutated ALK may lead to increased STAT3 phosphorylation. In addi-
tion, in neuroblastoma cell lines with elevated active ALK, increased levels of phospho-tyrosine GSK3 have been shown. 
NPM–ALK fusions are found in anaplastic large cell lymphoma. NPM–ALK activity is dependent on the dimerisation of 
the fusion protein NPM. Similar to wild-type ALK, dimerisation leads to auto-phosphorylation of the tyrosine kinase 
domain. IRS1, Shc, PLC-γ, GBR2, and RAS have been shown to directly bind to NPM–ALK, which leads to activation of 
the MAPK/ERK pathway. In addition, NPM–ALK has been shown to directly bind and phosphorylate STAT3. In contrast 
to wild-type ALK, NPM–ALK has been shown to favourably bind to p85, a regulatory subunit of PI3K, and thereby acti-
vate the PI3K/AKT pathway. 

The fusion protein NPM–ALK can directly interact with a variety of proteins. The 
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Figure 2. Downstream signalling of wild-type ALK, mutant active ALK, and NPM–ALK. Wild-type ALK activation is
dependent on ligand binding, leading to activation and transphosphorylation of tyrosine residues in the tyrosine kinase
(TK) domain. Phosphorylated tyrosines (pY) can function as docking sites for downstream targets, e.g., Shc and p55γ. p55γ
is a regulatory subunit of PI3K and its activation leads to increased phosphorylation of AKT. Binding of Shc to pY-ALK leads
to activation of the MAPK/ERK pathway and increased phosphorylation of ERK1/2. Both pathways are used as readouts
of ALK activity. Mutations in the ALK tyrosine kinase domain can lead to constitutively active ALK independent of ligand
binding. In neuroblastoma cells, mutated ALK may lead to increased STAT3 phosphorylation. In addition, in neuroblastoma
cell lines with elevated active ALK, increased levels of phospho-tyrosine GSK3 have been shown. NPM–ALK fusions are
found in anaplastic large cell lymphoma. NPM–ALK activity is dependent on the dimerisation of the fusion protein NPM.
Similar to wild-type ALK, dimerisation leads to auto-phosphorylation of the tyrosine kinase domain. IRS1, Shc, PLC-γ,
GBR2, and RAS have been shown to directly bind to NPM–ALK, which leads to activation of the MAPK/ERK pathway. In
addition, NPM–ALK has been shown to directly bind and phosphorylate STAT3. In contrast to wild-type ALK, NPM–ALK
has been shown to favourably bind to p85, a regulatory subunit of PI3K, and thereby activate the PI3K/AKT pathway.

In addition, NPM–ALK has been shown to directly bind to insulin receptor substrate
1 (IRS1) [111], SHC [103], phospholipase C γ (PLC-γ) [112], growth factor receptor-bound
protein 2 (GRB2) [113], and proto-oncogene tyrosine–protein kinase src (SRC). These pro-
teins are involved in MAPK/ERK activation. In neural crest induction, the MAPK/ERK
pathway is activated by the fibroblast growth factor receptor (FGFR) [106]. Interestingly,
mutations in MAPK/ERK activation pathways are frequently observed in neuroblastoma
relapse samples [114]. Finally, NPM–ALK has been shown to mediate the phosphorylation
of signal transducer and activator of transcription 3 (STAT3). STAT3 is a transcription factor,
which activates and regulates genes involved in proliferation, apoptosis, and differentia-
tion [115,116]. In neuroblastoma cells, STAT3 has been found to directly bind to full-length
ALK, which leads to STAT3 phosphorylation. Interestingly, inhibition of STAT3 leads to
decreased growth and viability of neuroblastoma cell lines, in addition to decreased levels
of MYCN in neuroblastoma cell lines carrying ALK mutations [117].
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A few studies show downstream targets of wild-type ALK. In developing mouse
brains, endogenous ALK has been found to regulate migration through p55γ, another
regulatory subunit of PI3K [118]. In vitro experiments with overexpression of ALK in PC12
cells show increased phosphorylation of ERK1/2 upon ALK activation [43]. In addition,
wild-type ALK activation in HEK293 cells leads to the specific activation of STAT3 over
STAT1 and STAT5 [43].

Although these studies tell us clearly which intracellular signals can be activated by
the ALK kinase, it is hard to pinpoint the precise tissue- and cell-type requirements for
ALK signalling. As noted here, many studies focus on ALK fusion proteins, or on ALK
gain-of-function mutations, which confer ligand independence and promote contextually
inappropriate activation of intracellular effectors. This can make it difficult to determine
which signalling pathways are crucial for normal ALK function. Furthermore, the effects
may be twofold: first, a loss of the ligand-independent signals, e.g., those that may drive
apoptosis, coupled with the gain of prosurvival, promigratory signals.

Moreover, ALK binding partners or downstream pathways described above are also
known to be activated by other RTKs important in neural crest development [6,119]. To
date, there is little known about ALK specific signalling to postulate its precise role in
this signalling network. Nevertheless, gain-of-function mutations in ALK can lead to a
disease outcome, emphasizing that ALK has a specific role in the neural crest development
signalling network. For future research, it will be important to understand ALK specific sig-
nalling and how we can distinguish it from other RTK activated pathways. This knowledge
will help us to develop better strategies for ALK-positive neuroblastoma treatment.

6. ALK in Neural Crest and Neuroblastoma

Despite many decades of work, the cell of origin of neuroblastoma has not been
clearly defined; however, it is generally accepted that neuroblastoma arises from trunk
neural crest cells contributing to the sympathoadrenal lineage. The sympathoadrenal
lineage is mainly comprised of sympathetic neurons and chromaffin cells of the adrenal
medulla [120,121]. Evidence from early mouse and chicken models have shown that
both of these cell types share a common sympathoadrenal progenitor (SAP), which is fate
restricted [122–125]. Differentiation from SAPs to sympathetic neurons and its implications
in neuroblastoma have been extensively studied [121,126]. Recently, Furlan and colleagues
have demonstrated that a part of chromaffin cells originate from a Schwann cell precursor
(SCP) via a transitory “bridge cell” stage [127,128]. However, questions remain regarding
chromaffin cell differentiation from SAP/SCPs and whether this cell type can develop into
neuroblastoma.

Regardless, neuroblastoma prognosis and aggressiveness are closely linked to the
tumour differentiation state. We can postulate that an arrest in neural crest cell development
results in undifferentiated stem-like cells, which lead to highly metastatic neuroblastoma
(Figure 3). This malignant transformation could be promoting proliferation and migration,
while blocking final differentiation of neural crest cells [54]. This is consistent with data
from ALKF1174L knock-in mice, which display prolonged sympathetic neurogenesis with
increased levels of the proliferation marker Ki67 [89]. In contrast, ALK knockdown leads
to the reduction in proliferating immature sympathetic neurons, in addition to decreased
sympathetic ganglia size [64].
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Figure 3. ALK in neural crest development and neuroblastoma formation. Normal development: neural crest progenitors
arise from the dorsal neural tube. Cells undergo epithelial-to-mesenchymal transition, delaminate from the neural tube,
and migrate, either laterally, adjacent to the somites (S), or towards the dorsal aorta (DA). The DA population of trunk
neural crest cells start to specify into sympathoadrenal progenitor (SAP) cells or Schwann cell progenitors (SCP). These cells
will eventually give rise to sympathetic neurons or chromaffin cells, respectively. Activated ALK (pY-ALK) can be found
in migrating neural crest cells and is shown to be important in proliferation of SAP cells, but less so as they differentiate
into sympathetic neurons. Neuroblastoma formation: ALK alterations (mutations, amplification, or translocation) can lead
to constitutively active ALK (ALK+). During migration of neural crest cells, ALK+ is thought to increase their migratory
behaviour. In addition, ALKF1174L/R1275Q have been shown to prolong SAP proliferation, which leads to the blockage of
the differentiation into sympathetic neurons. The effect of ALK activation in SCPs and its involvement in neuroblastoma
remains unclear. Recently, it has been proposed that ALK alterations potentiate MYCN oncogenic capacity, resulting in
neuroblastoma formation [17,90,92–94,127,128]. NT = neural tube, DA = dorsal aorta, S = somite, pY-ALK = active ALK,
SAP = sympathoadrenal progenitors, SCP = Schwann cell precursors, ALK+ = constitutively active ALK.

Evidence linking pathological activation of ALK with neuroblastoma cell migration
has been limited [92]; nevertheless, there have been a sprinkling of papers. Overexpression
of ALK mutants or fusions results in increased migration and invasiveness in neuroblastoma
cells via upregulation of the MAPK pathway target ETV5 [129]. Indeed, using chicken
embryo grafting experiments, Delloye-Bourgeois and colleagues were able to show that
neuroblastoma cells carrying ALK gain-of-function mutations could follow the neural crest
migratory paths, but did continue to proliferate and form tumour-like masses [130].

In addition, mouse models support a role for ALK early in neural crest develop-
ment. In mice, as in humans, migratory neural crest cells express the transcription factor
Sox10 (Sox10+/Phox2b−). As these cells mature to the sympathetic neuroblast lineage,
Sox10 is downregulated and Phox2b is activated (Sox10−/Phox2b+). Normally, expansion
of these Phox2b+ cells occurs dramatically between E10.5 (43.1%) and E11.5 (84.4%) [78].
In mice carrying a Sox10 promoter-driven Cre-recombinase and a conditional ALKF1174L

variant (Sox10::CreERT2/+; LSL-ALKF1174L), neural crest migration remained unaltered.
However, the transition from Sox10+ migratory cells to Phox2b+ neuroblasts was not ob-
served, with roughly equivalent numbers of Sox10+-only cells (32.5%), Sox10+/Phox2b+

double-positive cells (29.9%), and Phox2b+-only cells (37.6%) equally represented [78]. In-
terestingly, ALKF1174L expression before lineage specification led to 100% lethal in E12.5
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mice and blockage of noradrenergic differentiation [78], pointing to a specific role of ALK
after sympathoadrenal lineage specification.

Together this might suggest that ALK activation is involved in NCC migration and
proliferation, however, not required for differentiation. In fact, through mutation, ALK
activation uncoupled from ligand binding may result in a blockage of differentiation,
leading to the hypothesis that ectopic ALK signalling acts very early in the neural crest
differentiation programme when initiating neuroblastoma. This was given emphasis when
Siaw and colleagues proposed that ALK activation in neuroblastoma can inhibit DLG2
transcription via ERK1/2 and specificity protein 1 (SP1) signalling, thus impairing DLG2-
induced differentiation. DLG2 expression is shown to inhibit tumour growth in vivo and
drive neuroblastoma cell differentiation [131]. Previous studies have described DLG2
expression in the “bridge cell” signature between Schwann cell precursors (SCP) and
Schwann cells, and late bridge cell signatures in neuroblastoma tumours have been linked
to better prognosis [127].

Histological assessment of the tumours has allowed clinicians to establish a clas-
sification of risk status and prognosis of disease, with undifferentiated tumours being
categorised as high-risk, associated with worse prognosis and survival [132–134]. ALK
genetic abnormalities (mutation or amplification) have been associated with high-risk
neuroblastoma, with tumours often composed of undifferentiated neuroblasts instead of
differentiated neuronal cells [95,135].

Despite intense research, our knowledge about ALK is limited. Through mRNA
expression patterns in a variety of animal models [48,49,52,55], we know that ALK is ex-
pressed in neural crest cells during early development. Forced overexpression or deletion
of ALK in neural crest cells leads to changes in neural crest migration [129], differentia-
tion [131], and proliferation [89]. Nevertheless, we are still not able to postulate the exact
role of ALK in the neural crest.

In addition, we are lacking in human models that are not disease based. Currently, we
are using a variety of human disease and animal models to establish the role of ALK in
development and neuroblastoma initiation. These might not reflect essential endogenous
roles of ALK. A better understanding of the normal regulation and function of ALK during
human neural crest development is crucial for understanding disease progression. Further,
the design of in vitro and in vivo models with inducible ALK expression during different
developmental stages is essential. These models would help us to elucidate ALK’s role in
neural crest development, neuroblastoma initiation, and treatment development.

7. Treatment of ALK-Positive Neuroblastoma

So far, a variety of neuroblastoma treatments have been established, which vary
depending on the neuroblastoma risk groups (reviewed in Matthay et al., 2016). These
treatments include surgery, chemotherapy, and radiotherapy, but also differentiation ther-
apy and immunotherapy. Although ALK has been associated with high-risk neuroblastoma
and a variety of ALK inhibitors are available, none of these are currently approved to treat
ALK-positive neuroblastoma. In fact, ALK-mutated tumours can be highly susceptible to re-
sistance to first-generation tyrosine kinase inhibitor therapies, such as crizotinib, or second-
generation therapies, such as brigatinib or ceritinib [136]. However, ALK activity can
also be targeted indirectly, using inhibitors against downstream effectors, e.g., PI3K/AKT,
MAPK/ERK, or MYCN. ALK alterations have been frequently observed in relapse cases of
neuroblastoma [137]. Further, mutations in the downstream target MAPK/ERK pathway
are frequently found in relapse neuroblastoma tumours [114]. More promising are differen-
tiation therapies for neuroblastoma [138], where retinoic acid (RA) treatment can overcome
the differentiation block in some patients. Retinoic acid is known to upregulate (rearranged
during transfection) RET receptor [139], which is a proposed phosphorylation target of
ALK in sympathetic neurons [89,140,141]. Furthermore, multiple studies are investigating
combinatorial treatments for ALK and its downstream targets [142].



Int. J. Mol. Sci. 2021, 22, 11718 13 of 20

Neuroblastomas with ALK alterations and MYCN amplifications are mostly classified
as high-risk tumours with poor prognosis [77,95]. Expression levels of ALK and MYCN are
tightly connected. Via the PI3K/AKT pathway, ALK activates MYCN expression, whereas
ALK is a transcriptional factor of MYCN [92,100]. This unique relation can be used to
generate combinational treatment approaches. Currently, there are no inhibitors for MYCN
available; however, indirect inhibitors for its cofactors and downstream targets have shown
some clinical benefits [143]. For example, GSK3β has been found to directly phosphorylate
and destabilize MYCN [144], and, as noted, ALK is suggested to phosphorylate GSK3
(Gonzalez Malagon, et al., 2018). Most promising GSK3 inhibitors being developed are still
in preclinical/clinical trials [145]. Inhibiting signalling pathways, which would phosphory-
late and, thereby, inhibit GSK3β, would result in increased MYCN degradation. However,
it is still essential to understand the developmental biology and the signalling events in the
neural crest that depend upon ALK to improve neuroblastoma treatments.

A variety of studies concentrate on defining the ALK interactome in neuroblas-
toma cells and have identified new major interacting partners [104,117,146]. Using mass
spectrometry, Sattu et al. and Emdal et al. investigated differences in the phosphopro-
teome of ALK, dependent on genetic alterations or ALK inhibition in neuroblastoma cell
lines [104,117]. A membrane-specific two-hybrid approach identified proteins that bound
to ALK in a phosphorylation-dependent ALK manner [146]. Using these approaches,
they were able to define an ALK interactome, including novel targets, such as NCK2,
which were then validated in neuroblastoma cell lines carrying activated ALK. NCK2 is
an SH2-domain-containing protein that binds to actin effectors, suggesting a link between
ALK and regulation of the cytoskeleton during cell migration. Another elegant study
combined cellular fractionation to determine tyrosine kinase and phosphatase interactions
in neuroblastoma cell lines. They were able to determine that localisation of FYN and LYN
kinases changed in response to ALK and KIT stimulation (Palacios-Moreno et al., 2015). As
both ALK and KIT are associated with aggressive neuroblastoma and naïve neural crest,
Palacios-Moreno and colleagues propose that these sustained phospho-tyrosine signatures
are indicative of a failure to differentiate (Palacios-Moreno et al., 2015). It will, of course,
be important to test the relevance of similar ALK interactions during normal neural crest
development and migration.

8. Summary and Long-Term Prospects

Childhood cancers are often thought of as developmental cancers. Compared to adult
cancers, childhood cancers often have fewer associated genetic mutations. Presumably,
this is because residual embryonic cells carry the hallmarks of cancer “stem cells”: namely,
they are proliferative, migratory, resistant to apoptosis, and have self-renewal capacity.
Neuroblastoma is particularly interesting because of the heterogeneity of disease outcomes,
from metastasis to spontaneous regression, and because there are a few genes associated
with the most severe cases.

Although, ALK is a known predisposition gene for neuroblastoma development, we
are still far from understanding its role in tumour initiation. Most of the current research
has been in a disease context or is based on overexpression, deletion, or loss-of-function
assays. In addition, our understanding of the endogenous role of ALK in neural crest
development is limited and inhibits us from fully understanding its involvement in neu-
roblastoma formation. For future research, we need to determine the effects of “normal”,
gain-of-function mutation and amplified ALK expression/activation during neural crest
development. Currently, our understanding is that endogenous ALK and function should
be restricted to specific developmental contexts. However, due to the overactivation of
mutated ALK and its downstream signals, the proliferative and migratory phases are
prolonged and expression of differentiation genes are blocked. This can lead to undifferen-
tiated tumour-like cells. This is exacerbated in combination with other gene alterations,
such as MYCN amplifications, which then can lead to neuroblastoma formation. In com-
parison, ALK amplification leading to unrestricted expression of ALK during undefined
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developmental stages results in the severe disruption of specification and consequent tu-
mour formation, or death during development, as seen in Sox10::CreERT2/+; LSL-ALKF1174L

mice [78]. A more precise definition of the role of ALK during neural crest development
will be crucial to our understanding of the initiation of ALK-positive neuroblastoma and
will help us to develop new treatment strategies to correctly treat neuroblastoma and
potentially decrease the risk of relapse.
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